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Abstract

A quasi-kinematic coupling (QKC) is a fixturing device that can be used to make low-cost assemblies with sub-micron precision and/or
sealing contact. Unlike kinematic couplings that form small-area contacts between mating balls in v-grooves, QKCs are based on arc contac
formed by mating three balls with three axisymmetric grooves. Though a QKC is technically not an exact constraint coupling, proper design
of the contacts can produce a weakly over constrained coupling that emulates an exact constraint coupling. This paper covers the practic
design of QKCs and derives the theory that predicts QKC stiffness. A metric used to minimize over constraint in QKCs is presented.
Experimental results are provided to show that QKCs can provide repeatabilijyr(l)/that is comparable to that of kinematic couplings.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction micron-level precision with these couplings is impractical
due to the micron-level tolerances that are required on pins,
1.1. Background holes and pin—hole patterns. Other well-known couplings

such as tapers, dove—tails and rail-slots would also require
The need to improve performance has forced design- micron-level tolerances. They also require expensive fin-
ers to tighten alignment tolerances for next generation ishing operations to reduce the effect of surface finish on
assemblies. Where tens of microns were once sufficient,alignment performance.
nanometer/micron-level alignment tolerances are becoming Letusnow consider exact constraint couplings that are well
common. Examples can be found in automotive engines, known in precision engineering, but less frequently used in
precision optics and photonic assemblies. Unfortunately, the manufacturing. A common type of exact constraint coupling,
new alignment requirements are beyond the practical ca-a kinematic coupling (sefeig. 1A), routinely provides better
pability (~5uwm) of most low-cost alignment technologies. than 1um precisior{1] alignment. Unfortunately, they fail to
The absence of a low-cost, sub-micron coupling has moti- satisfy three low-cost coupling requirements that are common
vated the development of a new class of coupling interface, to many manufacturing processes:
the quasi-kinematic coupling (QKCIFig. 1A).
1. Low-cost generation of fine surface finish: micron-level
1.2. The need for a new precision coupling kinematic couplings must use balls and grooves with
ground or polished surfac¢®]. Although balls with fine
Tounderstand the need for a new class of precision fixtures, ~ Surface finish are generally inexpensive, grooves with
it is necessary to understand why the cost and performance fine surface finish are expensive. The finishing operations
characteristics of current technologies are incompatible with ~ Used to prepare groove surfaces add considerable cost to
the dual requirements of low-cost and sub-micron precision. ~kinematic couplings.
We will first examine coupling types used in traditional 2. Low-cost generation of alignment feature shape: making
manufacturing. The most common type, the pinned joint, is ~ V-grooves for kinematic couplings requires more time
formed by mating pins from a first component into corre- ~ and more complicated manufacturing processes than

sponding holes or slots in a second component. Obtaining ~reéquired by present low-cost technologies, i.e. pinned
joints. For example, the ball and grooves are geomet-

*Tel.: +1-617-452-2395: fax:-1-509-693-0833. rically more complex, with more tolerances than pins
E-mail address: culpepper@mit.edu (M.L. Culpepper). and holes. Likewise, high-hardness balls and grooves are
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Fig. 3. Relieved groove (A) and relieved ball (B) QKC joint designs.

®) constraint in QKCsSection 4discusses the theory as imple-

Fig. 1. Quasi-kinematic (A) and kinematic (B) couplings. me':]ted in a MathCAD program ar&ection 5|provides ex-
perimental results that show QKCs can provide performance

. . . comparable to exact constraint couplings. The implications
desired to withstand Hertzian contact stresses at the con- P Pling P

. : . - of coupling cost are covered iBection 6 Appendices are
:gcr:;(?elzn;{rﬂ./;hrﬁzihr?nienals require additional effort provided to cover the details of the theory and the design tool.
3. Low-cost meansto form sealed interfaces: kinematic cou-
plings are not generally meant to form sealed interfaces
unless they are equipped with flexufds4] that add cost
and complexity.

2. Quasi-kinematic coupling concept

2.1. Smilarities and differences between kinematic and

Having covered common manufacturing couplings and quasi-kinematic couplings
kinematic couplings, we now compare their cost and per-
formance.Fig. 2 shows a clear performance gap between FromFig. 1, we see that kinematic and QKCs share similar
low-performance/low-cost couplings and high-performance/ geometric characteristics. A kinematic coupling consists of
moderate-cost couplings. Clearly, the gap must be addressedpalls attached to a first component that mate with v-grooves in
if alignment is to be removed as the main obstacle to en- @ second component. The balls and grooves form small-area
abling low-cost, high-precision assemblies. The QKC was contacts. QKCs consist of axisymmetric balls attached to a

designed to address this gap. first component that mate with axisymmetric grooves in a
second component. Here the balls and grooves form arc con-
1.3. Contents tacts. Two examples of axisymmetric geometries that form

arc contacts are shown kig. 3. The orientation of joints in
Section Aiscusses the concept of the QKC and shows how both couplings is also similar. To achieve good stability and
it satisfies the low-cost coupling requirementSection 1.2 balanced stiffness, joints are oriented with ball-groove con-
Section 3provides the theory used to predict coupling stiff- tacts in symmetric positions and orientations with respect to
ness and provides a metric that can be used to minimize overthe bisectors of the coupling triand#].

