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Abstract

A quasi-kinematic coupling (QKC) is a fixturing device that can be used to make low-cost assemblies with sub-micron precision and/or
sealing contact. Unlike kinematic couplings that form small-area contacts between mating balls in v-grooves, QKCs are based on arc contacts
formed by mating three balls with three axisymmetric grooves. Though a QKC is technically not an exact constraint coupling, proper design
of the contacts can produce a weakly over constrained coupling that emulates an exact constraint coupling. This paper covers the practical
design of QKCs and derives the theory that predicts QKC stiffness. A metric used to minimize over constraint in QKCs is presented.
Experimental results are provided to show that QKCs can provide repeatability (1/4�m) that is comparable to that of kinematic couplings.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Background

The need to improve performance has forced design-
ers to tighten alignment tolerances for next generation
assemblies. Where tens of microns were once sufficient,
nanometer/micron-level alignment tolerances are becoming
common. Examples can be found in automotive engines,
precision optics and photonic assemblies. Unfortunately, the
new alignment requirements are beyond the practical ca-
pability (∼5�m) of most low-cost alignment technologies.
The absence of a low-cost, sub-micron coupling has moti-
vated the development of a new class of coupling interface,
the quasi-kinematic coupling (QKC) (Fig. 1A).

1.2. The need for a new precision coupling

To understand the need for a new class of precision fixtures,
it is necessary to understand why the cost and performance
characteristics of current technologies are incompatible with
the dual requirements of low-cost and sub-micron precision.
We will first examine coupling types used in traditional
manufacturing. The most common type, the pinned joint, is
formed by mating pins from a first component into corre-
sponding holes or slots in a second component. Obtaining
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micron-level precision with these couplings is impractical
due to the micron-level tolerances that are required on pins,
holes and pin–hole patterns. Other well-known couplings
such as tapers, dove–tails and rail–slots would also require
micron-level tolerances. They also require expensive fin-
ishing operations to reduce the effect of surface finish on
alignment performance.

Let us now consider exact constraint couplings that are well
known in precision engineering, but less frequently used in
manufacturing. A common type of exact constraint coupling,
a kinematic coupling (seeFig. 1A), routinely provides better
than 1�m precision[1] alignment. Unfortunately, they fail to
satisfy three low-cost coupling requirements that are common
to many manufacturing processes:

1. Low-cost generation of fine surface finish: micron-level
kinematic couplings must use balls and grooves with
ground or polished surfaces[2]. Although balls with fine
surface finish are generally inexpensive, grooves with
fine surface finish are expensive. The finishing operations
used to prepare groove surfaces add considerable cost to
kinematic couplings.

2. Low-cost generation of alignment feature shape: making
v-grooves for kinematic couplings requires more time
and more complicated manufacturing processes than
required by present low-cost technologies, i.e. pinned
joints. For example, the ball and grooves are geomet-
rically more complex, with more tolerances than pins
and holes. Likewise, high-hardness balls and grooves are
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Fig. 1. Quasi-kinematic (A) and kinematic (B) couplings.

desired to withstand Hertzian contact stresses at the con-
tact regions[2]. These materials require additional effort
to harden and/or machine.

3. Low-cost means to form sealed interfaces: kinematic cou-
plings are not generally meant to form sealed interfaces
unless they are equipped with flexures[3,4] that add cost
and complexity.

Having covered common manufacturing couplings and
kinematic couplings, we now compare their cost and per-
formance.Fig. 2 shows a clear performance gap between
low-performance/low-cost couplings and high-performance/
moderate-cost couplings. Clearly, the gap must be addressed
if alignment is to be removed as the main obstacle to en-
abling low-cost, high-precision assemblies. The QKC was
designed to address this gap.

1.3. Contents

Section 2discusses the concept of the QKC and shows how
it satisfies the low-cost coupling requirements inSection 1.2.
Section 3provides the theory used to predict coupling stiff-
ness and provides a metric that can be used to minimize over

Fig. 2. Cost and precision of common couplings.

