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Imaging systems with circular and annular pupils aberrated by primary aberrations are considered. Both classical
and balanced (Zernike) aberrations are discussed. Closed-form solutions are derived for the Strehl ratio, except
in the case of coma, for which the integral form is used. Numerical results are obtained and compared with Maré-
chal’s formula for small aberrations. It is shown that, as long as the Strehl ratio is greater than 0.6, the Maréchal
formula gives its value with an error of less than 10%. A discussion of the Rayleigh quarter-wave rule is given, and
it is shown that it provides only a qualitative measure of aberration tolerance. Nonoptimally balanced aberrations
are also considered, and it is shown that, unless the Strehl ratio is quite high, an optimally balanced aberration does

not necessarily give a maximum Strehl ratio.

1. INTRODUCTION

In a recent paper,! we discussed the problem of balancing a
classical aberration in imaging systems having annular pupils
with one or more aberrations of lower order to minimize its
variance. By using the Gram-Schmidt orthogonalization
process, polynomials that are orthogonal over an annulus were
obtained from the Zernike circle polynomials. These poly-
nomials, appropriately called Zernike annular polynomials,
represent balanced classical aberrations in the sense of min-
imum variance. By using an approximate formula for small
aberrations, according to which the decrease in Strehl ratio
of the imaging system is given by the variance of its phase
aberration, the tolerance conditions were obtained for the
balanced primary aberrations for a Strehl ratio of 0.8.

In this paper,2 we obtain simple analytical expressions for
the Strehl ratio of images formed by imaging systems
with circular or annular pupils aberrated by primary aberra-
tions. The only exception is coma, in which case the Strehl
ratio is obtained in an integral form. Both classical and bal-
anced (orthogonal) primary aberrations are considered.
Numerical results are obtained from these expressions for up
to five waves of a classical aberration. These results are
compared with the approximate results obtained by using the
Maréchal formula to determine its range of validity. It is
shown that, in general, as long as the Strehl ratio is greater
than 0.6, the Maréchal formula gives results with an error of
less than 10%.

The Rayleigh quarter-wave rule, i.e., that the aberration
tolerance for a Strehl ratio of 0.80 is a quarter-wave, is dis-
cussed. The Strehl ratio is calculated for a primary aberration
when its aberration coefficient, peak absolute value, and
peak-to-peak value, are each a quarter-wave. It is shown that
only a quarter-wave of spherical aberration and a quarter-
wave peak value of balanced spherical aberration give a Strehl
ratio of 0.80. A quarter-wave of coma and astigmatism do not
give a Strehl ratio of 0.80. It is thus concluded that the
Rayleigh quarter-wave rule does not provide a quantitative,
but only a qualitative, measure of aberration tolerance.

Nonoptimally balanced aberrations are also considered. It
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is shown that, unless the Strehl ratio is quite high, an opti-
mally balanced aberration (in the sense of minimum variance)
does not give the maximum possible Strehl ratio. As an ex-
ample, spherical aberration is discussed in detail. A certain
amount of spherical aberration is balanced with an appro-
priate amount of defocus to minimize its variance across the
pupil. However, it is found that minimum aberration vari-
ance does not always lead to a maximum of Strehl ratio. For
example, in the case of circular pupils aberrated by a spherical
aberration of more than 2.3 waves, a maximum Strehl ratio
is obtained with an amount of defocus that does not corre-
spond to minimum variance. In the case of coma, which is
balanced with tilt to minimize its variance, the Strehl ratio is
higher (but not the highest) with no tilt when the aberration
is larger than 2.3 waves. Only for very small aberrations
(50.7)) does optimally balanced coma give the maximum
Strehl ratio; otherwise a nonoptimal value of tilt gives the
maximum Strehl ratio.