—001pym  |<010pm |<1.0pm  |<10um
Common mfg. couplings ' Gap -'{ High $ Low $
QKC . Low $ |
KC High $ Moderate $

Fig. 2. Cost and precision of common couplings.
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Fig. 4. Planar constraints in kinematic (left) and quasi-kinematic (right)
couplings.

The fundamental difference between kinematic couplings (g)
and QKCs lies in the nature of the ball-groove contacts. Ideal
kinematic couplings establish six localized contacts that pro- Fig. 5. The link betweeficoniactand over constraint in QKCs with (A) small
vide well-defined constraint in desired directions and permit fcontactand (B) larg&contact
the freedom of motion in other directions. QKCs use ball and
groove geometries which are symmetric and thus easier tothe joint may impose on the coupling. Unfortunately, this re-
manufacture, but depart from the constraint characteristics ofduces coupling stiffness. This stiffness-constraint trade-off
ideal kinematic couplings by using arc contacts rather then requires a quantitative metric to optimize coupling design.
small-area contacts. With careful design, QKCs can be madewe will improve our qualitative understanding with a quan-
to emulate the performance of kinematic couplings. titative metric inSection 3.2 For now we continue with a

With this goal in mind, we must understand how QKC qualitative assessment of QKC attributes.
constraints differ from ideal kinematic coupling constraints
(Fig. 4). In this figure, we see the projections of ball-groove 22 QKCsthat satisfy low-cost coupling requirements
contact forces on the plane of coupling. The length of an ar-
row signifies the magnitude of a given constraint fofig. 4 We now assess the performance of QKCs with respect to

(Ieft) shows an ideal kinematic COUp|ing which prOVideS con- the low-cost Coup”ng requirements giverﬂection 1.2
straint between the balls and grooves in directions normal to

the bisectors of the coupling triangle. Freedom of motion is 1. Low-cost generation of fine surface finish: QKC balls can
permitted parallel to the bisectors. Thisis sufficientto achieve ~ be made from low-cost, polished spheres (i.e. bearings).
stable, exact constraint couplifig]. Fig. 4 (right) indicates By applying sufficient mating force, one can burnish the
that the arc contacts of the QKC provide desired constraint ~ surface of the groove by pressing the harder, finer surface
perpendicular to the bisector and some constraint along the  ©f the ball into the groove surface. The result of this bur-
bisectors. Without freedom of motion parallel to the bisector, ~ hishing process is shown Fig. 6. A successful burnish-
the coupling will have some degree of over constraint. ing operation has two important requirements:

The key to designing good QKCs is to minimize over con-
straint by minimizing the contact ang®sontaci The contact
angle is defined by illustration iRig. 5. The half angleg ;.
will be used in the theoretical derivationAppendix A The
jointin Fig. 5represents joint 1 ifrig. 4. Arrows represent-
ing the constraint per unit length of contact arc are shown on
the left sides oFig. 5A and B By inspection, we can see that
constraint contributions that are parallel to the angle bisectors2. Low-cost generation of alignment feature shape: QKC
(in they direction) can be reduced by making the contactan-  grooves are axisymmetric, thus they can be made in a
gle smaller. This in turn reduces the degree of over constraint  “plunge/drill” operation using a counter sink or form tool.

o A ball with polished (or ground if sufficient) surface
finish and Young’s modulus three to four times that of
the groove>5].

e Tangential sliding between the ball and groove surfaces
[6] during mating. Contact without tangential sliding
does not entirely remove asperitigs.
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Fig. 6. Surface trace of burnished QKC groove.

Groove reliefs can be cast, formed, milled, or drilled in 3. Low-cost means to form sealed interfaces: it is possible
place. The tools and processes required to form the groove  to enable sealing contact by integrating compliance into
seats are comparable to those required to make pinned a QKC joint. Using the joint design iRig. 7A and B we
joints. addz compliance via the hollow core and side undercut.

Under cut

Gap

1st Component

2nd Component
B8)

Fig. 7. Geometry of (A) compliant quasi-kinematic ball and (B) cross-section of a QKC joint.
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Fig. 8. Stiffness modeling strategies for (A) quasi-kinematic and (B) kinematic couplings.

As shown inFig. 7B, a nesting force mates the balls and Table 1 N _ o
grooves. By increasing the nesting force, we can deform Example QKC joint design characteristics

the ball-groove joints until the gap separating the coupled Design variable Value

components closes. Gaps of several hundred microns cary, 0.66.cm (0.260in.)

be closed if the ball-groove materials plastically deform ;__ —60m (—0.002in.)

during the first mate. When the coupling is unloaded, « 1 x 1072(N/wm?97) (294885@Ib/in.?%7))
elastic recovery of the ball and groove materials restoresb 1.07

a portion of the gap between the mated components. Re-feontact 120

taining a portion of the gap between components is nec- e 4

essary to maintain the kinematic nature of the coupling
in subsequent mates.

means to understand how the ball-groove arc contacts can
be designed to optimize the performance characteristics of
a quasi-kinematic joint. We will use the constraint metric as

