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Absfmcf-This paper provides a summary of recent work in 
the development of integrated, multi-physics models for con- 
trolled opto-mechanical systems. Standard approaches from 
the literature are used to model the dynamics of the strnc- 
ture, including piezoceramic actuators, and generate a simple 
state space system for the actuator-structure dynamics. Next, 
linear sensitivities of the coefficients of the standard Zernike 
orthonormal basis set for representing optical aberrations are 
generated with respect to motions of the optics around the 
equilibrium point, using commercially available ray-trace soft- 
ware. Using this linear sensitivity representation, the optical 
path difference (OPD) at a reference pupil plane is reeon- 
structed. lnelusion of additional defocus terms to these Zernike 
coefficients yields a second aberration function to allow for the 
reconstruction of the OPD at a defocused pupil plane as well. 
For both of these planes, Fourier analysis is used to obtain the 
images produced at the corresponding image plane. The two 
images are provided to a phase diversity algorithm that returns 
estimates of the Zernike coefficients, yielding an estimated 
aberration based on sensed images. Laser metrology sensor 
signals are modeled via the addition of physically realistic 
noise to the structural perturbation signals, and are used to 
develop a control system that autoaligns the structure based on 
both the laser and phase diversity sensor measurements. The 
processes described herein are demonstrated on a model of an 
opto-mechanical system based on an approximate prescription 
for the Hubble Space Telescope combined with a simple flexible 
structure. 

1. INTRODUCTION 

While the two fields of structural modeling and optics 
are each themselves well established, the intersection of 
those areas with each other and the use of control systems 
that utilize information from both for achieving optical 
performance objectives directly is a relatively new topic of 
research. State-space modeling of structures has been well 
documented, with the option of incorporating actuators (see 
[I], [2]). Software packages such as CODE V, ZEMAX, 
MACOS, and COMP exist to model optical systems via ray- 
tracing, with the latter two providing optics models more 
easily integrated with structural and thermal models through 
the optional computation of linear sensitivities (see [3], 
[4]). Some software packages such as IMOS [5] have been 
developed to actually accomplish this integration. Integrated 
modeling of structural, thermal, and optical performance has 
been camed out for the Next-Generation Space Telescope 
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(NGST) using ray-tracing [6] ,  and using linear sensitivities 
rather than ray-tracing with the addition of feedback control 
[7]. In this paper, we will also investigate the impact of 
using image-based metric determination (Le., phase diver- 
sity methods), as described in [8], [9], and [lo], with the 
structural dynamics feedback control system. Specifically, 
we will incorporate compensation for non-common path 
errors between metrology and imaging optical paths while 
simultaneously compensating for structural vibration. The 
processes described herein are demonstrated on a model 
of an opto-mechanical system based on an approximate 
prescription for the Hubble Space Telescope combined with 
a simple flexible structure (i.e. the example system). 

11. ACTUATOR-STRUCTURE MODELING 

For the example system, the optical prescription is mod- 
eled using the ZEMAX optical design program. The pre- 
scription consists of a Schmidt-Cassegrain telescope with an 
obscuration to prevent rays from passing through the back 
side of the hyperbolic secondary mirror having diameter 
0.281 meters. The parabolic primary mirror has a diameter 
of 2.4 meters and is the aperture stop for the system. The 
separation between the primary and secondary mirrors along 
the optical axis is approximately 4.906 meters. 

The position data for the optical surfaces within this 
prescription was exported from ZEMAX as an IGES file 
and imported into FEMAP, in which the simple structural 
FE model was created to match the surfaces. Square shell 
elements were used for most of the primary and secondary 
mirror surfaces with triangular shell elements connecting 
at the central nodes on the optical axis completing those 
surfaces. A combination of square and triangular shell ele- 
ments were used to form a triangular base plate representing 
a spacecraft bus. The mirrors and base plate formed by 
the shells were considered rigid for this entire integrated 
modeling process. The shells were connected by beam 
elements to form a tripod support connecting the primary 
and secondary mirrors and a hexapod support, into which 
the piezoelectric actuators were integrated, connecting the 
primary mirror and bus. The completed FE model, shown in 
Fig. 1, was exported as an .I" file. This was imported into 
ABAQUS standard, which was used to perform a Lanczos 
modal dynamic solve to obtain 32 non-rigid body modal 
frequencies up to approximately 200 Hz and the accompa- 
nying mode shape displacements at nodes of interest. These 
were the mirror vertex nodes and the nodes at the endpoints 
of the actuator elements. The displacements on the former 
nodes were assembled into a matrix 'p and those on the 
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Fig. I .  Finite-Element Model of Example System 

latter were assembled into a matrix $. The blocked force 
acting per unit voltage on each piezoelectric actuator was 
calculated via standard techniques [I I], and broken down 
into its vector components within the global coordinate 
system. The resolved vector components were assembled 
into a matrix 6. The continuous state-space system was 
formulated using standard approaches [Z], yielding 

