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Abstract

Wide view angle reflective projection lens by using Zernike polynomials surfaces are designed and presented. Detail description and
analysis of Zernike polynomials surfaces are provided. Wave front aberration is analyzed and used to design the Zernike polynomials
reflective lens. Two types designs of reflective projection lens with Zernike polynomials mirrors are presented, lenses are telecentric in
object space. Lens’s optical performance are analyzed, under the condition of F-number = 2.5 and field of view 2a = 130�, both of
design’s modulation transfer function are over 55% at 60 lp/mm, moreover, the design of three Zernike polynomials mirrors has simpler
structure and higher performance. The MTF is over 60% at 100 lp/mm and distortion is less than 2%, which can satisfy the requirement
of the high definition projection display system.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Projection lens is one of most important parts in projec-
tion display system, such as LCD/DLP/LCoS projector.
Since projection lens affects the definition and optical per-
formance of the whole projection display system greatly,
the design of projection lens has become the focus of the
research in the projection system. At present, the trend of
projection lens is towards to short focus, wide angle of
view, large F-number and high definition [1], which can sat-
isfy the requirement of short projection distance and high
definition of system. Normally, the projection lens is often
designed by refraction lens, however, when refraction pro-
jection lens is used in short focus and wide field angle, the
various of aberration is difficult to reduce because of rapid
increase of chromatic aberration and axial coma aberration
owing to large field of view and F-number. Moreover, for
refractive projection lens, chromatic aberration inevitably
occurs due to characteristics of optical glass. And, when
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a great mount of refraction lenses are introduced, manufac-
turing problems in terms of cost, weight, and surface accu-
racy may occur. Thus, the design concept of reflective
projection lens is accepted by more and more lens designer.
Many reflective projection lens design are reported [2,3].
Ogawa studied a reflective projection lens layout with four
aspheric mirror [4], the detail design and manufacture per-
formance were put forward. These designs have proved
that the reflective projection lens by using aspheric surfaces
is successful in projection lens. Recently, to simply the
structure of projection lens and improve the optical perfor-
mance, some designs are reported by using other optical
element such as fresnel plate [5,6] and so on.

Zernike polynomials are widely used for specifying and
balancing of aberrations [7]. The main properties of Zer-
nike polynomials are that they are orthogonal and normal-
ized over a unit circle, and that the first two non-trivial
components represent tilt and defocus, thus Zernike poly-
nomials can be used for fringe analysis [8], widely used in
investigation of atmospheric turbulence and in adaptive
optics [9,10]. Weighting of a pupil can also be expressed
in terms of Zernike polynomials. However, using Zernike
polynomials to design projection lens is seldom reported.
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Fig. 1. A ray reflected by Zernike polynomial reflective surface.
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In this paper, by using Zernike polynomials mirrors, wide
view angle off-axis reflective projection lens are designed.
The detail description and performance of Zernike polyno-
mials surfaces are analyzed. Wave front aberration is used
to design the Zernike polynomials reflective lens. Two
types of reflective projection lens are designed with Zernike
polynomials mirrors, one layout is three aspheric mir-
rors + 1 Zernike polynomial mirror, another is three Zer-
nike polynomials mirrors, lenses are telecentric in object
space. Projection lens’s optical performance are analyzed,
under the condition of F-number = 2.5 and angle of view
2a = 130�, both of projection lens’s MTF(Modulation
Transfer Function) are over 60% at 60 lp/mm on magnifi-
cation side, moreover, the MTF of three Zernike polyno-
mials mirrors is over 60% at 100 lp/mm and distortion is
less than 2%.
2. Zernike polynomials surface and aberrations

Eq. (1) shows the expression of Zernike polynomials [7]

Zðx; yÞ ¼ cr2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1þ kÞc2r2

p

þ
XM

i¼1

air2i þ
XN

i¼1

AiEiðx; yÞ ð1Þ

where, Z(x,y) is Sag, k is conic constant, c is the curvature
of the reflective surface, r is the height above the optical
axis, then r2 = x2 + y2, ai are, respectively, even aspheric
coefficients, Ai is coefficient of Zernike polynomial, polyno-
mials can be written,

XN

i¼1

AiEiðx; yÞ ¼ A1x1y0 þ A2x0y1 þ A3x2y0 þ A4x1y1

þ A5x0y2 þ � � � þ AN xj�kyk ð2Þ

The number of polynomial item is N ¼ 1
2
jðjþ 1tÞ þ k

Generally, Ai are called the Zernike coefficients. Zernike
polynomials also can be expressed in polar coordinates
(q,h)

Zðx; yÞ ¼ cr2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1þ kÞc2r2

p þ
XN

i¼1

BiF iðq; hÞ ð3Þ

where 0 6 q 6 1, 0 6 h 6 2p.
The Zernike circle polynomials are unique in that they

are the only polynomials in two variables q and h. The
orthonormal Zernike polynomials are usually used to
describe the Seidel aberrations of optical system.