3. Theory of quasi-kinematic couplings defined inEq. (1)
Stiffness parallel to bisector ki | gisector

i CM; = =
3.1. Analysis method ' 7 Stiffness perpendicular to bisector k

: 1)
1 1 Bisector

When analyzing kinematic couplings, contact forces and | et us consider the relieved groove joint design described by
displacements may be assumed normal to the ball-grooverig. 9AandTable 1 The joint's radial stiffness plot, shown in
contact and modeled with “Spl’ing like” Hertzian pOint con- F|g 9B, was generated using the theory&ippendix A We
tacts[2,8-10] When analyzing arc contacts, the direction of can use numerical results from the theory, wh&ggiact =

contact forces may not be assumed and the contacts cannotbg2r (or estimate values frofig. 9B) to determine the con-
modeled as point contacts. An appropriate analysis methodstraint metric for this joint.

is outlined inFig. 8A. We preload a coupling with a desired £(90°) 80N/

displacement preload, impose an error displacement on thisgpy = ———2 A el L 0.41 2)
“perfectly” mated state, calculate ball-groove contact forces k(©°) |rig.o  195N/um

and then use these forces and the error displacements to CaLFhis ratio is useful as a metric for reducing the potential

culate coupling stiffness. for over constraint based on the joint's mechanics (stiffness

TQ'S IS a|S|gn|f|ganItKerartu_re frorr;. the r_rf1feth6(@( (818) ted and material) characteristics. A full estimate of the align-
used to evaluate ideal kinematic coupling stiffness. A detailed 1ot error due to over constraifbger consrar) Would need

derivation of the kinematic and mechanics theories used 0y, ,nsjder kinematic characteristics, e.g. the post-plastically

model the performance and characteristics of QKCS iS pro- jetormed mismatch between the ball and groove patterns
vided inAppendix A This theory is used to develop the met- (Sinak-mismatch). Current efforts are focused on developing a

rics and charts which appear in the following sub-sections means to relate the error and mismatch by means of the fol-
and the design tool provided Appendix B lowing equatiort

3.2. Constraint metric Sover constraine= f(Sfinal-mismatchx CM) (3)

Unfortunately, the mismatch between QKC joints depends on
(1) elastic contact deformation, (2) plastic deformation and
"(3) multiple ball-groove mismatch tolerances. The theory

In Section 2.1we learned that the geometry of the arc
contacts leads to some degree of over constraint in QKCs
There are a variety of other factors (for instance friction,

geometry, etc.) that may add to the degree of over constraint 1 1he author thanks Dr. Layton Hale for bringing this form of this equation
in a precision coupling. Our interest here is in developing a to his attention.
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QKC Joint Layout Example QKC Joint Metrics
Ocontact = 120° —0—CM —— Kr max
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Fig. 10. Comparing performance metrics of QKCs.

CM = 0.41 plot in Fig. 10shows the effect 0fcontactOn our constraint
metric and coupling stiffness. Given this plot, we could justify
choosing a contact angle as low as 86th a CM = 0.10. It

is interesting to note that the trade-off between stiffness and
constraint is a favorable transaction at large contact angles.

4. Testing the MathCAD model

180

The theory developed iAppendix Awas implemented in
the MathCAD program provided iAppendix B The model
was checked by running the following tests:

240 300 e Imposed translation errors in taeirection produced only
(B) 270 netzforces.
e Imposed rotation errors about teaxis of the coupling
centroid produced onlgmoments.
Imposed displacements along one bisector of & t20-
pling (i.e. in they direction for the coupling irfrig. 4) did
capable of d.escrib.ing thg final mismatch has yet to be dev_el-. ?ﬁ;iﬁ%;ﬁgggﬁ fT’(r)Crgzr;trsé 0 whef is 90° (groove
oped_. We w.|II _cqntmue Wlth the mechanics-based constrqlnt becomes a flat).
|rrr:$r|lr(1: afh:"s ":’ m;_mlefdlately useful tas_atkgy _elerr:ﬁ nt(;n min- o \When given inputs that would make the ball loose contact
9 potential for over constraint during the design —iih the groove, the model detects this as a violation of
Process. a “constant contact” constraint (sé@pendix B “Verify
Constant Contact Condition”).

Fig. 9. Example QKC relieved groove (A) orientation and (B) stiffness
for 6, = 45°; Ocontact = 120°; K (N/um29%) = 1 x 1072; b = 1.07;
R. = 0.66 cm;z-preload= —60um. o

3.3. Making use of the constraint metric

In QKCs, the CM is unity fo¥contact= 180C° (gross over 5. Experimental results
constraint) and approaches 0@gniact— 0°. The desire to
emulate exact constraint couplings compels us to specify the A form of QKC has been used in precision automotive as-
lowest possible contact angle. Itis clear however, that one cansemblies to provide 2/@m repeatability in journal bearing
not specifyfcontact~ 0° and obtain a coupling with reason- assembliefl1-13] To meet unusual stiffness requirements,
able stiffness. The key is simultaneous consideration of the the joints were not placed in the orientations that best emulate
constraint metric and the coupling’s stiffness in directions of exact constraint couplings. These joints were also designed
interest. We will demonstrate this approach via a hypotheti- with large contact angle8dontact= 120>, CM = 0.41) toin-
cal application. crease coupling stiffness. Though this design serves as proof
Consider a 120coupling (grooves spaced at T2Qhat of sub-micron performance, itis not a good means to demon-
must resisz moments about its’ centroid. The design calls strate the best performance of QKCs.
for 125 Njum as the lowest value for the maximum radial An experiment was run to determine how repeatability of
stiffness of ajoint K., would be 195 Nam inFig. 9B). The a QKC would compare to that of an ideal kinematic coupling
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when the QKCs contact angle and joint orientations were setwear-in period. When this wear-in period is not practical,
to better emulate an ideal kinematic couplifigble 1lists one may use a preload which induces plastic deformation of
the characteristics for the joints used in the experiment. For the ball-groove surfaces. This has been shown to eliminate
the test, the contact angl@sontaci Was set to 60and thus this wear in period and eliminate the mismatch between ball
the constraint metric as read frdfng. 10is 0.10. This joint and groove patternfl2]. These results compare more fa-
design retains the low-cost attributes of the quasi-kinematic vorably with the sub-micron performance (0416) of well
jointusedin11-13]andis closer in constraint characteristics designed and lubricated kinematic couplifigys].
to ideal kinematic couplings and kinematic couplings with
flexureg[10,14]