Iq+[z]q+[n2]q= [ $ 6 ] u ,  ( 1 )  

3 = diag(Z[jwj), (2) 
= diag( CO:). (3) 

where 

Here j varies along the diagonal from 1 up to the total num- 
ber of modes retained from the normal modes analysis, and 
q represents the modal coordinate state vector. Conversion 
of (1) into a set of first-order differential equations yields 

x = Ax+Bu , (4) 
y = Cx+Du , (5) 

where 

and xr  = [qT 4'1. Damping factors of = 0.5%, i = 
1,2,. . . ,n were assumed. The continuous state-space model 
was then converted to its discrete-time equivalent using 
zero-order hold equivalence for use in digital control system 
simulation within Simulink. 

111. GENERATION OF OPTICAL QUANTITIES OF 
INTEREST 

Optical quantities of interest, such as line-of-sight point- 
ing error, spot centroids, wave-front error (WE) ,  and 
optical-path length difference (OPD) are, in general, non- 
linear functions of the positions of the surfaces representing 
the various lenses, mirrors, and other light-impacting ele- 
ments of the system. This is due to the influence of both the 

geometric relationships governing reflection and refraction, 
and diffraction effects. Diffraction effects become more 
pronounced relative to the geometric effects with increasing 
distance from the optical system's aperture, or equivalently 
with decreasing distance from the focal (image) plane of 
the system (see [E], [13]). 

The OPD was the optical quantity of interest obtained 
at the start of the process outlined in the remainder of this 
section. For this paper, the OPD at any given location on 
the pupil plane is defined as the length of a ray hitting the 
pupil plane at that location minus the length of the chief 
(on-optical-axis) ray measured up to the pupil plane. The 
OPD data was obtained at the pupil plane, which is quite 
close to the image plane. This point is within the diffraction- 
dominated (Fraunhofer) region, satisfying one condition for 
the validity of the Fourier analysis covered below. 

A .  Geometn'c Effects and Derivation of Sensifivifies 
Modeling of the nonlinearities due to geometry is gen- 

erally performed using ray-trace algorithms, that geomet- 
rically trace bundles of light rays through the system, 
tracking the quantities of interest throughout. Elements can 
be moved, perturbed, and surfaces modified to ascertain the 
impact on metrics of interest. CODE V, ZEMAX, MACOS, 
and COMP all offer this ray-trace-based functionality. 

Unfortunately, ray-tracing is a computationally intensive 
procedure, and would require an unacceptable amount of 
time for simulating the system if integrated directly. The 
use of linearized optical sensitivities has been proposed and 
utilized with great success in generating several metrics of 
interest (see [I41 and [15]). We shall follow this approach 
in this paper, focusing on the use of sensitivities to map 
from structural deformation to global optical properties 
rather than from structural deformation to individual-ray 
properties. Image generation will also be performed drawing 
upon the output of this mapping. 

For the derivation of the sensitivities matrix, a soft- 
ware package that integrates ZEMAX with the MAT- 
LAB/Simulink software, ZELINK, was used. ZELINK con- 
sists of several Sitnulink-compatible blocks that will load 
a ZEMAX prescription file and construct inputs related to 
the 6 mechanical degrees of freedom (DOFs) for each de- 
fined surface, with several standard optical output functions 
(OPD, X- and Y-centroids, etc.) defined as the outputs. 
Using ZELINK blocks to represent the optical system, a 
simple Simulink system was constructed to feed a ramp 
input signal into each mechanical DOF for the primary and 
secondary mirrors, generating OPD surfaces as a function 
of perturbation value. 