2. STREHL RATIO AND THE MARECHAL
FORMULA

The incoherent point-spread function of an imaging system
is given by3

1) = ﬁmlfA(p)expW(p)] exp(=2mir - p/AR)dp (1)

where I(r) is the irradiance at a point r in the image plane for
a point object, A is the wavelength of the object radiation, A(p)
is the amplitude, ®(p) is the phase aberration at a point p on
the system’s exit pupil, and R is the radius of curvature of the
reference sphere with respect to which the aberrations are
measured. The point r = 0 lies at the center of curvature of
the reference sphere. The Strehl ratio of the imaging system
is given by the ratio of the central irradiance of its aberrated
and unaberrated point-spread functions. From Eq. (1), we
can write it in the form
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S = 1(0)a/1(0)g=0
= |(exp(i®))|?, (2)

where angle brackets indicate a spatial average over the am-
plitude-weighted pupil, e.g., the average of a function f(p) is
given by

(fy = SA(p)f(p)dp/ S A(p)dp. 3

Since the average phase aberration {®) is independent of p,
Eq. (2) can also be written as

S =|(exp[i(® — (PN 4)

By expanding the complex exponential of Eq. (4) in cosine
and sine terms, we may write

S = {cos(P — ($)))2 + (sin(P — (P)))? (5)
so that
S = (cos(P — (P)))2, (6)

equality holding when ®(p) = 0. By expanding cos(® — (P))
in a power series and retaining the first two terms for small
aberrations, we obtain the Maréchal4 result that

S 2z (1~ thae?)? (7

where 032 is the variance of the aberration. Note that, unlike
Maréchal, we have obtained this result without assuming that
{®) be zero. Two approximate expressions for the Strehl
ratio for small aberrations used in the literature are

S1 = (1 - Yhos?)? )
and
Sz ~ ] - O'q>2. (9)

Formula (9) is obtained from formula (8) by neglecting the
term in g%, It has been used by Nijboer,5 Born and Wolf,$
and the author,! among others, in the discussion of orthogonal
aberrations. We shall refer to formula (8) as the Maréchal
formula. Note that S; is always positive, as a Strehl ratio has
to be. It starts at a value of 1 when o = 0 and approaches
zero as o approaches /2. It becomes greater than or equal
to 1 as o becomes greater than or equal to 2, respectively.
This is obviously a region where o4 is too large for formula (8)
[and formula (7)] to have any validity. An invalid region for
S is when o4 > 1 since S» then becomes negative.

For imaging systems with uniformly illuminated annular-

pupils having a central obscuration ratio of ¢, i.e., for

Alp)=1, e=|g=1 (10)
=0, otherwise,

Eq. (2) becomes

R S
w21 — )2

f ' I *" expli®(p, 0)]pdpdd®. (1)

The variance of an aberration ®(p, #) over an annular pupil
is given by

1. 1 por
Qe - 2
Te (1 — €2) j: J:) ®%(p, O)pdpd?

1 1 2w 9
- [;(—1-:6_2) J: j; P(p, ﬁ)pdde] . (12)
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3. STREHL RATIO AND STANDARD
DEVIATION FOR PRIMARY ABBERRATIONS

Table 1 lists the primary aberrations and their corresponding
standard deviations and the Strehl ratios. Both classical and
balanced (in the sense of minimum variance) aberrations are
considered. The corresponding orthogonal (Zernike) aber-
rations are given in Ref. 1. The form of an orthogonal aber-
ration is identical with that of a balanced aberration, except
in the case of a rotationally symmetric aberration, in which
case it differs by a constant (independent of p) term. Since
the variance or the Strehl ratio for an aberration does not
depend on a constant aberration term, a study here of a bal-
anced aberration is equivalent to that of an orthogonal aber-
ration. Some of the Strehl-ratio results for the classical ab-
errations have been given by Steward.” Note that, although
in Table 1 the aberration coefficients A; are in units of radians,
we shall specify their values in units of optical wavelength in
all of our discussion, as is customary in optics.

In the case of spherical aberration, the Strehl ratio is given
in terms of the Fresnel integrals C(-) and S(-). Note that, for
circular pupils (¢ = 0), the Strehl ratio for a given amount of
classical spherical aberration is the same as that for four times
that amount of balanced spherical aberration. In other words,
an equal and opposite amount of defocus exactly quadruples
the spherical aberration tolerance for a given value of Strehl
ratio. (For ¢ = 0.50, 0.75, an appropriate amount of defocus
increases the tolerance by a factor that is even larger than 4,
as may be seen from Figs. 1 and 2.) In the case of coma, the
Strehl ratio has to be obtained by a numerical integration. In
the case of balanced astigmatism, the Strehl ratio is given in
terms of an infinite series of odd-order Bessel functions of the
first kind.2 However, this series converges rapidly, and only
a few terms need be considered for adequate precision. The
Strehl ratio for classical astigmatism is derived in Appendix
A as an example of the results given in Table 1.