Fig. 3. Relieved groove (A) and relieved ball (B) QKC joint designs.

constraint in QKCs.Section 4discusses the theory as imple-
mented in a MathCAD program andSection 5provides ex-
perimental results that show QKCs can provide performance
comparable to exact constraint couplings. The implications
of coupling cost are covered inSection 6. Appendices are
provided to cover the details of the theory and the design tool.

2. Quasi-kinematic coupling concept

2.1. Similarities and differences between kinematic and
quasi-kinematic couplings

FromFig. 1, we see that kinematic and QKCs share similar
geometric characteristics. A kinematic coupling consists of
balls attached to a first component that mate with v-grooves in
a second component. The balls and grooves form small-area
contacts. QKCs consist of axisymmetric balls attached to a
first component that mate with axisymmetric grooves in a
second component. Here the balls and grooves form arc con-
tacts. Two examples of axisymmetric geometries that form
arc contacts are shown inFig. 3. The orientation of joints in
both couplings is also similar. To achieve good stability and
balanced stiffness, joints are oriented with ball–groove con-
tacts in symmetric positions and orientations with respect to
the bisectors of the coupling triangle[2].
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Fig. 4. Planar constraints in kinematic (left) and quasi-kinematic (right)
couplings.

The fundamental difference between kinematic couplings
and QKCs lies in the nature of the ball–groove contacts. Ideal
kinematic couplings establish six localized contacts that pro-
vide well-defined constraint in desired directions and permit
the freedom of motion in other directions. QKCs use ball and
groove geometries which are symmetric and thus easier to
manufacture, but depart from the constraint characteristics of
ideal kinematic couplings by using arc contacts rather then
small-area contacts. With careful design, QKCs can be made
to emulate the performance of kinematic couplings.

With this goal in mind, we must understand how QKC
constraints differ from ideal kinematic coupling constraints
(Fig. 4). In this figure, we see the projections of ball–groove
contact forces on the plane of coupling. The length of an ar-
row signifies the magnitude of a given constraint force.Fig. 4
(left) shows an ideal kinematic coupling which provides con-
straint between the balls and grooves in directions normal to
the bisectors of the coupling triangle. Freedom of motion is
permitted parallel to the bisectors. This is sufficient to achieve
stable, exact constraint coupling[2]. Fig. 4 (right) indicates
that the arc contacts of the QKC provide desired constraint
perpendicular to the bisector and some constraint along the
bisectors. Without freedom of motion parallel to the bisector,
the coupling will have some degree of over constraint.

The key to designing good QKCs is to minimize over con-
straint by minimizing the contact angle,θcontact. The contact
angle is defined by illustration inFig. 5. The half angle,θjr
will be used in the theoretical derivation inAppendix A. The
joint in Fig. 5represents joint 1 inFig. 4. Arrows represent-
ing the constraint per unit length of contact arc are shown on
the left sides ofFig. 5A and B. By inspection, we can see that
constraint contributions that are parallel to the angle bisectors
(in they direction) can be reduced by making the contact an-
gle smaller. This in turn reduces the degree of over constraint

Fig. 5. The link betweenθcontactand over constraint in QKCs with (A) small
θcontactand (B) largeθcontact.

the joint may impose on the coupling. Unfortunately, this re-
duces coupling stiffness. This stiffness-constraint trade-off
requires a quantitative metric to optimize coupling design.
We will improve our qualitative understanding with a quan-
titative metric inSection 3.2. For now we continue with a
qualitative assessment of QKC attributes.

2.2. QKCs that satisfy low-cost coupling requirements

We now assess the performance of QKCs with respect to
the low-cost coupling requirements given inSection 1.2.

1. Low-cost generation of fine surface finish: QKC balls can
be made from low-cost, polished spheres (i.e. bearings).
By applying sufficient mating force, one can burnish the
surface of the groove by pressing the harder, finer surface
of the ball into the groove surface. The result of this bur-
nishing process is shown inFig. 6. A successful burnish-
ing operation has two important requirements:

• A ball with polished (or ground if sufficient) surface
finish and Young’s modulus three to four times that of
the groove[5].

• Tangential sliding between the ball and groove surfaces
[6] during mating. Contact without tangential sliding
does not entirely remove asperities[7].

2. Low-cost generation of alignment feature shape: QKC
grooves are axisymmetric, thus they can be made in a
“plunge/drill” operation using a counter sink or form tool.
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Fig. 6. Surface trace of burnished QKC groove.