In order to represent each OPD surface with high fidelity 
using linear approximation techniques, a standard orthonor- 
mal decomposition of the surface was performed and the 
sensitivity of the coefficients of the expansion determined 
for each mechanical DOF in the system. The Zemike 
standard polynomials [ 161 were calculated for coordinates 
interior to the aperture function on the pupil plane. Each 
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TABLE I 
ERROR IN OPD PREDICTION DUE TO USE OF LINEAR SENSITIVITIES 

Fig. 2. 
Perturbation 

Zemike Polynomial Coefficient Values vs. Primary Mirror Piston 

two-dimensional Zemike polynomial array matrix was re- 
shaped into a vector and these were assembled into a matrix 
containing all the information of the orthonormal basis that 
is needed to perform the decomposition. Determination of 
the coefficients of the expansion for a given OPD surface 
was then accomplished using standard least-squares regres- 
sion techniques. Using the OPD surfaces corresponding 
to a linearly increasing perturbation of a particular DOF 
(through zero), the coefficients for each basis h c t i o n  were 
each plotted against the input perturbation to examine the 
coefficient behavior. An example of such a plot is shown 
in Fig. 2, providing the behavior of the first 5 Zemike 
expansion coefficients with respect to the value of the 
perturbation in the piston (z-axis translation) DOF for the 
primary mirror. 

Second-order accurate forward, central, and backward 
finite differencing was used to get the first derivatives of 
these curves, providing values for the sensitivity of each 
coefficient value to motion of the selected mechanical DOF. 
A plot of this first derivative for one Zernike coefficient 
is shown in Fig. 3. Clearly, numerical noise in the data is 
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Fig. 3. 
Mirror Piston DOF (unfiltered) 

Sensitivity of 4th Zemike Coefficient With Respect to Primary 

amplified during the finite differentiation process. However, 
this effect was eliminated by taking the mean of the linear 
sensitivity over the entire prescribed perturbation range to 
get one number for the corresponding element of the linear 
sensitivities matrix. This perturbation range was chosen as 
i 1 0 p m  or f l o p a d ,  representing values that were esti- 
mated to be approximately one order-of-magnitude larger 
than typically allowable vibration specifications for a space- 
based imaging system. 

The quality of the sensitivities matrix thus obtained 
was assessed by comparing the OPD generated directly 
by ZELINK (using the full ZEMAX ray-trace approach) 
against the sum of the products of the column vector 
of instantaneous mechanical DOF perturbations and each 
row from the coefficient sensitivities matrix (yielding each 
predicted coefficient value), and the corresponding Zernike 
polynomial basis function, with these products summed 
over the number of terms kept in the Zemike expansion. 
These two vectors were reshaped into 2D arrays and plotted 
next to each other for visual comparison. 

To provide quantitative comparison, normalized RMS 
errors between the OPDs generated by ZELINK and those 
generated by the linear-sensitivity approach were computed, 
and are tabulated in Table I. The largest numbers in table 
2 correspond to the perturbations that are rotations about 
the Z-axis, which is an axis of symmetry for this particular 
optical system. As such, Z-axis rotations have no impact on 
the OPD and produce extremely small OPD numbers rel- 
ative to those produced by other DOF motions, dominated 
by noise from truncations made during computation. Thus, 
the values in Table I corresponding to the Z-axis rotations 
are spurious and due to the effects of numerical noise. 
Overall, reconstruction errors were found to be less than 
1% for all cases not corresponding to Z-axis rotations, for 
all perturbation magnitudes up to the i10 -% or rad limits, 
at all points within the pixellated pupil plane at which the 
actual OPD value was not very close to or at zero relative 
to the mean across the actual OPD data surface. 
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B. Difiaciion Effects and Image Generation 

Diffraction effects can be simulated through the use of 
spatial Fourier techniques that are in general very similar 
to standard temporal Fourier techniques used in dynamic 
systems analysis. The Fourier techniques employed here for 
optical propagation, relying on the theory of linear systems, 
are only valid in the Fraunhofer region and are in general 
only valid over a limited regime around an operating point. 
This is because of the breakdown, at large perturbations, 
of the underlying assumptions made in the derivation of 
those techniques, such as the linearity of the system, spatial 
invariance (isoplanicity) of the impulse response (PSF), and 
absence of effective discontinuities (due to sampling limits) 
in the data surfaces to be transformed. For a more detailed 
discussion of the derivations and assumptions made, the 
reader is referred to [17]. 