The results for curvature of field or defocus and distortion
or tilt are well known. If the image (focal) plane is moved
along an axis normal to the pupil plane by a small amount z,
the amount of defocus aberration produced is approximately
given by Ag = z/8F2, where F is the focal ratio of the imaging
system. Itisevident from the expression for the Strehl ratio
that, as a function of z, the peak irradiance occurs when z =
0, i.e., when the defocus is zero. This is true of all aberrations;
any aberration gives a Strehl ratio of less than unity.® How-
ever, a refinement of Eq. (1) shows that the principal maxi-
mum of axial irradiance occurs for z < 0, i.e., it lies at an axial
point between the pupil and focal planes.10-13

4. NUMERICAL RESULTS

Using the expressions given in Table 1, Figs. 1-6 show how the
Strehl ratio varies with the coefficient of a primary aberration.
The maximum value of the coefficient is 5X (or 107 in radian
units). Both circular (¢ = 0) and annular pupils (¢ = 0.50,
0.75) are considered. It is evident that, in each case, the Strehl
ratio decreases monotonically for small values of the aberra-
tion coefficient but fluctuates for its large values. For small
aberrations, obscured pupils are less sensitive to spherical
aberration (and defocus). The opposite is true of astigmatism
and coma.

The variation of the percent difference 100(S — S1)/S be-
tween the Strehl ratio S and its approximate value S; for
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Table 1. Standard Deviation and Strehl Ratio for Primary Aberrations®
Aberration P(p, 0) 2 S
Spherical Agpt (1/3v/5)(4 — €2 — et — 8 [7/24,(1 — €2)?]
+ 4€8)1/24, X ({C[(24s/7)1/2] — C[(24,/m)/2e2)}2
+ (S[(24,/m)12] — S[(24,/m)V/2 2}?)
Balanced spherical As[pt — (1 + €2)p?] (1/64/B)(1 — €2)24, [27/As(1 — 2)2[[C2[As/2m)V2(1 — €2)]
+ 8%[(A,/2m)12(1 - )]}
Coma Acp3cosd (1/2V2)(1 + €2 + et + 6)1/24, (1 — ¢2)~2 f: Jo(Acx32)dx :
2(1+ e+ et (1= (1 + 462 + )12 1 21+e+ ¢t 2
3_syvTewe) — 2)-2 32 _2-TC T an
Balanced coma Aclp : (1 e N c (1-¢€2) J:z Jo [Ac(x 3 1re xL )]dx
Astigmatism Ay p?cos? b

Balanced astigmatism Agp%(cos? 0 1/2)

Curvature of field Agp? [(1 — €2)/24/3]
(defocus)
Distortion (tilt) Agp cos

[(1 + €2)/2] A,

(1/4)(1 + 1124,

(1/2/6)(1 + €2 + 91124,

(1 = )2 H%(Ao/2) + 2H*(2A,/2)
— 2e2H(Ao/2)H (24,/2)
X cos[(1/2)(1 = €A, — a(Aa/2) + a(Az¢2/2)])
had 2
’[4/Aa(1 - e2)] kgo Jon+1(Ag/2) — J2k+1(€2Aa/2)}

[sin [Aa(1 — )/2]]2
Ag(l —e2)/2

Ag

1-

62)_2{2J1(A:) _ @ Xiled))?
A

t €A,

@ A; is the coefficient of the ith abberation (measured in radians) and ¢ is the obscuration ratio of an annular pupil. € € p £ 1,0 <8 < 27, C(a) = an cos(wx2/2)dx,
S(a) = J;a sin(wx?/2)dx, H(a) = [Jo?(a) + J1%(a)]V/2, ala) = tan~1[J(a)/Jo(a)].
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Fig. 1. Strehl ratio for spherical aberration.

primary aberrations is shown in Fig. 7 when ¢ = 0, 0.50, 0.75.
When ¢ = 0, the curves for spherical and balanced spherical
aberrations are identical because a given value of the Strehl
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Fig. 2. Strehl ratio for balanced spherical aberration.