Groove reliefs can be cast, formed, milled, or drilled in
place. The tools and processes required to form the groove
seats are comparable to those required to make pinned
joints.

Fig. 7. Geometry of (A) compliant quasi-kinematic ball and (B) cross-section of a QKC joint.

3. Low-cost means to form sealed interfaces: it is possible
to enable sealing contact by integrating compliance into
a QKC joint. Using the joint design inFig. 7A and B, we
addz compliance via the hollow core and side undercut.
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Fig. 8. Stiffness modeling strategies for (A) quasi-kinematic and (B) kinematic couplings.

As shown inFig. 7B, a nesting force mates the balls and
grooves. By increasing the nesting force, we can deform
the ball–groove joints until the gap separating the coupled
components closes. Gaps of several hundred microns can
be closed if the ball–groove materials plastically deform
during the first mate. When the coupling is unloaded,
elastic recovery of the ball and groove materials restores
a portion of the gap between the mated components. Re-
taining a portion of the gap between components is nec-
essary to maintain the kinematic nature of the coupling
in subsequent mates.

3. Theory of quasi-kinematic couplings

3.1. Analysis method

When analyzing kinematic couplings, contact forces and
displacements may be assumed normal to the ball–groove
contact and modeled with “spring like” Hertzian point con-
tacts[2,8–10]. When analyzing arc contacts, the direction of
contact forces may not be assumed and the contacts cannot be
modeled as point contacts. An appropriate analysis method
is outlined inFig. 8A. We preload a coupling with a desired
displacement preload, impose an error displacement on this
“perfectly” mated state, calculate ball–groove contact forces
and then use these forces and the error displacements to cal-
culate coupling stiffness.

This is a significant departure from the method (Fig. 8B)
used to evaluate ideal kinematic coupling stiffness. A detailed
derivation of the kinematic and mechanics theories used to
model the performance and characteristics of QKCs is pro-
vided inAppendix A. This theory is used to develop the met-
rics and charts which appear in the following sub-sections
and the design tool provided inAppendix B.

3.2. Constraint metric

In Section 2.1we learned that the geometry of the arc
contacts leads to some degree of over constraint in QKCs.
There are a variety of other factors (for instance friction,
geometry, etc.) that may add to the degree of over constraint
in a precision coupling. Our interest here is in developing a

Table 1
Example QKC joint design characteristics

Design variable Value

Rc 0.66 cm (0.260 in.)
δz-preload −60�m (−0.002 in.)
K 1 × 10−2(N/�m2.07) (2948850(lb/in.2.07))
b 1.07
θcontact 120◦
θc 45◦

means to understand how the ball–groove arc contacts can
be designed to optimize the performance characteristics of
a quasi-kinematic joint. We will use the constraint metric as
defined inEq. (1).

CMi = Stiffness parallel to bisector

Stiffness perpendicular to bisector
= ki ||Bisector

ki⊥Bisector

(1)

Let us consider the relieved groove joint design described by
Fig. 9AandTable 1. The joint’s radial stiffness plot, shown in
Fig. 9B, was generated using the theory inAppendix A. We
can use numerical results from the theory, whereθcontact =
120◦ (or estimate values fromFig. 9B) to determine the con-
straint metric for this joint.

CM = k(90◦)
k(0◦)

∣∣∣∣
Fig.9

= 80 N/�m

195 N/�m
= 0.41 (2)

This ratio is useful as a metric for reducing the potential
for over constraint based on the joint’s mechanics (stiffness
and material) characteristics. A full estimate of the align-
ment error due to over constraint (δover constraint) would need
to consider kinematic characteristics, e.g. the post-plastically
deformed mismatch between the ball and groove patterns
(δfinal-mismatch). Current efforts are focused on developing a
means to relate the error and mismatch by means of the fol-
lowing equation.1

δover constraint= f(δfinal-mismatch× CM) (3)

Unfortunately, the mismatch between QKC joints depends on
(1) elastic contact deformation, (2) plastic deformation and
(3) multiple ball–groove mismatch tolerances. The theory

1 The author thanks Dr. Layton Hale for bringing this form of this equation
to his attention.
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Fig. 9. Example QKC relieved groove (A) orientation and (B) stiffness
for θc = 45◦; θcontact = 120◦; K (N/�m2.07) = 1 × 10−2; b = 1.07;
Rc = 0.66 cm;δz-preload= −60�m.

capable of describing the final mismatch has yet to be devel-
oped. We will continue with the mechanics-based constraint
metric as this is immediately useful as a key element in min-
imizing the potential for over constraint during the design
process.

