3D Printing Overview

- Focus lasers on a substrate
- Build object one layer at a time
- Most use synthetic polymers
- Art project able to build objects with Fresnel Lens and sand
Solar Sintering

- Developed by Takashi Nakamura and tested on Mauna Kea at second PISCES field test
- Able to sinter lunar simulant at 1100 degrees Celsius
- Use fiber optics to guide collected solar energy
- Able to achieve average output of 657 W (32 percent efficient)
- Array weighed 1400 pounds
Solar Sintering
A Solar 3D printer for the Moon

• Important for establishing permanent Lunar settlement
• 3D solar printer can make precision objects without transportation costs
• Uses in-situ resources found on the Lunar surface
Requirements from for PILOT concept

- 2 - 2 meter Primary and 0.5 meter Secondary mirror in Cassegrain configuration
- 169 - 2 mm diameter fused silica cores
- Fiber Acceptance Angle - 14.5 degrees
- Overall Reflectivity - 95 percent
- Total Focused Power - 7.272 kW
- Total System Weight - 34.16 kg
Requirements for Project

- Primary Mirror Diameter - 1 meters
- Telescope f/# - f/2
- Mirror Reflectance - Greater than 95% from 400nm to 1000nm
- Mirror Materials: ULE
- Primary Mirror Mount: Must be able to achieve 100 nm rms from surface irregularities, self-weight deflection and mound induced deflection
- Mirror Mount and fiber support Material: Low CTE Graphite Epoxy
- Operational Position Stability: less than 1 arminute tip/tilt, and 50 µm decenter
- Angle of incidence at Fiber Optic interface: 14.5 degrees
- Beam Width at Fiber Optic interface: less than 350 µm
- Focal plane spot size at printing surface: 50 µm
Project Operational and Survival Requirements

Operational Environment
• Temperature: -100°C to 100°C
• Gravity: 1/6 Earth gravity

Survival:
• Shock: 40G
• Temperature: -100°C to 100°C

Limitations
• Weight limitations: Less than 150 kg
System Design
Total System Mass: 122 kg
System Design

- Use a six point mirror mount to support mirror back
- Use a four point whiffle tree mirror mount to support mirror at horizon
- Mirror design
 - Hyperbolic Primary with conic constant of \(-1.005\)
 - Curved back to reduce weight
 - 1 meter diameter, 25.4 mm thick ULE
 - 4 meter Radius of Curvature
 - Silver Coating
 - Mirror Mass – 45 kg
System Design

- Unidirectional low CTE CFRP (CTE of 0.57 ppm/K) for all parts except swivel leveling mounts
- Zenith Mirror Supports
 - Height - 60 mm
 - Width - 100 mm
 - Length - 631.43 mm
 - Spaced at 120 degrees
- Fiber support rods
 - Height and Width - 50 mm
 - Length - 2144.38 mm
- Horizon Mirror Supports
 - Height - 100 mm
 - Width - 100 mm
 - Length - 721.69 mm
- Mass
 - Mount - 67 kg
 - Back Rocker - 3.87 kg
 - Base Rockers - 4.8 kg
 - Swivel Leveling Mounts - 1.38 kg
System Design

• Titanium swivel leveling mounts
• Fiber material – Fused pure silica with a fluorine doped silica cladding
 – 400 micron diameter fiber with gold coating
• RTV 112 adhesive for bonding swivel leveling mounts to mirror
• Bond diameter of 50 mm and thickness of 0.5 mm
• Fiber interface – 25 mm diameter, through top of supports, made from Beryllium
• Fiber material – Fused pure silica with a fluorine doped silica cladding
System Design

- **Printing Lens Specifications**

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Lens</th>
<th>Material</th>
<th>ROC1</th>
<th>ROC2</th>
<th>CT</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1A</td>
<td>BK7</td>
<td>25.488</td>
<td>-9.447</td>
<td>5.246</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>1B</td>
<td>SF5</td>
<td>-9.447</td>
<td>-14.009</td>
<td>0.235</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td>BK7</td>
<td>10.307</td>
<td>-6.024</td>
<td>5.92</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>2B</td>
<td>SF%</td>
<td>-6.024</td>
<td>-104.627</td>
<td>2</td>
<td>5.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tolerances</th>
<th>Lens</th>
<th>Tip/Til</th>
<th>Decenter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lens 1</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Lens 2</td>
<td>0.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>
System Design

• Printing Lens Barrel
 – Material Titanium Ti-8Mn annealed
 – Fiber retainer made from Beryllium
 – Vents along the side for heat dissipation
 – Can be produced on a metal lathe
 – Adjustment Ring for focus adjustment
 – Stability rod maintains lens orientation during adjustment
 – Vent holes along the side for temperature stabilization
 – Barrel and Lens Mass - .085 kg
System Performance - Mirror

<table>
<thead>
<tr>
<th>Contribution</th>
<th>RMS Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Surface Error</td>
<td>20 nm</td>
</tr>
<tr>
<td>Self-weight Deflection at Zenith</td>
<td>37.9 nm</td>
</tr>
<tr>
<td>Self-weight Deflection at Horizon</td>
<td>26.5 nm</td>
</tr>
<tr>
<td>Thermal Deflection</td>
<td>64 nm</td>
</tr>
<tr>
<td>Mount Induced Deflection</td>
<td>57 nm</td>
</tr>
<tr>
<td>RSS</td>
<td>99.42 nm</td>
</tr>
</tbody>
</table>