ratio is obtained for the same value of ¢ of the two aberra-
tions. When e = 0.50, the percent error curve for balanced
spherical aberration is shown in Fig. 7(b) by the curve that
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approaches only approximately 88% (as opposed to 100% for

‘others). When € = 0.75, the Strehl ratio for balanced spherical
aberration for the range of A; values considered here (4; <
5A) is quite large (=0.8157) so that the percent error is negli-
gible (<0.79). Therefore the corresponding curve overlaps
the others in the region of its existence.
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As the coefficient of an aberration increases in the region
where the Strehl ratio decreases monotonically, the percent
error increases slowly first and then rapidly, approaching 100%
as g approaches /2; it decreases to zero and finally becomes
negative. In the region of fluctuating Strehl ratio (for large
aberrations), S — S1 may change sign from negative to posi-
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tive, but the relative error is then very large (>100%). When
€¢=0,8 — S, is positive for S 2 0.086 for spherical or balanced
spherical aberration (excluding the region of secondary
maxima of the Strehl ratio), for S 2 0.123 for coma, S 2 0.063
for balanced coma, S 2 0.166 for astigmatism, and S 2 0.075
for balanced astigmatism. Thus, unless the Strehl ratio is
extremely small (or it belongs to its fluctuating region), S;
“underestimates the value of the Strehl ratio, sometimes by as

In (a), the curves for spherical and balanced spherical aberrations are identical. In (b), the
In (¢), this curve exists for S 2 0.81 and overlaps the others in this region.

much as 100%. Since S; is smaller than S; by o$%/4, it un-
derestimates the Strehl ratio even more.

It is interesting to note that, for S 2 0.8, the error is negli-
gible and practically insensitive to the type of aberration being
considered. The error is less than 10% if S 2 0.6. Thus, as
long as s < 0.67, or the standard deviation of the wave ab-
erration g, = (A\/27)os S A/9.4, S; gives Strehl-ratio results
with less than 10% error. Figure 8 shows how the aberration
coefficient of a primary aberration for 10% error varies with
the obscuration ratio. It is evident that this coefficient in-
creases with obscuration in the case of spherical (classical and
balanced) aberration and balanced coma but decreases in the
case of astigmatism (classical and balanced) and coma.

Since S; underestimates the Streh! ratio, exp(—os2), which,
for small ¢4, is greater than Sy by approximately ¢4/4, should
approximate the Strehl ratio better. We find that this is in-
deed true; exp(—o42) gives the Strehl ratio with less than 10%
error as long as S 2 0.3. The error in this region is negative,
implying an overestimation. As with Sy, the value of S or o
for which exp(—o42) gives a 10% error varies with the type of
aberration. The use of a Gaussian model for aberrated
point-spread functions to evaluate not only the Strehl ratio
but also the encircled energy from a knowledge of the aber-
ration variance is under investigation and will be reported
later.

5. RAYLEIGH'S QUARTER-WAVE RULE

Rayleigh!4 showed that a quarter-wave of primary spherical
aberration reduces the irradiance at the Gaussian focus by
90%, i.e., the Strehl ratio for this aberration is 0.80. This re-
sult has brought forth Rayleigh’s quarter-wave rule, namely,
that the quality of an aberrated image will be good if the ab-
solute value of the aberration at any point on the pupil is less
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than a quarter-wave.l> A variant of this definition is that if
the aberrated wave front lies between two concentric spheres
that are spaced a quarter-wave apart, the aberrated image will
be of good quality.’® Thus, instead of the maximum or peak
absolute value of the aberration (|W,|) being less than a
quarter-wave, it is the peak-to-peak aberration (W,-,) that
should be less than a quarter-wave. The general implication
of a good-quality image is that the Strehi ratio is 0.8.