As description in Eq. (1), compared with even aspheric
surface polynomials, Zernike polynomials have more
parameters, it means Zernike polynomials have more free-
dom for aberration correction in optical design.

Shown in Fig. 1, consider a ray reflected at point QR by
Zernike polynomial reflective surface Z, the direction of
incoming ray and reflective ray are In and Out. According
to the reflection law, the relations among In, Out and the
surface normal unit vector N can be established,

Out ¼ In� 2ðN � InÞN ð4Þ
Introduce two sets of mutually parallel Cartesian rectan-

gular axes, with origins at the axial point O and O0 of the
surface and image plane, and with the x directions along
the axis of the system, if B00 is the Gaussian image, establish
a reference sphere SR which is centered on the Gaussian
image point B00 and passes through O, Q is the points of
intersection of the ray B0QR with the reference sphere SR,
then:

OQR þ jQRB0jOut ¼ OO0 þO0B00 þ B00B0

¼ R0iþ y0jþ z0kþ d0y jþ d0zk
ð5Þ

where, OQR = OQ + QQR, then

QQR ¼ R0iþ ðy0 þ d0yÞjþ ðz0 þ d0zÞk� jQRB0jOut

�OQ ð6Þ

In terms of the point characters QR and B0,

dw ¼ djQQRj
¼ djR0iþ ðy0 þ d0yÞjþ ðz0 þ d0zÞk� jQRB0jOut

�OQj ð7Þ

So, the wave aberration is given by,

W ¼
Z
P

R
dw¼

Z
P

R
djQQRj

¼
Z
P

R
djR0iþðy0þ d0yÞjþðz0þ dz0Þk� jQRB0jOut�OQj

ð8Þ
At the same time, the surface normal unit vector N is,

N �
X

R ¼ 0 ð9Þ

For the existence of a free form surface, it has a neces-
sary and sufficient condition for the existence of a surface
everywhere perpendicular to a vector field N, is that this
vector field satisfy
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N � curlðNÞ ¼ 0 ð10Þ

In order to determine the initial shape of the Zernike
polynomial optical surface, we have to solve the set of dif-
ferential equations:

� Eq. (4), which specifies the reflective law.
� Eq. (7), which connects the wave front with the curva-

ture of the incoming wave front and the curvature of
the optical surface.
� Eq. (9), which specifies the relationship of the normal

vector with optical surface.
� Eq. (10), the integrability condition.

Numerical methods [11,12] is used to solve the differen-
tial equations, first the equations should be made discreti-
zation and difference method are used. In Fig. 2, light
Rayn � 1 and Rayn reflected by surface Z arrive at image
point. Because the reflector is second differential term, so
lights between Rayn � 1 and Rayn would be reflected into
the line between Rayn � 1 and Rayn. If Rayn � 1 and Rayn

are close enough, the wave front caused by the reflected
light could be considered as similar. Then lights Rayn can
be calculated by Rayn � 1 using the equations mentioned
above. The initial merit for optical surface can be derived
y

O

nRay

'x

Image

RS
Z

'z

'O

0R

Object

1−nRay

Z

Fig. 2. Scheme of reflective ray.

M1

M2

M4M3

Object

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

M
T

F

a b

Fig. 3. Layout and MTF of projection l
by numerical method above, this initial merit commonly
has great aberrations and can not be used in design
directly. The least squares optimization method is used to
induce optimization merit after acquired initial merit, more
detailed description shown in [13–15].
3. Design of reflective projection lens with Zernike
polynomial surface

3.1. Design with three even aspheric mirrors + 1 Zernike

polynomial surface

Firstly, a projection lens with four even aspheric reflec-
tive surface was designed, layout of design is shown in
Fig. 3a. Light flux starting from object plane, which is a
picture-forming device, such as DMD, LCD or LCoS pan-
els, then reflected by the four even aspheric reflecting mir-
rors M1, M2, M3, M4, projected on the screen. In this
design, M1 and M3 are concave mirrors, M2 and M4 are
convex mirrors, projection distance is 250 mm and the chief
ray condition is telecentric in object space. The parameters
of four even aspheric surfaces are given in Table 1.

