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A technique is devised for calculating the magnitudes of the dihedral angle errors of acomer cube from a
single Twyman-Green interferogram. Experimental examples are given in which the dihedra angles of two
corner cubes are determined to within 2 arcsec by this procedure. These vaues are aso shown to be in good

agreement with independent goniometer measurements.

INTRODUCTION

Several authors have used the dot patterns produced by
the reflection of a pencil of light from imperfect corner
cubes to quantify their imperfections. Yoder'developed
relationships that gave the deviation angles of the
emerging beams with respect to the illuminating beam
as a function of the three dihedral angle errors for the
cube. Hewas able to favorably compare his calculated
deviation angle values to the figures obtained directly
from the dot patterns, but had to rely on independent
measurements of the dihedral errors for the input val-
ues of his calculations. Joseph and Donahue’used the
pattern data to compute the relative sign and magnitude
of all three dihedral angle errors.

Corner cubes can also be readily tested with a Twy-
man-Green interferometer. Such interferograms are,
in fact, often supplied by manufacturers as evidence of
the quality of their product. When a perfect cube is
tested in this fashion, the prism aperture is covered
by a single sinusoidal fringe pattern. Imperfect prisms
with planar reflecting surfaces generally have six dis-
tinct sinusoidal fringe patterns over their apertures.
The patterns are usually inclined at various angles with
respect to one another, and each one generally has a
different spatial frequency. This paper describes the
use of such an interferogram to determine the magni-
tudes of the dihedral angle errors of a corner cube.
The derivation follows Yoder”s basic matrix algebra
approach.

THEORETICAL DEVELOPMENT

When a corner cube is viewed along its nominal axis
of symmetry, its aperture is seen to be divided into six

467 J. Opt. Soc. Am., Vol. 67, No. 4, April 1977

equal triangular segments. When the prism is illumi-
nated with a plane wave, a component plane wave will
emerge from each of these segments. It is the inter-
ference between these emerging beams and a common
reference plane wave that gives the fringe patterns
mentioned in the introduction. An incident ray must
undergo a sequence of three reflections in passing
through the prism, and each of the six possible reflec-
tion sequences is associated with one of the aperture
segments. If the three prism faces are numbered in a
counterclockwise sequence starting with the lower face,
the aperture segments would be associated with the re-
flection sequences indicated in Fig. 1. It is important
to note that these segments can be grouped in pairs
such that each member of a pair “has a common face
for its final reflection. This fact suggests that each
corner cube dihedral angle error can be isolated by
comparing the fringe patterns in one of these three
pairs of aperture segments.

Since the angular orientations and spatial frequencies
of the fringe patterns being examined depend on the
angular relationships between the interfering beams,
the theoretical treatment must be vectorial in nature.
The propagation vectors for the six beams that emerge
from a corner cube when it is illuminated by a single
plane wave can be obtained by successively applying
the vector law of reflection to the three reflecting sur-
faces. This law is derived in one of the references’
and can be written

$1=8-2(S,* M)M, @)
where S, is the unit propagation vector for the incident
beam, S,the unit propagation vector for the reflected
beam, and M the outward pointing unit normal to the
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FIG. 1. Corner cube reflections. (a) Coordinate system and

numbering sequence for reflecting surfaces.

(b) Prism aper-
ture with associated reflection sequences.

reflecting surface. This vector equation may be re-
written in matrix form as

Six (1-2m i) - ZMIMy -2M.M, Sox
Siy | =1 — ZMxMy a- ZMi) - ZMyMz Soy | - 2)
(1 —Wi) SD:

Ste —2MxMz _ZMYA/IZ

In this form the equation shows that a three-by-three
reflection matrix [R] characteristic of the reflector can
be used to map an incident ray into its conjugate re-
flected ray. For a series of three reflections, we have

(s] %jk=[R]k [R]j [R]i [Sols (3)
or

[S] %jk = I.R]iik [SoJ : (4)

where i, j, k=1,2,3andi#j#k. Once the direction
cosines of the unit normals to the three reflecting sur-
faces of a corner cube are known, system reflection
matrices can be calculated for each of the six possible
sequences of reflections that can be used to map the
illuminating ray into each of the final exciting rays.