It is well known that a quarter-wave of different aberrations
does not necessarily give a Strehl ratio of 0.8. Barakat,!7 for
example, showed that a slit pupil aberrated by a quarter-wave
of Legendre polynomial of order 20 (an orthogonal aberration
for the one-dimensional problem!8), corresponding to a
peak-to-peak aberration of a half-wave, gives a Strehl ratio
of 0.637. For a quarter-wave peak-to-peak aberration, the
Strehl ratio is 0.701. _

When the aberration coefficient A; of a primary aberration,
as defined in Table 1, is equal to a quarter-wave, the variation
of the Strehl ratio with ¢ is as shown in Fig. 9. Whene =0, ie.,
for circular pupils, |4;| represents the maximum absolute
value of the aberration in the case of spherical aberration,
coma, and astigmatism. The maximum absolute value is
[As]/4 in the case-of balanced spherical aberration, |A.|/3 in
the case of coma, and | A,|/2 in the case of balanced astigma-
tism. The corresponding peak-to-peak values are A, for
spherical aberration, A, /4 for balanced spherical aberration,
24, for coma, 24./3 for balanced coma, and A, for both
astigmatism and balanced astigmatism. The maximum ab-
solute and peak-to-peak values of the primary aberrations are
tabulated in Table 2.

Table 3 shows the values of the Strehl ratio for primary
aberrations of absolute peak value of a quarter-wave. Table
4 shows the Strehl-ratio values when the peak-to-peak aber-
ration is a quarter-wave. Table 5 shows the aberration coef-
ficients (4;), the absolute peak values |Wp|, and the peak-

075
L 065
r:— 055

b
r 045

E 0.35

05 - ' ; , 025

Fig. 9. Strehl ratio for a quarter-wave aberration as a function of
obscuration ratio. A; = M\4. S, spherical; BS, balanced spherical;
C, coma; BC, balanced coma; A, astigmatism; BA, balanced astig-
matism. The right-hand-side vertical scale is only for coma.
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Table 2. Aberration Coefficient, Absolute Peak
Value, and Peak-to-Peak Value for Primary
Aberrations (¢ = 0)

Absolute Peak-to-Peak
Aberration Peak Value Value
Aberration Coefficient | Wy Wo—p
Spherical A, ) Asl A
Balanced A, [As|/4 A /4
spherical
Coma Ac |Acl 24,
Balanced A, |Acl/3 24./3
coma -
Astigmatism A, | 44| A,
Balanced A, |Aql/2 A,
astigmatism

Table 3. Strehl Ratio for a Quarter-Wave Absolute
Peak Value of a Primary Aberration (| W,| = A/4)¢

4;

Aberration \) S
Spherical 0.25 0.8003
Balanced spherical 1 0.8003
Coma 0.25 0.7374
Balanced coma 0.75 0.7317
Astigmatism 0.256 0.8572
Balanced astigmatism 0.5 0.6602

@ The corresponding aberration coefficient A; is given in units of wavelength
(e=0).

Table 4. Strehl Ratio for a Quarter-Wave Peak-
to-Peak Value of a Primary Aberration

(W,—p = N/4)a
4;

Aberration \) S
Spherical 0.25 0.8003
Balanced spherical 1 0.8003
Coma 0.125 0.92
Balanced coma 0.375 0.92
Astigmatism 0.25 0.8572
Balanced astigmatism 0.25 0.9021

¢ The corresponding aberration coefficient 4; is given in units of wavelength
(e=0).

Table 5. Aberration Coefficient A;, Absolute Peak
Value | W;|, and Peak-to-Peak Value W,_,, Allin
Units of Wavelength, for a Strehl Ratio of 0.80 (¢ = 0)

A; | Wl Wo—p
Aberration (A \) \
Spherical 0.25 0.25 0.25
Balanced 1 0.25 0.25
spherical
Coma 0.21 0.21 0.42
Balanced 0.63 0.21 0.42
coma
Astigmatism 0.30 0.30 0.30
Balanced 0.37 0.18 0.37
astigmatism
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to-peak values W,—p, all in units of wavelength, for a Strehl
ratio of 0.8. It is evident from the data in Tables 3-5 that,
except for spherical aberration (the example considered by
Rayleighl4) and balanced spherical aberration, a Strehl ratio
of 0.8 is not obtained for a quarter-wadve of peak absolute value
or peak-to-peak value of a primary aberration. Thus the
Rayleigh quarter-wave rule does not provide a quantitative
measure of the quality of an abetrated image. At best, it
provides an indication of a reasonably good image. Similar
conclusions generally hold when the pupil is obscured.