A map of OPD at the pupil plane represents all of the 
aberrations within the optical system along the propagation 
path up to the location of that plane. Let this OPD map 
be denoted as @xrSy), the real 2D wavefront aberration 
function with units of either waves or radians of phase. As 
shown in [8], the complex coherent transfer function (CTF), 
denoted W ( { ,  y), for the system is found as 

W ( 5 , y )  = A(S,,S,)e'+(s-+) 

3 (7) 

where aj, Z j  are the j th Zemike coefficient and polyno- 
mial shape respectively, and where A(S,,S,) is the binary 
pupil extents definition, defined as unity inside the system 
aperture, and zero elsewhere. Following [8], taking the au- 
tocorrelation of W ( 5 ,  y) yields the complex optical transfer 
function (OTF) as 

= A (sx, s,) Z;=, a j Z j ( s d y )  

,, 
n ( 5 , ~ )  = JJ W * ( ~ c , ~ v )  W ( 5 - ~ g , ~ - c v W ) d c c d ~ v .  

(8) 

Given the Fourier transform of an object intensity map, 
O(5, y), the Corresponding Fourier transform of the image 
generated of the object, denoted I ( { , y ) ,  by the optical 
system can be computed as 

(9) 1(5> v) = n(5, v).0(5, Y )  I 

where . denotes element-by-element (Haddamard) multi- 
plication. The corresponding spatial image can then be 
computed via standard inverse Fourier transform methods. 

An object intensity map was arbitrarily defined. Given an 
arbitrary OPD generated by the process outlined in Section 
111-A above, a measurable image intensity profile at the 
image plane was generated for this object using the steps 
outlined above. To provide the dual images required for 
phase diversity type algorithms, the same calculations were 
also performed for a second OPD surface where a small 
amount of defocus aberration was added, and the nominal 
and defocused images were set as system outputs. 

IV. PHASE DIVERSITY ALGORITHM 

Phase diversity approaches represent a form of optics- 
based metrology where perturbations present in the system 
are determined not by direct measurement, but rather by the 
effects that they generate in images produced by the system. 
In particular, phase diversity approaches use the nominal 
image produced by the system and a second image, which 
contains a small but known amount of additional aberra- 
tion (the diversity), to back-calculate the system aberration 
function (the system OPD) through the minimization of an 
error metric. Defocus aberrations tend to be the most widely 
utilized in practice for these techniques, due to their ease 
of implementation in optical hardware. 

The attraction of phase diversity techniques are twofold: 
first, they rely solely on image-based information, negating 
the need for complex metrology systems, and second, 
they are scene-independent; that is, they do not require a 
particular type of image or scene in order to work, unlike 
approaches where a point source or other calibrated scene 
are used to divine system aberrations. 

A particular phase diversity technique is based on the 
so-called Gonsalves metric, given by (see [8],[9]): 

(10) 

where I., II. and Id, nd denote the image Fourier transform 
and the OTF of the nominal system and the diversity (defo- 
cused) system, respectively, and a is a small regularization 
constant used to prevent singularity. Note that n. and nd 
are indirect functions of the unknown Zemike coefficients. 

Unfortunately, the function represented by (IO) cannot 
be proven to be convex, and the implementation of phase 
diversity approaches essentially result in an unconstrained 
nonlinear optimization, where the elements within the 
Zemike coefficients vector are the parameters solved for 
to minimize the error metric above. 

Standard optimization routines in MATLAB were used 
to compute solutions to the optimization problem, with 
particular attention given to how much the initial parameter 
guess could deviate from actual parameter values before 
poor results were encountered, i.e. before very many iter- 
ations were required to converge to the actual values. A 
deviation towards +- was found to be more favorable than 
one towards -- in this respect. Like this deviation, the 
perturbations introduced to the system had to be within a 
narrow range for convergence to result. As stated within 
[lo], the phase diversity algorithm breaks down if the total 
phase variation across the pupil plane exceeds one wave. 
This imposed a restriction on the values of the actual 
Zemike coefficients to be found, which in tum translated 
to range limits on the DOF motions of the structure and 
in tum range limits on the PZT actuator voltages (the 
perturbations). It was concluded that the phase diversity 
algorithm converged reliably but not quickly or efficiently 
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Fig. 4. Overall System Diagram with Feedback Control 

enough (requiring up to 500 iterations), to use on-line 
in the simulations performed to test the control design 
below, given limited computing resources. Thus a fast stand- 
in function employing knowledge of the actual Zemike 
coefficient values from within the plant in addition to 
a stochastic component was used to simulate the phase 
diversity algorithm results for this purpose. 