The test coupling inFig. 11A was manufactured with 6. Coupling cost
less than 2fwm mismatch between the axis of symmetry of
any ball and mated groove. The results of repeatability tests The QKC elements used in the automotive assemblies and
with lubricated joints are provided iRig. 11B The results test coupling resemble the elements showiign 3A. These
show the coupling repeats in-plane to {iul# after an initial ball-groove sets cost approximately $1 when manufactured

0 10 20 30
Trial #

Fig. 11. QKC (A) test setup and (B) repeatability results&or= 32°; Ocontact= 60°; K (N/pm297) = 1 x 1072; b = 1.07; R, = 0.66 cm; 25 N preload.

Centroid Displacement [ um ]

(B)
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in volumes greater than 100,000 couplings per year. When 12L14 Steel True Stress-Strain Behavior
manufactured in volumes of less than several hundred per 600
year, a ball-groove set may cost $60. This is in contrast to - Intercept 80
several hundred dollars one could pay for high-performance el LR Tangentmoduius |70
kinematic couplings. In addition to the initial cost savings, b sl T
the reduced replacement cost for the balls and grooves can g 400 ] @
provide long-term cost savings. = d S0 2
§ 200 Tvoung’s modulus ! 40 i
) ) = 3190 GPa [27.4 Mpsi] Ed
7. Conclusionsand issuesfor further research 9 200 r30 =
(=]
This paper has provided the theory and a mechanics-based 100+ 20
metric that can be used by designers to minimize the degree j 10
of over constraint in QKCs. The theory used to model cou- 0% ‘ ‘ . . 0
pling stiffness has beenimplemented in MathCAD and tested. 000 001 002 003 004 005
Experimental results show that properly designed QKCs can Strain, ™ fum

provide precision alignment that is comparable to kinematic
couplings. Characteristics such as low-cost, ease of manufac-
ture, ability to form sealed joints and sub-micron performance
will make the coupling an enabling technology. This will
be particularly important for high-precision, high-volume as-
semblies in automotive, photonics, optical and other general
product assemblies. Subsequent research activities will in- . -
clude developing the means to estimate alignment errors duéA"l'l' Material characteristics

to the kinematic effects that result from mismatch between The Young S modulus and Poison’s ratio O.f the ball and
ball and groove patterns. groove materials are needed to model elastic corjfisjt

Modeling plastic deformation requires a tangent modulus and
stress value (yield stress) up to which the Young’s modulus
Acknowledgments may be usedrig. 12shows the values fitted to data from tests

. on leaded steel.
This work was sponsored by the Ford Motor Company. The

author wishes to thank them for their financial and technical p 1 2 Geometric characteristics

assistance. With the help ofFigs. 13 and 14we define important

geometry characteristics of QKCs. The first is the coupling

coordinate system, CCS, which is attached to the coupling

centroid of the grounded component (contains grooves). A
The purpose of this appendix is to provide the steps in a displaced coordinate system, DCS, is attached to the centroid

derivation of the kinematic and mechanics theories used toof the component that is displaced (contains balls) when

Fig. 12. Elastic—plastic behavior of 12L14 steel.

and arranged. We will assume common materials, shapes and
Isizes between the balls and grooves in the three joints.

Appendix A. Theory of quasi-kinematic couplings

model the performance characteristics of QKCs. coupling errors are present. When the coupling is mated with
a preload displacement and no error motions, the CCS and
Al. Sep 1: material and geometry characteristics DCS are coincident.

Our analysis will now utilize subscriptsandj to refer to

The first step is to identify the materials which the cou- specific joints { = 1 to 3 ) and contact arcg (= 1 to 6),
pling components are made of and how they will be shaped respectively. We define a joint coordinate system,;J&$

Rotation vector —:
E=¢l+e, jtek

Rotation point/

.. vector points to Si;

Icsi vector points to JCS;

Coupling Centroid and CCS

Fig. 13. Geometry characteristics of QKCs.
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Rotation vector: € =¢,i +&,j+ ¢,k

#+
A \RB RB f—sh

Contact Cone

(st Yer Zs)

it Joint Coordinate System (JCS))

Fig. 14. Geometry characteristics of quasi-kinematic coupling joints.

each joint. Each JGSneasures position in, 6,;, andz as and error displacement of a ball's; 8lative to the CCEq.
collectively shown byFigs. 13 and 14The z axis of each (A.1) expresses both possibilities:
JCS is perpendicular to the coupling plane and coincident

with the respective groove’s axis of symmetry. For each; JCS ESI + 5 — g =§c + & x ?ie