3.3. Making use of the constraint metric

In QKCs, the CM is unity forθcontact= 180◦ (gross over
constraint) and approaches 0 asθcontact→ 0◦. The desire to
emulate exact constraint couplings compels us to specify the
lowest possible contact angle. It is clear however, that one can
not specifyθcontact∼ 0◦ and obtain a coupling with reason-
able stiffness. The key is simultaneous consideration of the
constraint metric and the coupling’s stiffness in directions of
interest. We will demonstrate this approach via a hypotheti-
cal application.

Consider a 120◦ coupling (grooves spaced at 120◦) that
must resistz moments about its’ centroid. The design calls
for 125 N/�m as the lowest value for the maximum radial
stiffness of a joint (Krmax would be 195 N/�m inFig. 9B). The

Fig. 10. Comparing performance metrics of QKCs.

plot in Fig. 10shows the effect ofθcontacton our constraint
metric and coupling stiffness. Given this plot, we could justify
choosing a contact angle as low as 60◦ with a CM = 0.10. It
is interesting to note that the trade-off between stiffness and
constraint is a favorable transaction at large contact angles.

4. Testing the MathCAD model

The theory developed inAppendix Awas implemented in
the MathCAD program provided inAppendix B. The model
was checked by running the following tests:

• Imposed translation errors in thez direction produced only
netz forces.

• Imposed rotation errors about thez axis of the coupling
centroid produced onlyz moments.

• Imposed displacements along one bisector of a 120◦ cou-
pling (i.e. in they direction for the coupling inFig. 4) did
not produce nety or z moments.

• Thex andy reaction forces are 0 whenθc is 90◦ (groove
becomes a flat).

• When given inputs that would make the ball loose contact
with the groove, the model detects this as a violation of
a “constant contact” constraint (seeAppendix B, “Verify
Constant Contact Condition”).

5. Experimental results

A form of QKC has been used in precision automotive as-
semblies to provide 2/3�m repeatability in journal bearing
assemblies[11–13]. To meet unusual stiffness requirements,
the joints were not placed in the orientations that best emulate
exact constraint couplings. These joints were also designed
with large contact angles (θcontact= 120◦, CM = 0.41) to in-
crease coupling stiffness. Though this design serves as proof
of sub-micron performance, it is not a good means to demon-
strate the best performance of QKCs.

An experiment was run to determine how repeatability of
a QKC would compare to that of an ideal kinematic coupling
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when the QKCs contact angle and joint orientations were set
to better emulate an ideal kinematic coupling.Table 1lists
the characteristics for the joints used in the experiment. For
the test, the contact angle,θcontact, was set to 60◦ and thus
the constraint metric as read fromFig. 10is 0.10. This joint
design retains the low-cost attributes of the quasi-kinematic
joint used in[11–13]and is closer in constraint characteristics
to ideal kinematic couplings and kinematic couplings with
flexures[10,14].

The test coupling inFig. 11A was manufactured with
less than 25�m mismatch between the axis of symmetry of
any ball and mated groove. The results of repeatability tests
with lubricated joints are provided inFig. 11B. The results
show the coupling repeats in-plane to 1/4�m after an initial

Fig. 11. QKC (A) test setup and (B) repeatability results forθc = 32◦; θcontact= 60◦; K (N/�m2.07) = 1 × 10−2; b = 1.07;Rc = 0.66 cm; 25 N preload.

wear-in period. When this wear-in period is not practical,
one may use a preload which induces plastic deformation of
the ball–groove surfaces. This has been shown to eliminate
this wear in period and eliminate the mismatch between ball
and groove patterns[12]. These results compare more fa-
vorably with the sub-micron performance (0.10�m) of well
designed and lubricated kinematic couplings[15].