If we assume that the dihedral angles are only slightly
in error, we can write them as (p/2 + €). If we also
designate the angle between a pair of surface normals

by g, then cos g = sin e and we can now write the various
values of qas

CoS01p =My My, + M1 My, + My ,M,, =Sineg,,
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cos 63 =My, My, + M1, M3, +M;, M, =sing,, (5)
€0S 8,3 =My My, +Mg, My, +My, M3, =Sin€,,.

The prism must now be given a specific orientation with
respect to the Cartesian coordinate axes in order to
specify the components of the three surface normals.
We assume for computational convenience and without
loss of generality that M, coincides with T and that the
dihedral edge between surfaces 1 and 2 is parallel tok.
This scheme was originally introduced by Yoder and can
be used in conjunction with the fact that the surface nor-
mals must have unit length to show that

My =1, Mpy=sine,, My, =singg,,

My,=0, M,=cos€y,, M, =(sine,; — sine ,sine,s)/cose,,,
My,=0, My,=0, Ms::(l—ng—ng)“z' (6)
To a first-order small angle approximation, cos e=1

and sin e= e, and the surface normal coordinates reduce
to

My, =1, Mpy=€1p, My, =€p3
Myy=0, Myy=1, Myy=epy, (M)
My, =0, M21=0’ M3,=1.

By substituting these coordinates into the reflection

matrix given in Eq, (2), the reflection matrices ob-
tained for the three corner cube faces are

-1 0 0
[RL=| © 1 0 ’
0 0 1
T1 —2¢, O |
[Rl=|-2¢, -1 0 ) (8)
0 0 1
-1 0 —2¢;]
[Rl;=] © 1 —-26;
L-2€13 -2¢; -1

The system reflection matrix for each of the six pos-
sible sequences of corner cube reflections can now be
obtained by multiplying the component matrices given
in Eq. (8) in the appropriate order. For example,

1 0 ~2¢,
[Rli2s = 0 1 ~2¢;
—2¢; =2¢; -1
1 -2¢, O -1 0 O
x|-2¢, -1 0 0o 10}, 9)
0 0 1 6 0 1
or
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(-1 -2q, -2&

[Rlizs=|2€ -1 —2¢y4 . (10)
LZEIS 2654 -1

Similarly,
s 7
-1 2¢, 2¢€;5

JRleg1=1~2¢, -1 -2¢3| and
L—Zim 2€,5 -1 ]
M -1 —2¢, 26, 1

[Rlaz=]| 2¢, =1 26 . (11)
-2¢, -2¢; -1
L J

The remaining reflection sequences are the reverse of
the three sequences indicated in Egs. (10) and (11).
Their system reflection matrices may be obtained from
the corresponding forward sequence matrices above by
reversing the signs on the matrix elements in the upper
right and lower left quadrants while leaving the main
diagonal elements unchanged.

Once an illuminating beam [S,] is specified, we can
now find the reflected beam vectors [S]', for the corner
cube by substituting each of our six system reflection
matrices into Eq. (4). The prism is typically illumi-
nated along its nominal axis of symmetry so that the
aperture segments will have the same apparent size in
the resulting interferogram. The [S,] direction cosines
in this case are all equal toy3/3, and the correspond-

Using the two rays given in Eq. (12) we can show that

ing [S]', components are

S!  =—J3/3(1 +2€, +2¢€),

123
S;m ==3/3(1 +2¢; - 2¢,) ,
Oy1037 ~V3/3(1 +26;3-2¢,) , 12)
s —¥3/3(1 +26, +265)

o = —V3/3(1 -2¢; - 2&;) ,
Sioa = —V3/3(1 -2¢; - 2¢;)
and so on.

