### Solar 3D Printer for a Moon Base

Thomas Schneider

5/3/2013 Opto-Mechanical Design and Analysis University of Arizona

# 3D Printing Overview

- Focus lasers on a substrate
- Build object one layer at a time
- Most use synthetic polymers
- Art project able to build objects with Fresnel Lens and sand







# Solar Sintering

- Developed by Takashi Nakamura and tested on Mauna Kea at second PISCES field test
- Able to sinter lunar simulant at 1100 degrees Celsius
- Use fiber optics to guide collected solar energy
- Able to achieve average output of 657 W (32 percent efficient
- Array weighed 1400 pounds

# Solar Sintering



# A Solar 3D printer for the Moon

- Important for establishing permanent Lunar settlement
- 3D solar printer can make precision objects without transportation costs
- Uses in-situ resources found on the Lunar surface

#### Requirements from for PILOT concept



2 - 2 meter Primary and 0.5
meter Secondary mirror in
Cassegrain configuration
169 - 2 mm diameter fused silica
cores

Fiber Acceptance Angle – 14.5 degrees

- Overall Reflectivity 95 percent
- Total Focused Power 7.272 kW
- Total System Weight 34.16 kg

# Requirements for Project

- Primary Mirror Diameter 1 meters
- Telescope f/# f/2
- Mirror Reflectance Greater than 95% from 400nm to 1000nm
- Mirror Materials: ULE
- Primary Mirror Mount: Must be able to achieve 100 nm rms from surface irregularities, self-weight deflection and mound induced deflection
- Mirror Mount and fiber support Material: Low CTE Graphite Epoxy
- Operational Position Stability: less than 1 arminute tip/tilt, and 50 μm decenter
- Angle of incidence at Fiber Optic interface: 14.5 degrees
- Beam Width at Fiber Optic interface: less than 350 μm
- Focal plane spot size at printing surface: 50 μm

#### Project Operational and Survival Requirements

**Operational Environment** 

- Temperature: -100C to 100C
- Gravity: 1/6 Earth gravity

Survival:

- Shock: 40G
- Temperature: -100C to 100C

Limitations

• Weight limitations: Less than 150 kg







#### Total System Mass: 122 kg





- Use a six point mirror mount to support mirror back
- Use a four point whiffle tree mirror mount to support mirror at horizon
- Mirror design
  - Hyperbolic Primary with conic constant of -1.005
  - Curved back to reduce weight
  - 1 meter diameter, 25.4 mm thick ULE
  - 4 meter Radius of Curvature
  - Silver Coating
  - Mirror Mass 45 kg



- Unidirectional low CTE CFRP (CTE of 0.57 ppm/K) for all parts except swivel leveling mounts
- Zenith Mirror Supports
  - Height 60 mm
  - Width 100 mm
  - Length 631.43 mm
  - Spaced at 120 degrees
- Fiber support rods
  - Height and Width 50 mm
  - Length 2144.38 mm
- Horizon Mirror Supports
  - Height 100 mm
  - Width 100 mm
  - Length 721.69 mm
- Mass
  - Mount 67 kg
  - Back Rocker 3.87 kg
  - Base Rockers 4.8 kg
  - Swivel Leveling Mounts 1.38 kg



- Titanium swivel leveling mounts
- Fiber material Fused pure silica with a fluorine doped silica cladding
  - 400 micron diameter fiber with gold coating
- RTV 112 adhesive for bonding swivel leveling mounts to mirror
- Bond diameter of 50 mm and thickness of 0.5 mm
- Fiber interface 25 mm diameter, through top of supports, made from Beryllium
- Fiber material Fused pure silica with a fluorine doped silica cladding









• Printing Lens Specifications

| <b>Specifications</b> |                |                 |          |           |                 |
|-----------------------|----------------|-----------------|----------|-----------|-----------------|
| Lens                  | Material       | ROC1            | ROC2     | <u>СТ</u> | <b>Diameter</b> |
| 1A                    | BK7            | 25.488          | -9.447   | 5.246     | 7.5             |
| 1B                    | SF5            | -9.447          | -14.009  | 0.235     | 7.5             |
|                       |                |                 |          |           |                 |
| 2A                    | BK7            | 10.307          | -6.024   | 5.92      | 5.5             |
| 2B                    | SF%            | -6.024          | -104.627 | 2         | 5.5             |
|                       |                |                 |          |           |                 |
| <u>Tolerances</u>     |                |                 |          |           |                 |
| <u>Lens</u>           | <u>Tip/Til</u> | <u>Decenter</u> |          |           |                 |
| Lens 1                | 0.4            | 0.5             |          |           |                 |
| Lens 2                | 0.4            | 0.1             |          |           |                 |

- Printing Lens Barrel
  - Material Titanium Ti-8Mn annealed
  - Fiber retainer made from Beryllium
  - Vents along the side for heat dissipation
  - Can be produced on a metal lathe
  - Adjustment Ring for focus adjustment
  - Stability rod maintains lens orientation during adjustment
  - Vent holes along the side for temperature stabilization
  - Barrel and Lens Mass .085 kg