6ri = 0 when the projection of the joint’s vector on the preload, error;,

x=y plane of the CCS is parallel to theaxis of the CCS. 5 A

We define a contact cone as the surface which contains all Six

lines that run through the joint’s axis of symmetry and is = | dg,y J (A1)

tangent to the ball and groove surfaces at contact. The cone R

is characterized by the half-cone anglg, Other variables baiz K

that describe the size and location of coupling components ), developingEq. (A.1), we assume the coupling is built to

are defined by illustration iffigs. 13 and 14 limit rotation errors on the order of several microradians, thus
small-angle approximations are valid. We also assume that

A.2. Step 2: imposed error motions good coupling design practices have been followed so that the

coupled components can be considered as rigid bodies. The
Ball-groove reaction force (therefore coupling stiffness) rigid body assumption requires that the mated components
is a function of the compression of ball and groove material. and their interfaces with the balls and grooves are more than
This in turn depends on the error displacement of a ball’s far 10 times as stiff as the ball-groove contacts.
field point, S} in Figs. 14 and 15from its preloaded posi-
tion in the groove. The displacement of a ball's Sl can be ex- A.3. Sep 3: distance of approach between far field points

pressed as a combination of the translat®p) (f the DCS in ball-groove joints
relative to the CCS and rotatior ) of the displaced com-
ponent about a specified point (Y., ). This displacement The compression of ball and groove material may vary

can also be given as a combination of preload displacementabout the arc contact. For example, consider a sphere mated

Point S,
No-load SI; position :
Point SI; 6\)
Final SI, position 1 6,) \ Contact
q F/- ontact cone
6“( 3] 2.,

é_/No load contact point

<—Point G|(0,)
’ Right contact's far field point

o
7 R
X

Seated Contact point

Fig. 15. Positions and motions of ball and groove far field points.
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in a cone. If we displace the sphere into and along the QKC joint contact characteristics
cone’s axis of symmetry the compression about the resulting T 050
circular contact will be uniform. Subsequent displacement =
perpendicular to the axis of symmetry will lead to variations = ¢ 49
in compression about the contact. As reaction force dependsg’
upon the compression of material, we expectthe force perunit’s o.30
length of contact arc will vary about the ball-groove contact. £

A common metric used to describe material compression % 0.20
between contacting elements is the distance of appréach,
betweentwo farfield poinfd 2]. Fig. 15shows the distance of
approach (a8, (6,;)) between far field points, S&ndG;(6;;),
in a cross-section through a joint cutét. The distance of

. . : . — 50 100 150 200

approach in a cross-section is a function of the axda|,() Distance of Approach [pm]
and radial § , (6i)) displacement of the Stelative to the
JCS. Eq. (A.2) provides the axial and radial displacements
as a function of ball displacement.

= K=102N 507

b=1.07

o
o'

Normal forc
[S]
)
o
\O\OO\C\Q

Fig. 16. Contact load—displacemerfi; {/s. §,) behavior of a QKC joint
(6e =32; K (N/um?07) = 1 x 10°2; b = 1.07; R. = 0.66 cm).

[5r(9”) f } material and geometry. Let us consider an example which il-
88z k lustrates whaEq. (A.4)can tell us about a coupling’s perfor-
(‘%x + 8§,V)O'5 cospri — atards,,/dg,x)] mance. Iri_zlg. 16 we see the contgct beh_awor of_ajomt tha_lt
= s ! " i has experienced plastic deformation during the first mate, i.e.
Siz as needed to close a gap. In subsequent couple—uncouple cy-

(A.2) cles, the load—unload behavior of the contact follows the right

I d q he relationshi most curve as indicated. The instantaneous slope of this par-
UsingFig. 15andEq. (A.2)we can produce the relationship ticular curve increases with increasing preload. The geometry

for 8,,(6,;) given inEq. (A.3). of the ball can be “tuned” to achieve different value&atnd
N 5g.y b, thus controlling the magnitud&J of coupling stiffness and
8n (Bhi) = {—(&%M +3§iy)0‘5 COSphant0m<—’)) the non-linearity I¢) of the coupling’s force—displacement
Six behavior.
[9” _ atan(m)] cos6,) + by, sin(@c)} s To ensure that. contact is not lost between the bf\|| and
Six groove, we monitor a “constant contact” constraift,

(A.3) (6ri) < 0, along the arc of contact. If this is violated, the ball
and groove have separated over some portion of the contact
A.4. Sep 4: modeling interface forces as a function of 8, and our analysis may predict tensile contact forces. Clearly
this invalidates the model.
For solid ball-groove joints that experience elastic contact
deformation, one may use classical line contact solutions to A'5. Sep 5: reaction force on an arc contact
relate the distance of approach to the force per unit length of
contact,f ,, (6ri) [15,17} A more general, flexible approach We define a unit vectod(6,i) = 7 (6ri) x 1(6yi), that is tan-
is needed to model a wide range of contact situations. For in-gent to the contact arc and changes orientation &thT his
stance, consider situations with only elastic contact deforma- unit vector points into the page in the cross-section within
tion, with contact deformation in combination with integral
compliance, or with elastic and plastic contact deformation.
Practical applications that use one or more of these contact
situations were discussed 8ection 2.2Given the material
properties and geometry characteristics from step 1, we can
obtain the relationship betweqﬁn 6ri) andg , (6ri). This
can be accomplished using classical line contact solutions,
FEA, or other suitable analyses from which results can be fit
to the form ofEq. (A.4).