The six beams that emerge from the corner cube are
interfered with a common reference beam to obtain a
Twyman-Green interferogram. In order for the fringe
patterns to be visually resolvable, their spatial fre-
guencies must be low and the reference beam must in
turn be nearly, but not exactly, coincident with the
illuminating beam. This will guarantee that a small
number of fringes will appear across the prism aper-
ture even in the event that the prism is perfect. We
can represent the direction cosines of such a reference
vector [0] as [~ (1/V3) +8;, = (1/43) +6,, — (1/V3) +8,].
To first order, both the reference beam vector just
mentioned and the emergent beam vectors, such as
those given in Eq. (12), are of unit length. Hence the
cross product between reference beam and emergent
beam not only points in the direction that the fringes
resulting from the interference of these two beams
would have, but also has a magnitude equal to the sine
of the angle between the two vectors. This magnitude
is, of course, also equal to the wavelength of light
times the spatial frequency of the fringes.

[SHasx[0] =7 [1/3(4 €y —2€5 +2€13) —1/VB(1 +265 —2€,5)8; +1/V3(1 —2€3 — 2€53)5, ]
+7[1/3(— 263 — 261, —46€3) = 1/y3(1 = 2613 ~ 26,5)0; +1/y/3(1 +2¢€;, +2€,3)55]
+E[1/3(~ 26, +4€, +2¢€3) — 1/V3(1 +2¢€, +2€,5)8, +1/V3(1 +2€3 — 2€,,)6,] (13)

and

(S5 ¥[0] =7 [1/3(4 €55 + 2€15 + 2615) = 1/YB(1 + 2655 +2€12)05 +1/Y3(1 ~ 25 = 26€55)6,]
+]¢ [1/3(— 2623 +2€12 —4513) — 1/J3_(1 - 2€13 - 2523)61 +1/\/§(1 - 2612 +2€13)63]
+ 7;[1/3(— 265 —4€, +2€;3) = 1/Y3(1 = 2¢€,+2€,)5, +1/V3(1 +264 +2€;5)6,]. (14)

These two fringe vectors, though complicated in form,
differ only in the sign of their e,contributions. Sub-
tracting Eq. (13) from (14) yields the difference vector

[S1215x[0] = {S]{zsx[0] = 4/V3) e, [(1/V3 - 5,) i
+(1/y3 =87 +(=2/y3+8, +6,) E]. (15)

If the quadratic factors in dare neglected, the length
of this resultant is given by

Prosurtant = @/V3) €,[2- 4/3(6, + 8, +63)] ve (16)
By looking at the interference between the reference
beam [0] and the beam [i] that would be reflected by a
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perfect corner cube, we can evaluate the magnitude of
the above (d,+ d,+ d) factor
[X]- [0]=1=1/Y3(b, +0, +8,) =cos8=1 - 62/2, 17

where q= the angle between the two beams. The ap-
proximation given in the final step should be a good one

since g must be small for reasons given earlier. Equa-
tion (17) may be rearranged to get
82 =2//3(5, + 6, +0y) (18)
or
(6, + 05 +85) =//3/2 (WF)? (19)
D. A. Thomas and J. C. Wyant 469
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FIG. 2. Relative reference and emergent beam orientations
that result in parallel fringe vectors. (a) Converging emergent
beams. (b) Diverging emergent beams.

where F = the spatial frequency of the fringes that would
be observed with a perfect corner cube. It should be
noted that the fringe patterns associated with imperfect
cubes will have spatial frequencies of the same order of
magnitude as F since the various emergent beams make
small angles with the illuminating beam in such cases
provided the dihedral angle errors are small. Using Eq.
(18) we can rewrite Eq. (16)

Liesutant = 4v2/3 €1 - (AF)Z]I/Z . (20)

For visible wavelengths and fringe spacings on the or-
der of 1 mm or larger, (I F)’is very small (T107) in
comparison to unity, and we can say that, to a good ap-
proximation,

Lresuttant =4y 2/3 €2 (21)

regardless of the particular reference beam used. |If
the above procedure is applied to [S],.,and [S].,.a dif-
ference vector magnitude of 4,/27/3 &,is obtained while
applying it to [SI',, and [S],, yields a length of ~ 4/2/3
e, for the difference vector.