### System Performance - Mirror

**RMS Contribution** 

Manufacturing Surface Error Self-weight Deflection at Zenith Self-weight Deflection at Horizon Thermal Deflection Mount Induced Deflection

RSS

| 20nm     |
|----------|
| 37.9nm   |
| 26.5 nm  |
| 64 nm    |
| 57 nm    |
| 99.42 nm |



#### System Performance - Mirror

Nominal spot size at focal point – 10 microns

10

Radius From Centroid in um

12

14

16

18

Best Mirror.ZMX

Configuration 1 of 1

20

- Encircled Energy > 90 % at 6 micron radius
- Beam Angle 14 degrees



#### System Performance – Mount Induced Deflection at Fiber interface

| Type of Deflection                      | Deflection RSS |
|-----------------------------------------|----------------|
| Mount at Zenith                         | 9.63E-06mm     |
| Mount at Horizon                        | 0.0149mm       |
| Telescope weight at Horizon             | 0.00149mm      |
| Telescope weight at Zenith              | 0.000746mm     |
| Rocker Deflection                       | 0.00135 mm     |
| Horizontal Rocker                       | 0.00169mm      |
| Thermal Deflection (Along Optical Axis) | 0.111mm        |
| RSS - Decenter Deflection               | 0.0151mm       |
| RSS - Total Deflection of focal point   | 0.112mm        |

Deflection along the focal plane is 111 microns, well within tolerances for the beam acceptance

Able to maintain 1 arcminute tip/tilt and 50micron decenter

#### System Performance -Transmission

• Using a silver coating performance between 400-1000 nm is optimal



#### System Performance – Fiber Transmission

 Using a pure fused silica core/fluorine doped silica cladding will provide good performance



### System Performance - Lenses

- Achromatic doublet lenses able to maintain spot size below 50 microns
- Broad Band AR coating provides average transmission > 99.5% from 400-1000 nm per surface
- Nominal Spot Size < 15 microns
- Encircled energy > 95% within 10 micron radius
- Lens tolerances are not too strict
  - Precision manufacturing tolerances
  - Element decenter an tilt tolerances greater than 0.05mm

#### System Performance – Focal Plane





# System Performance – Total transmission

| Surface          | <u>Power</u> |
|------------------|--------------|
| After Mirror     | 612.60W      |
| Entering Fiber   | 609.54W      |
| Exiting Fiber    | 597.35W      |
| Lens 1 Surface 1 | 594.36W      |
| Lens 1 Surface 2 | 591.39W      |
| Lens 2 Surface 1 | 588.43 W     |
| Lens 2 Surface 2 | 585.49W      |
| Image Plane      | 585.49W      |

#### System Performance - Survivability

- Stress of 250 kpa per bond under 40G shock is within the bond strength of 2.24 Mpa
- Applying preload force of 1.27 N on lens 1 and 1 N on lens 2 ensures survival from 40 G shock
- Temperature requirements are met for Mirror and mount through materials
- Lenses and lens barrel will be located inside an enclosure, so temperatures will not fluctuate
- Gold coated fiber optic able survive temperatures from -269 to 700 degrees Celsius
- Fiber interfaces made from Beryllium, for low CTE and high thermal conductivity

#### Materials and Cost

- Carbon Fiber up to 250 \$ per pound
  - Mount Weight 75 kg
  - Cost of material 41250 dollars plus cost of manufacture
- Swivel Leveling Mounts
  - Custom made from titanium
  - Cost of material ~100 dollars plus manufacture cost
- Corning ULE
  - No price disclosed
  - Mirror will probably be the most costly aspect
- Achromatic Lenses
  - Price quote would be needed from optical design companies
- Fiber
  - Price quote needed for 500m of Gold coated fiber
- Manufacturing will be the most costly aspect (except maybe transport)

#### References

- Field Guide to Opto-Mechanical Design and Analysis
- <u>http://www.corning.com/docs/specialtymaterials/pisheets/ulebro91106.</u> <u>pdf</u>
- <u>http://www.fiberguide.com/wp-</u> <u>content/uploads/2013/03/All\_Silica\_Fiber\_0301131.pdf</u>
- <u>http://optimaxs.iserver.net/Resources/ManufacturingChart.php</u>
- <u>http://www.mcmaster.com/#swivel-leveling-mounts/=md6yhs</u>
- Nakamura, Takashi, "Optical Waveguide System for Solar Power Applications in Space".
- Nakamura, Takashi, Smith, Benjamin K., "Solar Thermal System for Lunar ISRU Applications: Development and Field Operations at Mauna Kea".
- Introduction to Optical Engineering Notes (OPTI 521)
- Schott Optical Glass Data Sheet
- Yoder, Paul R., <u>Handbook of Optics</u> Chapter 37, "Mounting Optical Components".

#### Thanks for Attending the Presentation

#### Any Questions?