Arc contact Z

-

o Or) = K[8, (6] (A.4)

. . . R
In Eq. (A.4), K is a stiffness constant and the exponiein ¢
used to I’Eﬂ&Ct the rate of change in contact stiffness with Fig. 17. Contact arc and(6;), 1(6) coordinates for a cross-section at
changing ,, (6). BothK andb are functions of ball-groove ¢ = ¢;;.
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Fig. 17 In Eq. (A.5)we calculate the resultant force on the The reaction torque i&q. (A.10)is the sum of torques about
arc contact via a line integral along the arc of contact. the coupling centroid due to each ball-groove reaction force
R Stinal (F ) gnd moment armr(g,) between the CCS and the re-
Fj = f [£2 0RO + fil)IE) + f:Bi3@i]ds  spective ball's S
Sinitial 3
Bir fin - — —
~ [ L0036 R oy (A5)  TReactio™ X; ra; X Fi (A-10)
it initial =
The limits of the integral are defined by the ends of the arc A.6. Step 6: stiffness calculation
contact as illustrated ifrig. 5B. The subscript$, |, ands
differentiate between unit contact forces in the subscripted After specifying a preload displacement, the coupling stiff-
directions. It is good design practice to minimize friction ness in the direction of the error displacement is calculated
(ustatic < 0.10) at a coupling’s contacts to prevent tangential by dividing the change in reaction forces by the magnitude
stress build up. IEq. (A.5)we have assumed this practice in  of the error displacement:
QKC design and take the contribution of the tangential con- d(Reaction
tact forces (in thé ands directions) as negligible compared  kimposed= . (A.11)
I . d(Imposed error displacemgnt
to the contribution of the normal forces. If a rare applica-
tion requires the tangential components, they can be addedWVhen we apply linear displacements, the reaction is the force
to the analysis. Usindegs. (A.4) and (A.5)simplifies to given byEq. (A.9) When we apply rotation displacements,
Eqg. (A.6). the reaction is the torque given By. (A.10)

— Ojr final
Fi= [ K00 @R, 00 (a6

jrinitial

We now use the matrix ifEq. (A.7) to transform the unit
contact force into the frame of the CCS.

A(6r) —cos(6ri) coS6,) —Ssin(br) cosb,) sin(@,)
s@) | = —sin(6ri) cog6i) 0 X
1(6ri) cos6ri)sin@,)  sin@y)sin@.)  cogb.)

(A7)

O~ =

In combining Egs. (A.6) and (A.7)we obtainEq. (A.8)
which provides the total reaction force for contactjarc

Sy (R, K (8, (6r) [ ~COS(6ri) cOS0,)] by}
Fi= | Jyri (Re K(3,(60))"[~sin65) cos6)] deii)

Jyrmal (R, K (8,6 [sin@:)] d6ri)

rinitial

(A.8)

O D o

When the contact forces are summed over six contact arcs as . _ _
in Eq. (A.9), we obtain the reaction force between the mated Appendix B. Theory implemented in MathCAD
components. program

N 6 . The MathCAD program discussed Bection 4is ap-
FReactior= Z Fj (A-9) pended for inspection. The tool is available for download at
Jj=1 http://psdam.mit.edu


http://psdam.mit.edu
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QUASI KINEMATIC COUPLING STIFFNESS MODELING TOOL
CHANE ONLY VARIABLES IN SHADED BOXES, ALL OTHERS ARE CALCULATED VALUES:
LOCATION OF JOINTS IN X, Y. LOCATION OF COUPLING PLANE IN Z

Location of joint coordinate systems (JCSi) relative to an arbitrary coordinate system:
Works heet will calculate the p osition of the coupling centroid bas ed on this input.
JCS3 must be left most joint, JCS2 is right most joint, JCS1 has greater y value than JCS2 and JCS3

— 0.0000° in
X in
csi= |y in JCS; =] 3.0000- in
: 0-in
z-in

=2.5981 in 25981 in
IS = | -1.5000- in -1.5000- in
ics; cs)
2 Definition of joint positions &

Calculate position of coupling centroid (xcc, ycc, zcc) relative to arbitrary coordinate system:

Joint 1/\

ane
L

- eavarmereet

Joint 3

Joint 2

Definition of coupling triangle's bisector angles and side angles

349
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84:= atan2(]CSlo - 18,08y - JCSgl) 8s:= ata.nZ(JCSlo - 183,08y - JCSgJ
8¢ := ata.n2[JCS3o - JCS,,JC83, - JCSgl)

(84 + 8¢) 33r=%'[(95+36)*’;|

N |-

1
31:=§~(E4+ 95) 8y :=

[JCSgl -Icsy, - tan(63) - Jcs3 + tan(6) - Jcszo)

CC8y =
* tan(GQ) - tan(@g)

CCSy := tan(82) - (c:csx - JCS;O) + 108y, CCS; = ICSY,
Coupling Coordinate System Relative To Arbitrary Coordinate System:
CCSx 0.0000
CCSq := | CCSy CCSec = | 0.0000 |in
CcCS, 0.0000
Joint Coordinate System Positions Vectors Relative To Coupling Center:
1j¢sy = JC3p - CCS¢e 1J¢s2 = JCSp - CCS¢¢ 1J¢S3 = JCS3 - CCS¢¢
|zrest| =3in |zrcsz| =3in |zrcss| =3in