![Image of slope X, slope Y, slope magnitude, and surface maps for Mirror System Performance](image-url)
System Performance - Mirror

- Nominal spot size at focal point – 10 microns
- Encircled Energy > 90 % at 6 micron radius
- Beam Angle – 14 degrees
System Performance – Mount Induced Deflection at Fiber interface

<table>
<thead>
<tr>
<th>Type of Deflection</th>
<th>Deflection RSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount at Zenith</td>
<td>9.63E-06 mm</td>
</tr>
<tr>
<td>Mount at Horizon</td>
<td>0.0149 mm</td>
</tr>
<tr>
<td>Telescope weight at Horizon</td>
<td>0.00149 mm</td>
</tr>
<tr>
<td>Telescope weight at Zenith</td>
<td>0.000746 mm</td>
</tr>
<tr>
<td>Rocker Deflection</td>
<td>0.00135 mm</td>
</tr>
<tr>
<td>Horizontal Rocker</td>
<td>0.00169 mm</td>
</tr>
<tr>
<td>Thermal Deflection (Along Optical Axis)</td>
<td>0.111 mm</td>
</tr>
<tr>
<td>RSS - Decenter Deflection</td>
<td>0.0151 mm</td>
</tr>
<tr>
<td>RSS - Total Deflection of focal point</td>
<td>0.112 mm</td>
</tr>
</tbody>
</table>

Deflection along the focal plane is 111 microns, well within tolerances for the beam acceptance.

Able to maintain 1 arcminute tip/tilt and 50micron decenter.
System Performance - Transmission

- Using a silver coating performance between 400-1000 nm is optimal

Percent Reflectance

![Graph showing reflectance percentage over wavelengths from 250 to 2250 nm]
System Performance – Fiber Transmission

• Using a pure fused silica core/fluorine doped silica cladding will provide good performance
System Performance - Lenses

- Achromatic doublet lenses able to maintain spot size below 50 microns
- Broad Band AR coating provides average transmission > 99.5% from 400-1000 nm per surface
- Nominal Spot Size < 15 microns
- Encircled energy > 95% within 10 micron radius
- Lens tolerances are not too strict
 - Precision manufacturing tolerances
 - Element decenter and tilt tolerances greater than 0.05mm
System Performance – Focal Plane

![Diagram showing system performance metrics.](image-url)

- **Fraction of Enclosed Energy**
- **Radius From Centroid in μm**

Geometric Encircled Energy

- **5/2/2013**
- **Wavelength**: Polychromatic
- **Data has been scaled by diffraction limit.**
- **Surface**: Image

IP3 Lenses.ZMX

Configuration 1 of 1
System Performance – Total transmission

<table>
<thead>
<tr>
<th>Surface</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>After Mirror</td>
<td>612.60 W</td>
</tr>
<tr>
<td>Entering Fiber</td>
<td>609.54 W</td>
</tr>
<tr>
<td>Exiting Fiber</td>
<td>597.35 W</td>
</tr>
<tr>
<td>Lens 1 Surface 1</td>
<td>594.36 W</td>
</tr>
<tr>
<td>Lens 1 Surface 2</td>
<td>591.39 W</td>
</tr>
<tr>
<td>Lens 2 Surface 1</td>
<td>588.43 W</td>
</tr>
<tr>
<td>Lens 2 Surface 2</td>
<td>585.49 W</td>
</tr>
<tr>
<td>Image Plane</td>
<td>585.49 W</td>
</tr>
</tbody>
</table>
System Performance - Survivability

- Stress of 250 kpa per bond under 40G shock is within the bond strength of 2.24 Mpa
- Applying preload force of 1.27 N on lens 1 and 1 N on lens 2 ensures survival from 40 G shock
- Temperature requirements are met for Mirror and mount through materials
- Lenses and lens barrel will be located inside an enclosure, so temperatures will not fluctuate
- Gold coated fiber optic able survive temperatures from -269 to 700 degrees Celsius
- Fiber interfaces made from Beryllium, for low CTE and high thermal conductivity
Materials and Cost

• Carbon Fiber – up to 250 $ per pound
 – Mount Weight 75 kg
 – Cost of material 41250 dollars plus cost of manufacture
• Swivel Leveling Mounts
 – Custom made from titanium
 – Cost of material ~100 dollars plus manufacture cost
• Corning ULE
 – No price disclosed
 – Mirror will probably be the most costly aspect
• Achromatic Lenses
 – Price quote would be needed from optical design companies
• Fiber
 – Price quote needed for 500m of Gold coated fiber
• Manufacturing will be the most costly aspect (except maybe transport)
References

• Field Guide to Opto-Mechanical Design and Analysis
 • http://www.corning.com/docs/specialtymaterials/pisheets/ulebro91106.pdf
 • http://www.fiberguide.com/wp-content/uploads/2013/03/All_Silica_Fiber_0301131.pdf
 • http://optimaxs.iserver.net/Resources/ManufacturingChart.php
 • http://www.mcmaster.com/#swivel-leveling-mounts/=md6yhs
• Nakamura, Takashi, “Optical Waveguide System for Solar Power Applications in Space”.
• Introduction to Optical Engineering Notes (OPTI 521)
• Schott Optical Glass Data Sheet
• Yoder, Paul R., Handbook of Optics Chapter 37, “Mounting Optical Components”.

Thanks for Attending the Presentation

Any Questions?