6. STREHL RATIO FOR NONOPTIMALLY
BALANCED ABERRATIONS

It should be noted that, when a classical aberration is balanced
with other aberrations to minimize its variance, the balanced
aberration does not necessarily yield a higher or the highest
possible Strehl ratio. For small aberrations, a maximum
Strehl ratio should be obtained according to formula (8) when
the variance is minimum. For large aberrations, however,
there is no simple relationship between the Strehl ratio and
the aberration variahce.

Let us consider spherical aberration balanced with an ar-
bitrary amount of defocus. The Strehl ratio can again be
written in terms of the Fresnel integrals. For example, if

P(p) = Aspt — Aap?, (13)
the Strehl ratio can be written as

S = [1/24,(1 — €2)?]
X{[C(a+) + C@)2 + [S(a+) + S@))3, (14)

where

ax = [(1 — )4, + A)/(2TA,)1/2 (15)
and

A=Ay - A (1 +e2). (16)

It is evident that the Strehl ratio is independent of the sign
of A, the deviation of defocus froin its optimum (in the sense
of minimum variance) value. Thus the axial irradiance of a
spherically aberrated wave is symmetric about the axial point
with respect to which the aberration variance is minimum.
This fact was pointed out by Nijboer?® for circular pupils, but
it holds for annular pupils as well. Figure 10 shows how S
varies with A in the ease of circular pupils for several typical
values of A,. Itisseen that, for large Strehl ratios, S is max-
imum when A = 0, i.e., minimum variance leads to a maximum
of Strehl ratio. For small Strehl ratios, howéver, minimum
variance gives a minimum of Strehl ratio. The Strehl ratio
is maximum for a nonoptimally balanced aberration. For
example, when A; = 3\, the optimum amount of defocus is A4
= 3A, but the Strehl ratio is a minimum and equal to 0.12.
The Strehl ratio is maximum and equal to 0.26 for Ag =~ 4\,
2\. For A; < 2.3), the axial irradiance is maximum at a point
with respect to which the aberration variance is minimum.

Barakat and Houston20 have calculated the Strehi ratio for
annular pupils aberrated by one wave of spherical aberration
optimally balanced with defotus for annular pupils and cir-
cular pupils. Thus they use two aberrations,

Pa(p; ) = 2m[p* ~ (1 + €2)p? (17)
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Fig. 10. Strehl ratio for circular pupils {¢ = 0) aberrated by spherical
aberration as a function of the deviation of focus from its optimum
balancing value (A = Ag — A,) for several values of the aberration
coefficient A;. The curves are symmetric about the origin. The
right-hand-side vertical scale is for A; = 3, 4\,

Table 6. Strehl Ratio for Annular Pupils Aberrated
with One Wave of Spherical Aberration Optimally
Balanced with Defocus for Annular and Circular

Pupils
€ Sa Sp
0 0.8003 0.8003
0.1 0.8074 0.8069
0.2 0.8279 0.8239
0.3 0.8589 0.8407
0.4 0.8957 0.8452
0.5 0.9326 0.8315
0.6 0.9637 0.8082
0.7 0.9852 0.7993
0.8 0.9962 0.8340
0.9 0.9995 0.9240
and
Pp(p; €) = 27(p* — p?), (18)

to calculate the Strehl ratios given in columns A and B, re-
spectively, of their Table II. Letting A; = 2w and Ag = (1 +
€2)A; and A;, we obtain from Eq. (14)

Sale) = [CH1 — €2) + S2(1 — €2)]/(1 — €2)2 (19)
and

Sp(e) ={[C(1) + C(1 — 2¢7)]2
+{S1) + S(1 - 2e)|H/4(1 — 2)2.  (20)

By using Eqs. (19) and (20), we obtain the Strehl ratios given
in Table 6. Comparing these numbers with those given by
Barakat and Houston,2® we find that the numbers in their
column A need to be divided by (1 — €2), and those in column
B by (1 — ¢2)2. That the Strehl ratio should increase with ¢
for a given small amount of optimally balanced spherical ab-
erration is evident from the fact that the corresponding
standard deviation decreases as ¢ increases. Note that Sg(e)
fluctuates as € increases.