The object’s size is 0.42 in. and projection magnification
is 143. With F-number = 2.5 and F.O.V 2a = 130�, the
average MTF of four even aspheric surfaces design is over
70% at 60 lp/mm in the center, and average MTF is about
50% at 60 lp/mm on the margin. The spatial frequency
60 lp/mm is measured in the object space. Fig. 3b shows
the MTF results.

Based on the even aspheric mirrors design, one Zernike
polynomial mirror is used to substitute the even aspheric to
reduce the aberration, result shown in Fig. 4a is the layout
of design, M1/M2/M3 is the same with even aspheric
design, M4 is the Zernike polynomial reflective surface.
The chief ray condition is telecentric in object space and
F-number is 2.5. Fig. 4b is the average MTF of the design,
compared with four even aspheric surface design, the MTF
of center and 0.7 field are almost the same, but on the
margin-1 field, the MTF is improved from 50% at
4 Even Aspheric Reflective Surface

10 20 30 40 50 60

Spatial Frequency (lp/mm)

center of Object

0.7 field of Object

1 field of Object
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Table 1
The structure data of projection lens with four even aspheric mirror

Type Position (mm) Tilt (�) R k a2 a3 a4 a5

x y z

Object Plane 0 0 0 12 83.902 0.589 �1.387e�07 7.168e�10 �1.824e�012 2.133e�015
M1 Even aspheric �94.81 12.64 0 1.45 83.902 0.589 �1.387e�07 7.168e�10 �1.824e�012 2.133e�015
Stop Plane �45.94 16.78 0 0 – – – – – –
M2 Even aspheric �5.73 20.12 0 12.1 63.585 �10.972 4e�08 �3.06e�09 2.46e�10 7.11e�16
M3 Even aspheric �103.17 80.62 0 6.62 138.041 �0.169 �3.03e�07 2.166e�11 �1.384e�15 4.63e�20
M4 Even aspheric 87.42 102.2 0 20.44 27.797 �3.4227 �8.018e�08 5.919e�012 �2.918e�16 8.9356e�21
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Fig. 4. Layout and optical performance of projection lens with three even aspheric mirrors + 1 Zernike polynomial surface.
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60 lp/mm to 57% at 60 lp/mm. Fig. 4c shows the distortion
result.
Fig. 5. Layout of design with three Zernike polynomial reflective surfaces.
3.2. Reflective projection lens design with three Zernike

polynomial surfaces

To achieve simpler structure and higher performance,
three Zernike polynomial reflective surfaces are used to
replace four even aspheric surfaces; Fig. 5 shows the layout
of reflective projection lens with three Zernike polynomial
free form surfaces, the chief ray condition is telecentric in
object space. Light flux starting from object plane is
reflected by the three Zernike polynomial reflecting mirrors
M1, M2, M3, and then projected on the image surface. In
this design, the first mirror surface M1 is concave to reduce
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the size of the second mirror, a stop aperture is arranged
between the first and the second mirror to achieves high
contrast ratio, the second mirror surface M2 and the third
mirror surface are used to achieve a shorter projection dis-
tance and correct major aberrations such as spherical aber-
ration and coma aberration, the third mirror M3 is also
convex to expand and project the image and the aspheric
coefficients of this mirror are used to correct distortion.
Table 2 shows the structure data of projection lens with
Zernike polynomial mirrors.

In Table 2, C and K are defined by Eq. (1), the distances of
the object, image, and mirrors from the origin of the surface
coordinate system are positive when located to the right of
surface. The object’s size is 0.42 in. and projection magnifica-
tion is 143. Table 3 is the Zernike polynomial coefficients of
Zernike polynomial mirrors of the above designs.