It is of interest to note that the above three pairs of
emergent beams correspond to the three pairs of prism
aperture segments mentioned at the beginning of this
section. The theory predicts that the magnitude of the
dihedral angle error e,can be found by constructing
vectors parallel to the fringes covering the aperture
segments labeled “123”” and ‘213 in Fig. 1 with lengths
equal to the spatial frequencies of those fringes and then
finding the length of the vector formed by subtracting
one of these fringe vectors from the other. It also pre-
dicts that the magnitudes of e, and e,can be isolated
using a similar analysis of the “132, ”*312” and ‘231,
‘321 pairs of fringe patterns, respectively.

The fringes that are recorded in a Twyman-Green
interferogram are the projections of the actual fringes
onto a plane that is nearly normal to the beam used to
illuminate the corner cube. If the results obtained by
the technique just described are to be accurate, we
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must be sure that the actual fringe vectors always lie
sufficiently close to the interferogram plane to neglect
their deviation from that plane. We know that if the
beams reflected from the corner cube were interfered
with a reference beam parallel to the beam used to
illuminate the prism, the resulting fringes would all
lie in the interferogram plane. We have shown that,
for the reference beams that we expect to use, the
angle between the reference and illuminating beams is
equal to the product of the wavelength and fringe fre-
guency, and that this product is on the order of 10°to
10"in magnitude. Thus for every case in which the
assumptions we have already made concerning spatial
frequencies of fringes are valid, the actual fringes
should lie in planes that are sufficiently close to the
interferogram plane for our above computational pro-
cedure to apply with good accuracy.

There is, of course, a problem involved in imple-
menting this procedure experimentally. It is not ob-
vious from examination of Twyman-Green interfero-
grams what the directions of the associated fringe vec-
tors should be. We can insure that the members of the
above three pairs of fringe vectors both point in the
same general direction for each pair by adjusting the
reference beam prior to recording the interferogram so
that it has an angular orientation outside that of the
corresponding emergent beam vectors of each pair.
Examples of this arrangement for vectors lying in one
plane are illustrated in Fig. 2. Since the sense of ro-
tation from the reference beam to each of the emergent
beams in both of the cases shown in the figure is clock-
wise, the right-hand rule for determining the orientation
of the cross product between two vectors predicts that
the reference beam - emergent beam fringe vectors
would all point into the plane of the paper in these ex-
amples. The above mentioned adjustment of the corner
cube reference beam can normally be achieved in prac-
tice by selecting a reference mirror orientation that
results in a large number of fringes over all the prism
aperture segments. If the dihedral angle errors are
all small, the emergent beams will make small angles
with respect to one another so that reference beam
orientations intermediate to any of the pairs of reflected
beams being used to isolate these errors would result
in low spatial frequency fringes over the corresponding
pair of aperture segments. If the above precautions
are taken in setting up a corner cube interferogram,
the angles between the pairs of fringe vectors being
used in the above subtraction process will always be
given by the acute angles between the corresponding
pairs of interferogram fringe patterns.

Finally, it should be noted that the e values calcu-
lated by the above technique should be divided by the
refractive index to obtain the actual values when a glass
prism is being tested interferometrically to compensate
for refraction at the air-glass interface at the front of
the corner cube.