In the case of coma, we note from Table 1 that it is balanced
with tilt to minimize its variance. For circular pupils, for
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example, the coefficient of tilt is equal to two thirds of the
coma coefficient. Thus the point with respect to which the
aberration variance is minimum lies in the image plane at a
distance of 2A_.F/3 from the origin. From Barakat’s work,2!
we find that maximum irradiance occurs at this point only if
A, < 0.7, which in turn corresponds to S 2 0.76. For larger
values of 4., the distance of the point of maximum irradiance
does not increase linearly with its value and even fluctuates
in some regions. Thus, only for large Strehl ratios, the irra-
diance is maximum at the point associated with minimum
aberration variance. Moreover, we note from Figs. 3 and 4
that, when € = 0 and A, = 2.3\, the classical coma gives a
larger Strehl ratio than the balanced coma, i.e., the irradiance
at the origin is larger than at the point with respect to which
the aberration variance is minimum.

For secondary spherical aberration and secondary coma,
King?? has concluded that, when these aberrations are bal-
anced with lower-order aberrations to minimize their variance,
a maximum of Strehl ratio is obtained only if its value comes
out to be greater than about 0.5. Otherwise, a mixture of
aberrations yielding a larger-than-minimum possible variance
gives a higher Strehl ratio than the one provided by a mini-
mum-variance mixture.

7. DISCUSSION AND CONCLUSIONS

The Maréchal formula for the Strehl ratio [formula (8)] gives
approximate but reasonably accurate results for small aber-
rations. In the region of practical interest where Strehl ratio
calculations are desirable (i.e., excluding the region of ex-
tremely small Strehl ratios and its secondary maxima}, S1
underestimates the value of the Strehl ratio (Sg underesti-
mates its value even more). Comparing the approximate
results with the exact analytical results obtained in this paper,
we have shown that, for a primary aberration, S; gives results
with an error of less than 10% if the Strehl ratio is greater than
0.6. Thus, for less than 10% error, the standard deviation of
the wave aberration must be less than A/9.4.

Although the Rayleigh quarter-wave rule provides a crite-
rion for a reasqnably good image, it does not provide a quan-
titative measure of the image quality. A quarter-wave of a
primary aberration, whether it is the absolute peak value or
the peak-to-peak value of the aberration, does not necessarily
give a Strehl ratio of 0.8. The Maréchal formula, on the other
hand, gives a Strehl ratio of greater than or equal to 0.8 for o,
< M14 with an error of less than a few percent.

The Maréchal formula, which is valid for small aberrations,
shows that the Strehl ratio is maximum when the aberration
variance is minimum. Thus the Strehl ratio of a slightly ab-
errated optical system can be improved if its aberration
variance can be reduced. For highly aberrated systems, a
reduction in aberration varjance by balancing a higher-order
aberration with lower-qrder aherrations does not necessarily
lead to the highest possible Strehl ratio and may, in fact, de-
crease it.

APPENDIX A. STREHL RATIO FOR
CLASSICAL ASTIGMATISM

The aberration function for classical astigmatism is
®(p, 8) = Ap2 cos? 0 (A1)
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or

B(p, #) = hAp?(1 + cos 26). (A2)

By substituting Eq. (A2) into Eq. (11), we obtain the Strehl
ratio

1

1 -
—"—m J: exp(;Ap /2)pdp

2 2
X f exp(YoiA p? cos 20)d0| - (A3)
0
By carrying out the integration over 6, we obtain

4 1 . 9
T-ep J. exp(‘A"z/Q)Jo(Afﬁ/?)pdpl, (A4)

where Jo(-) is the zero-order Bessel function of the first kind.
Noting that23

fo * explit)Jolt)dt = zexpliz)[Jolz) — id1(2)], (AB)

Eq. (A4) can be written as

S = (1 — 2)~2H2(A/2) + 2H%(e2A/2)
— 2e2H(A/2)H (2A/2) cos{(1/2)(1 — €9)A
— alA/2) + al(2A/2]}, (A6)

where

H(a) = [Jo2(a) + J1%(a)] /2 (A7)
and

ala) = tan~1[J1(a)/Jo(a)]. (A8)

In Egs. (A7) and (A8), J;(-) is the first-order Bessel function of
the first kind. Equation (A6) is the result given in Table 1.
For circular pupils, i.e., when ¢ = 0, Eq. (A6) reduces to a
simple relation:

S = J¢2(A/2) + J12(A/2). (A9)

Note that, as in Table 1, the units of the aberration coefficient
A are radians.
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