V. CONTROL SYSTEM ARCHITECTURE 
Fig. 4 shows the diagram for the overall system with the 

controller added to it. The two sets of signals available from 
the model of the opto-mechanical system for use with the 
control system were laser metrology sensor signals, y (k ) ,  
and the Zemike coefficient signals from the phase diversity 
algorithm, z (k) .  The former was modeled via the addition 
of physically realistic noise to selected mechanical DOF 
perturbations output by the actuator-shucture state-space 
system, while the latter was modeled with the addition of 
noise to the Z e d e  coefficients generated by the linear 
sensitivity process described in III-A. The key performance 
vector driven to zero through control was z(k) ,  which served 
as the true measure of the aberration in the wavefront 
coming into the observation instrumentation (camedCCD). 
An adaptation of the Kahn-Bucy  filter was derived in 
discrete time, with the additional inclusion of biases present 
in the system due to the non-common optical paths of 
metrology and observation inshumentation. Extremely low 
frequency drift due to thermal variation was also considered 
to be lumped into these biases. Then this control scheme 
was implemented along with the opto-mechanical model in 
Simulink. 

A .  Control Derivation 

as follows, 
Given the discrete time plant (excluding the noise terms) 

x(k+  1) = Ax(k) +Bu(k) 

Y ( k )  Cx(k)+Ydl (1 1) 
= %k) +Ydl?  

where ydl represents all non-common path bias and thermal 
bias on the laser metrology signals y ( k ) .  Added to this we 
have the relationship 

where [Jzy/J?] is the sensitivity matrix obtained above. 
Multiplying the interferometer output by this sensitivity 
matrix gives zy(k) as 

The phase-diversity output z(k) can be represented (in 
similar fashion to the interferometer output) as 

= Zj+Z& (16) 

where I =  Zdl - Zd2 is the total constant bias term which 
acts as a "set-point'' that zy(k)  is being driven to in order to 
drive ~ ( k )  toward zero as k + m. In this way the control 
problem can he viewed as an LQ tracking problem. In 
practice, I can be approximated from the expected value 
of collected measurements of the interferometry and phase- 
diversity outputs, which include both sensor and process 
white noise, as follows 

= Z y ( k )  - r  (17) 

The Zemike set-point translates to a state set-point with 

It is assumed the discrete time state estimator is constructed 
as follows 

i ( k +  1) = &(k) +Bu(k) + G k ( k )  -p(k) )  
j ( k )  = Cf(k) 

i ( k )  = [?$]?(k) 

Now we define a series of errors and error differences, 
starting with the errors of the states and estimated states 
relative to the state set-point: 

x(k) -? (21) 
f (k )  -7 (22) 

4 ( k )  - 5 (k )  = f (k)  - x ( k )  
AS (k)  - A t  (4 

5(k+1) - 5 ( k )  =x(k+ l )  - x ( k )  (23) 

4 (k+  1) - 4 ( k )  = i ( k +  1) - f ( k )  (24) 
(25) 

2(k+ 1) -2(k) -x(k+ 1) +x(k)  (26) 
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With these definitions in hand, the plant error propagation 
system is given by 

c ( k +  1) = A{ ( k )  + + ( A  - I ) X  
e,.(k) = y(k)+CF (27) 

= cg(k )+Ydl  

Similarly, the estimator error propagation system is seen to 
be, with some substitution, 

{ ( k +  1 )  = A t  (k)  +Bu(k)  + Gc (5 (k)  - 4 ( k ) )  + ... 
...( A-I)F+Gydl 

$(k)  = C&k) (28) 

To eliminate the constant terms from these error propagation 
systems, we define Au(k) = u(k+ 1) - u(k)  and assume the 
overall discrete system has a positive sample time of Ar , 
then formulate the corresponding propagation systems for 
the error differences, with division of the equations by the 
sample time. For the plant this produces 

And for the estimator 

\ 

($0) 

Using the definition of Ae(k) from above, this estimator 
error difference can be rewritten as 

(31) W k )  -- - - ( A  - Gc)- Ae(k+ 1) 
At At  

Equations (29) and (3 1) need to be augmented by a propaga- 
tion of the key performance vector of r (k)  to to ensure that 
this is driven to zero, before combination into the overall 
system matrices. For this propagation, we observe that 

z (k+ 1 )  = r(k+ 1) - z ( k ) + z ( k )  

(32) 

Now combining 29, 3 1 and 32 yields: 

ago A 0 0 

0 0 ( A - G c )  

... + [ I ] AI (33) 