The MTF result of design is shown in Fig. 6a. Because
the use of Zernike polynomial surfaces, under the condi-
tion of F-number = 2.5 and angle of view 2a = 130�, the
Table 2
The structure data of reflective lens with three Zernike polynomial mirrors

Optical part Position (mm) Tilt (�) C K

x y z

Object 0 0 0 12 0 0
M1 110.04 3.15 0 4.15 �124.34 0.004477
Stop 40.72 20.31 0 0 0 0
M2 �10.04 31.48 0 2.43 �161.3 0.1280
M3 182.46 60.15 0 8.06 312.15 0.04182
Image �240 305.37 0 0 0 0

Table 3
Zernike polynomial parameters of Zernike polynomial mirrors

Item Zernike polynomial Ei(x,y) Mirror M1, Ai

1 X1Y0 0
2 X0Y1 �0.2795
3 X2Y0 �0.000127172
4 X1Y1 0
5 X0Y2 �0.000294935
6 X3Y0 0
7 X2Y1 �9.04E�06
8 X1Y2 0
9 X0Y3 �9.76E�06

10 X4Y0 5.25E�08
11 X3Y1 0
12 X2Y2 1.17E�07
13 X1Y3 0
14 X0Y4 3.74E�08
15 X5Y0 0
16 X4Y1 �1.09E�09
17 X3Y2 0
18 X2Y3 �1.23E�09
19 X1Y4 0
20 X0Y5 �7.08E�10
21 X6Y0 1.77E�12
22 X5Y1 0
23 X4Y2 �1.20E�11
24 X3Y3 0
25 X2Y4 �6.33E�12
26 X1Y5 0
27 X0Y6 �2.31E�12
modulation transfer function is over 60% at 100 lp/mm,
and distortion is less than 2%. Fig. 6b shows the distortion
result.

Moreover, this design with three Zernike polynomial
surfaces has simpler structure, lighter weight, lower cost
and higher performance.

Comparisons of ray aberration between three designs
are shown in Fig. 7.

Design-A means the design of four even aspheric mir-
rors; Design-B means the design of three even aspheric mir-
rors + 1 Zernike polynomial surface; Design-C means the
design of three Zernike polynomial surfaces.

Fig. 7a and b shows the tangential ray aberration and
the sagittal ray aberration, respectively. In Fig. 7a, the
maximum tangential ray aberration of Design-A, Design-
B, and Design-C is 919, 737, and 148 lm. In Fig. 7b, the
maximum sagittal ray aberration of Design-A, Design-B,
and Design-C is 450, 276, and 54 lm, respectively. Fig. 7
shows that the design of three Zernike polynomial surfaces
has the best performance, and the performance of three
even aspheric mirrors + 1 Zernike polynomial surface is
better than four even aspheric mirrors. It’s proved that
the Zernike polynomial surface can improve the optical
performance of projection lens.
4. Conclusion

In this paper, wide view angle off-axis reflective projec-
tion lens are designed by using Zernike polynomials mir-
rors. The detail description and performance of Zernike
Mirror M2, Ai Mirror M3, Ai Mirror M4, Ai

0 0 �0.142273
�0.085219195 �0.51823812 0.037121
�0.000189189 0.000980361 �1.37316E�03
0 0 7.376399E�05
0.000605635 0.002832199 �6.68487E�04
0 0 3.23782E�07
�2.98E�05 �1.14E�05 �1.25753E�06
0 0 1.522594E�06
�2.81E�05 �1.70E�05 �1.88175E�07
1.11E�09 �9.84E�08 �4.93058E�10
0 0 �4.69877E�10
�1.75E�07 �1.33E�07 �1.49279E�08
0 0 �8.09031E�10
4.07E�07 �6.76E�08 1.231028E�10
0 0 2.547224E�10
�3.38E�08 2.81E�09 9.484691E�11
0 0 �2.09355E�11
�5.89E�08 1.46E�09 8.296171E�11
0 0 3.961791E�12
�5.01E�08 1.10E�09 3.506619E�13
1.77E�10 1.45E�12 9.928709E�14
0 0 �8.67005E�14
2.48E�09 �1.73E�11 �9.95596E�14
0 0 �3.83591E�13
2.36E�09 1.70E�11 1.678566E�14
0 0 2.279295E�14
1.19E�09 �2.82E�13 8.855778E�15
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Fig. 7. Comparisons of ray aberration between three designs.
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polynomials surfaces are analyzed. Wave front aberration
is used to design the Zernike polynomials reflective lens.
Two types of reflective projection lens are designed with
Zernike polynomials mirrors, one layout is three aspheric
mirrors + 1 Zernike polynomial mirror, another is three
Zernike polynomials mirrors, and lenses are telecentric in
object space. Projection lens’s optical performance are ana-
lyzed, under the condition of F-number = 2.5 and angle of
view 2a = 130�, both of projection lens’s MTF (Modula-
tion Transfer Function) are over 60% at 60 lp/mm on mag-
nification side, moreover, the MTF of three Zernike
polynomials mirrors is over 60% at 100 lp/mm and distor-
tion is less than 2%.
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