JOINT DIMENSIONS AND CONTACT CHARACTERISTICS

Rotation vector

E= sxf+sy3+s,k il-OSR,—
* A —sl

Mg _:-; e/ , Contact Cone
[ N\ ’//___

Rotation point relative to CCS
(XS' yS' ZE)

it Joint Coordinate System
(JCS)
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Half Cone Angle: Ball Center Radial Offset: Ball Radius: Contact Radius:
(shown negative in A-3)

8= 45 deg Ospy = -0.0752 - in Rp:=039%46-in| R:=Rp - cos(f) + Ospy

Tangential Stiffness/Resistance Coefficients:
set = 0 per assumptions in section 3.6 Groove Contact Angle

uT1:=0 B contact = 120 - deg

Pre-load Vector
relative to Coupling Coordinate System (CCS):

7 3
0 00002 |

—_—in

508

.| goomz
Spreload 508

00002

-10 ——

508

Error Translation Vector Rotation Vector and Point of Rotation
relative to Coupling Coordinate System (CCS):  relative to Coupling Coordinate Systern (CCS)

'u 00002 )
508 : -
0-1079) 0
g e e
Bertor 508 g:= (u 09| rad 5 .
00002 = (D T 5)
5.08
8 := Bpreload * Gemor
VARIABLES FOR CONTACT MECHANICS AND UNIT CONTACT FORCES
VARIABLES FOR NORMAL CONTACT FORCE VS. DISPLACEMENT CURVE FIT:
Joint 1 Joint 2 Joint 3
c1:=1+by c3:=1+ by c3:=1+ b3
Ky := 2043850 2L K = 2948850 i K3 = 2948850 2L
.01 .C1 .. Gl
in in in

END USER INPUT
PROCEED TO END OF SHEET FOR CALCULATED REACTION FORCE/TORQUE

351
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ANGLE LIMITS OF ARC CONTACTS

Arc Contact Angular Limits (used for line contact integration):

8,¢tinal Must ALWAYS be greater than in 8,52 and numeric values of both must be less than or equal
to 360 degrees.For example, consider when a contact crosses the x axis (See A-4)

- Incorrect assignment: &

- Correct assignment:

jrfinal

Birfinat = 60° and &

=60° and &, =300°

jrinitial —

- B0°

rinitial —

Fig. A4: Definition of contact angles [ i.e. foro; = 60° and 9, = - 60° ]

Joint 1, FIRST ARC, j=1:

Bt B » (7 - Bcontact)

Joint 1, SECOND ARC, j=2:
8 2yinitial = @ 1rinitial = 7

Joint 2, FIRST ARC, j=13:

B3rinitial = 62 + 2

Joint 2, SECOND ARC, j = 4:
8 drinitial = @3rinitial + 7

Joint 3, FIRST ARC, j = 5:

(7’ = ﬂ(:cn'ttav:t)
2

Joint 3, SECOND ARC, j = 6:
B 6rinitial = O Srinitial - 7

8 Srinitial = 63 +

(‘ n-48 c:mtact)

8 1xfinal = Plyinitial + Bcontact

8 2rfinal = B2rinitial * @contact

3xfinal = B3rintial * contact

8 4rfinal = Barinitial * Ocontact

6 5efinal = O5rinitial * &contact

O 6xfinal = Bérinitial + contact

& 1 vinitial = 120 deg

8 2rinitial = -60 deg

83rinitial = 0 deg

@ 4yinitial = 180 deg

8 Syinitial = 240 deg

O 6rinitial = 60 deg

& 11final = 240deg

& 2¢final = 60deg

&3¢final = 120deg

@ 4final = 300deg

8 Syfinal = 360deg

8 61final = 180deg
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CALCULATED POSITION CHANGE OF SYMMETRY INTERCEPTS

0 0 0
1511 = 1JCSL * 0 1512 = 15052 * 0 1513 1= CS3 * 0
g = 18] % 0TS 5 133 5
&1 =G+ ex g =&+ exe &3= &+ £x13g
0.00000 0.00000 0.00000
811 = | 0.00000 |in 812 = | 000000 |in 813 = | 0.00000 |in
-0.00039 -0.00039 -0.00039

IN-PLANE TRANSLATION OF SYMMETRY INTERCEPTS
1 1 1

2 2 2 2 2 2 2 2 2
Stmax = [(55110) + (&sn) ] Srmax = [[63120) + (1) ] - [[65130] + (813 ]
81 max = 0in Srmax = 0in Srmax = 0in
& 1max = atan2[65110, 6311l + 107 9. in] @ 2mmax = atan2[63120, 63121 + 107 9. in]
3rmax = atanZ[ 85130, 85131 +10° 2. in]
@ 11m0ax = 90 deg 821max = 90 deg 831max = 90 deg
NORMAL DISPLACEMENT FUNCTIONS
aln(ar) = =8 max cos(ﬂ, - elmnax) . cos(ﬂc) + 53112~ sin(&c)
ﬁgn(ﬂr) = =&ymax cos(ﬁr - sz,m() . cos(ﬁc) + 85122- sin(&c)
ﬁgn(er) = -83pmax cos(ﬁ, - 031-,@() . cos(ﬂc) + 83132- sin(@c)
FUNCTIONS FOR UNIT FORCE VS DISTANCE OF APPROACH

fut(82) =K1 - ([ouafen)])” falod =Ko ([omled)? fal6d = ks ([emled)
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BALL-GROOVE CONTACT ARC FORCES
Provides the force on groove surfaces, NOT the force on the ball surface(s)