Assuming the control law to have the form 

yields the following closed-loop system matrix [ (A-:) -BKz -BK, 

At [$IC I 0 ] , (36) 
0 ( A - G c )  

from which the stability of the entire system is determined. 
It is still necessary to determine the form of the control 
law, u(k), and for this we step through (34) given that for 
all i < 0, [ ( i )  = 0 and that ye have a non-trivial initial 
error in the state estimate, or ((0) # 0. This produces the 
recursive equation 

k- I 

i=o 
u(k)  = - K i t ( k ) - K 2 A t C z ( i )  (37) 

Defining integrator states as x&) = AtXlZdz(i)  and the 
integrator state-space system as 

x ~ ( k +  1) =x , (k )+Arz (k )  (38) 

u(k) = -K1i(k) +Klx-KZx,(k) (39) 

allows this control law to be rewritten as 

using the definition of the state estimate error as well. 
This primary result is the proportional plus integral type of 
controller expected to compensate for the biases and drive 
the z(k)  representation of the wavefront error to zero. 

B. Conml Implementation 
In implementing the above within Simulink, six of the 12 

DOF outputs from the plant-state space system (Z-piston, 
X-tilt, and Y-tilt for the primary and secondruy mirrors 
each) were picked out and summed with modeled noise. 
The stand-in phase diversity function was eventually set 
to provide only three Zernike coefficients, to which the 
modeled zero-mean white noise was added. The feedback 
loop was opened and the system was simulated to record 
to the workspace a sampling of y ( k )  and z(k)  so that Z 
could be computed by (18). Then the feedback loop was 
closed, with the KbW = [ -KI -Kz ] and the G having 
been obtained by LQR and LQG solutions respectively. 
Originally, more Zemike coefficients had been provided by 
the phase diversity function to the integrator state-space 
system input, but this resulted in poor scaling for the LQR 
problem. This was due to the relatively small participation 
of most all higher order Zemike coefficients in the OPD 
map. Weightingiscaling the Q and R, then balancing the 
actuator-structure system and reducing its order was tried 
unsuccessfully prior to elimination of the additional Zemike 
coefficient signals. 
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Fig. 5 .  
Closed Loop, to Given Initial Condition xg 

Time Responses of PDdulput Zemike Coefficients, Open and 

VI. RESULTS 

Introduction of the control system reduced the distance of 
the eigenvalues from the origin on the S-plane, improving 
stability. For the original plant state matrix, this distance 
ranged from 0.999371 - 0.999950. For the (A - GC) matrix 
these values were 0.995262 - 0.999942 and for the overall 
closed loop matrix they were 0.245967 - 0.999942. Fig. 5 
below shows a comparison of the open loop and closed loop 
time responses of the Zemike coefficients, output from the 
simulated phase diversity algorithm, to given initial plant 
states xg, a column-wise vector of 5 x 10-6. 

VII. CONCLUSIONS AND FUTURE WORK 

The inputs to the structure for the example system 
are linearly mapped to the coefficients for a particular 
set of basis functions (the Zernike standard polynomials). 
These coefficients and basis functions together represent 
the real OPD at the pupil plane (nearly co-located with 
the camerdCCD for the system), which is then driven to 
zero using the linear feedback control. Therefore the actual 
image distortion is being eliminated in addition' to inter- 
mediate structural motion. This is significant with respect 
to new opto-mechanical systems being proposed for future 
spacecraft missions, in which the combination of large 
sizes and light-weighted construction calls into question 
the assumption that the usual sensing and cancellation of 
structural motion automatically translates to good image 
quality. Very low frequency motions and dr iwias  in the 
system not detectable with the interferometer metrology are 
also corrected for with this approach. 

Limitations on the usefulness of the entire integrated 
modeling effort described herein include significant compu- 
tational overhead associated with use of the phase diversity 
algorithm on-line, although faster phase diversity algorithms 
are under development. In addition, the work done to date 
has not included flexible modes for the mirror surfaces, 

which is unrealistic given the membrane-like mirrors pro- 
posed for many new opto-mechanical systems. Future work 
may be needed to introduce these flexible modes, requiring 
increases in the number of DOF channels, the size of the 
sensitivities matrix, and the number of Zernike coefficients 
used as parameters in the phase diversity algorithm so as 
to capture all major OPD behaviors. It is also desirable 
to extend the approach presented here to multiple-segment 
sparse-aperture imaging systems for which highly asymmet- 
ric OPDs are observed with independent motion of each 
segment. Derivation of a new orthogonal basis function set 
from observed OPDs may be needed as an altemative to 
use of Zemike standard coefficients and functions, so as 
to capture the OPD behavior with a smaller number of 
coefficients and thereby reduce the computation required 
for modeling and operating the system as a whole. 
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