EXPERIMENTAL VERIFICATION

Twyman-Green interferograms of a BK-7 glass cor-
ner cube and one consisting of front surface silvered
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FIG. 3. Twyman-Green interferograms of two corner cubes.
(a) BK-7 glass cube. (b) Front surface mirror cube.

mirrors are shown in Fig. 3. The fringe spacings and
angular orientations of the fringe patterns in both in-
terferograms were measured on a comparator. The
acute angles between the pairs of fringe patterns needed
to isolate the dihedral angle errors and the average
spatial frequencies of all fringes were then calculated,
and the results are given in Table I. The law of cosines
was applied to the data in this table to find the lengths
(in spatial frequency units) of the resultant vectors that
were shown in the theory to be proportional to the
dihedral angle errors. Finally, these errors (e,) were
computed from the difference vector lengths (L,) by
means of the equation

€;=AL,,/3.26mn i=1, 2, j=2,3, i#j. (22)

The factor n stands for the prism index (1.514 for BK-7
or 1 for the mirror cube at | = 6563 A) and m stands for
the ratio of the actual prism size to the interferogram

TABLE |. Comparator data for interferograms in Fig. 3.

TABLE 1. Dihedral angle error magnitudes for two corner

cubes.
Glass cube Mirror cube
Computed  Goniometer Computed ~ Goniometer
value value value value
(arc sec) (arc sec) (arc sec) (arc sec)
€1 7.59 -6.13 4.26 -3.35
€43 6.74 7.90 2.13 3.27
€1 12.03 -11.67 6.23 -5.25

Glass cube Mirror cube
Aperture  Frequency Relative Frequency Relative
-1 E
segment  (mm”) angle (deg.) (mm?) angle (deg.)
213 1.92 1.99
. 0.55
123 1.61 .72 1.87
132 1.66 1.87
. 1.02
312 1.38 3.28 1.82
321 1.63 1.92
5.25
231 1.62 18.54 1.91
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size. This magnification factor is necessary because
the fringe frequencies and the value of L, which is cal-
culated in terms of them, depend on interferogram size
and so must be corrected to the size of the prism. In
our case, the values of m were 1.16 and 1.14 for the
glass and mirror cubes, respectively. The computed
errors are given in Table Il for both corner cubes and
are estimated to be accurate to within £ 1 arc sec. The
primary cause for variation in the computed evalues
about the average values given in the table was varia-
tion in the comparator line spacing measurements with-
in a single fringe pattern. This variation was greatest
for the BK-7 cube data and was due largely to fringe
curvature caused by deviation in the prism reflecting
surfaces from flatness.

The dihedral angles in both corner cubes were also
externally measured one at a time with a goniometer.
These values are given in Table Il and were also re-
peatable to within about + 1 arc sec. It was, of course,
possible to recover the signs as well as the magnitudes
of the errors with the goniometer. Comparison of the
corresponding error magnitudes obtained by the two
methods shows agreement to within the accuracies of
the measurements.

CONCLUSI ON

The procedure presented in this paper for recovering
the magnitudes of the dihedral angle errors in a corner

EMERGENT REF- EMERGENT
BEAM 1 ERENCE BEAM 2
BEAM

(8

EMERGENT REFERENCE EMERGENT
BEAM 1 BEAM BEAM 2

()
FIG. 4. Relative reference and emergent beam orientations
that result in parallel fringes of equal spatial frequency. (a)
Converging emergent beams. (b) Diverging emergent beams.
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cube from its Twyman-Green interferogram is con-
venient and apparently accurate. In the absence of ad-
ditional information, it is, however, impossible to re-
cover the signs of these errors from a single interfero-
gram. A technique often used in interferometry to ob-
tain information concerning the signs of errors is to
adjust the tilt of the reference beam after the inter-
ferogram has been recorded and observe the resulting
changes in the fringe patterns. For example, if the
reference beam were oriented by appropriate adjust-
ment of the interferometer reference mirror so as to
give fringes of equal spatial frequency over one of the
pairs of aperture segments being used to evaluate one
of the dihedral angle errors, the corresponding beam
orientations would be as shown in Fig. 4. A further
clockwise rotation of the reference beam from the posi-

tion shown in the figure would result in an increase in
the spatial frequency of the fringes resulting from the in-
terference of the right-hand pair of beams if the emer-
gent beams were converging (e<0) and a decrease if
they were diverging (e>0). The same procedure ap-
plied to the other two pairs of fringe patterns would also
give the signs of their associated dihedral angle errors.
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