JOINT 1, FIRST ARC, j=1:

J;em -fnl(ﬂr) : (-cos(er) . cos(ec) - UTs sin(ﬂx) + T cos(&,) ) Sin(ﬁ'c)) do,

Fj1 = Re- rm -fnl(e,) . (-si.n(@r) . cos(@c) + UTs" cos(ﬂ,) + BTl sin(@r) : sin(ﬂc)) déy

Jﬁhflml 'fnl(er) . (sin(@c) + p,'rl'cos(ﬁc)) diy

9 rinitial
JOINT 1, SECOND ARC, j=2:

Jem 'fnl(er) . (-cos(@r) . cos(&c) - BTs" sin(ﬂ,) + 0T cos(&r) . sin(ﬂc)) déy
Fj2:=Re: ij -fnl(e,) . (-sin(&r) . cos(ﬂc) + UTs " cos(B,) + U1 sin(@r) . sin(ﬂc)) déy

rm ~fat (8) - (sin(8c) + 11 cos(8c)) dby

Fil := Fjl + Fj2

JOINT 2, FIRST ARC, j=3:

J:m —fnz(ﬁr) . (—cos(er) : cos(@c) - UTs" sin(ﬂr) + uT1 cos(&r) . si.n(ac)) a8y

Fj3:= R rm -fng(ﬂr) : (-si.n(@,) : cos(ﬁc) + {Ts" cos(@x) + UT1 sin(@r) : sin(ﬂc)) déy

Fm -fng(ﬂr) : (sin(ec) + #Tl'cos(ec)) dfy
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JOINT 2, SECOND ARC, j = 4:

Fj4:=Rc~

r“m 'fn2(9r) : (—cos(ﬁr)~ cos(ﬁc) - UTs sin(@r) + UT1 cos(ﬁr) : sin(@c)) déy

J:fﬁml -fng(er) ' (-si.n(@x)- cos(Bc) + UTs cos(ﬂr) + #Tl'sm(er) . sin(&c)) a8,

JAM‘M -fng(ﬂr) . (sin(&c) + UT] cos(@c)) déy

B srinizial

Fip = Fj3+ Fig

JOINT 3, FIRST ARC, j=5:

Fj5:=l?c~

rm -fﬁ(ﬁr) : (-cos(ﬁr)- cos(ﬁc) - UTs sin(ﬁr) + UT1 cos(er) : sin(@c)) dé,

rm -f,g(ﬂ,) : (-si.n(@r)~ cos(@c) + UTs cos(ﬁr) + pi'rysin(@r) : sin(ec}) déy

Em -fng(ﬁr) . (sin(@c) + 0T cos(ec)) dfy

JOINT 3, FIRST ARC, j= 6

Fi6 := R

rm 'fn3(er) : (-cos(ﬁr)- cos(ﬁc) - UTs sin(@,) + UT1 cos(ﬁr) : sin(@c)) dé,

JAW -fn3(ﬁr) : (-sin(t?r)- cos(Bc) + UTs" cos(Er) + U1 sin(t?r) : sin(ec)) ddy

rm —fn3(8r) : (sin(ﬂc) + BT cos(&c)) dfy

Fiz:= Fjj + Fjé
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FORCE ON EACH ARC CONTACT AND BETWEEN BALL AND GROOVE

(-116) (116 ) (0 )
Fir=| 0 [wof Fp=| 0 |mf Fp=| 0 |wf
[ -140 [ -140 | | -279
{ 58 3\ 1_58\ { -0 3\
F3=| 100 [1of Fjs = | -100 |1of Fp=| 0 |if
[ -140) [ -140 | [ -279 |
(58 ) [ -58 ) (0]
Fjs = | -100 [0 Fig = | 100 |1of Fg=) 0 |lf

-279
[ -140, [ -140 ) "

REACTION FORCE AND TORQUE

FReaction:= Fj1 + Fj2 + Fj3 + Fja + Fj5 + Fjg

0
FReaction=| 0 |Ibf
-338

1
2 7
Fradial := [(FReactionO) + (FReaction,) ]

Fradial = 01bf

TReaction = 1511 * Fi1 + 1512 % Fip + 1513 % Fi3

0
TReaction = [U ] in - 1bf
0
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VERIFY CONSTANT CONTACT CONDITION
Should the any of these graphs cross,;(6,) = 0; the analysis is not valid

Distance of Approach [inches])

D

-

ot
wooo
w [=3
w ~)
— —
DI DI
w w
1 1
—

1
w
w
W
—
S,
w
1
t

1
o
o
=
—
i
w
I}
4

Or

Fig. A§: Constant Contact Assumption Monitor Plot

STIFFNESS CALCULATION

PROCEDURE (LINEARIZE FOR SMALL DISPLACEMENTS):
- IMPOSE PRELOAD ON THE JOINT, RECORD CORRESPONDING REACTION  (R,)

- IMPOSE AN ERRORA, (LINEAR OR ROTARY) &RECORD CORRESPONDING REACTION (R,)

k ~ absolute | Rx-R¢) / A |
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