6. Coupling cost

The QKC elements used in the automotive assemblies and
test coupling resemble the elements shown inFig. 3A. These
ball–groove sets cost approximately $1 when manufactured
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in volumes greater than 100,000 couplings per year. When
manufactured in volumes of less than several hundred per
year, a ball–groove set may cost $60. This is in contrast to
several hundred dollars one could pay for high-performance
kinematic couplings. In addition to the initial cost savings,
the reduced replacement cost for the balls and grooves can
provide long-term cost savings.

7. Conclusions and issues for further research

This paper has provided the theory and a mechanics-based
metric that can be used by designers to minimize the degree
of over constraint in QKCs. The theory used to model cou-
pling stiffness has been implemented in MathCAD and tested.
Experimental results show that properly designed QKCs can
provide precision alignment that is comparable to kinematic
couplings. Characteristics such as low-cost, ease of manufac-
ture, ability to form sealed joints and sub-micron performance
will make the coupling an enabling technology. This will
be particularly important for high-precision, high-volume as-
semblies in automotive, photonics, optical and other general
product assemblies. Subsequent research activities will in-
clude developing the means to estimate alignment errors due
to the kinematic effects that result from mismatch between
ball and groove patterns.
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Appendix A. Theory of quasi-kinematic couplings

The purpose of this appendix is to provide the steps in a
derivation of the kinematic and mechanics theories used to
model the performance characteristics of QKCs.

A.1. Step 1: material and geometry characteristics

The first step is to identify the materials which the cou-
pling components are made of and how they will be shaped

Fig. 13. Geometry characteristics of QKCs.

Fig. 12. Elastic–plastic behavior of 12L14 steel.

and arranged. We will assume common materials, shapes and
sizes between the balls and grooves in the three joints.

A.1.1. Material characteristics
The Young’s modulus and Poison’s ratio of the ball and

groove materials are needed to model elastic contact[16].
Modeling plastic deformation requires a tangent modulus and
stress value (yield stress) up to which the Young’s modulus
may be used.Fig. 12shows the values fitted to data from tests
on leaded steel.

A.1.2. Geometric characteristics
With the help ofFigs. 13 and 14, we define important

geometry characteristics of QKCs. The first is the coupling
coordinate system, CCS, which is attached to the coupling
centroid of the grounded component (contains grooves). A
displaced coordinate system, DCS, is attached to the centroid
of the component that is displaced (contains balls) when
coupling errors are present. When the coupling is mated with
a preload displacement and no error motions, the CCS and
DCS are coincident.

Our analysis will now utilize subscriptsi andj to refer to
specific joints (i = 1 to 3 ) and contact arcs (j = 1 to 6),
respectively. We define a joint coordinate system, JCSi, for
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Fig. 14. Geometry characteristics of quasi-kinematic coupling joints.

each joint. Each JCSi measures position inri, θri, andzi as
collectively shown byFigs. 13 and 14. The z axis of each
JCSi is perpendicular to the coupling plane and coincident
with the respective groove’s axis of symmetry. For each JCSi,
θri = 0 when the projection of the joint’sr vector on the
x–y plane of the CCS is parallel to thex axis of the CCS.
We define a contact cone as the surface which contains all
lines that run through the joint’s axis of symmetry and is
tangent to the ball and groove surfaces at contact. The cone
is characterized by the half-cone angle,θc. Other variables
that describe the size and location of coupling components
are defined by illustration inFigs. 13 and 14.

A.2. Step 2: imposed error motions

Ball–groove reaction force (therefore coupling stiffness)
is a function of the compression of ball and groove material.
This in turn depends on the error displacement of a ball’s far
field point, SIi in Figs. 14 and 15, from its preloaded posi-
tion in the groove. The displacement of a ball’s SI can be ex-
pressed as a combination of the translation (δ

⇀

c) of the DCS
relative to the CCS and rotation (ε

⇀
) of the displaced com-

ponent about a specified point (xε, yε, zε). This displacement
can also be given as a combination of preload displacement

Fig. 15. Positions and motions of ball and groove far field points.

and error displacement of a ball’s SIi relative to the CCS.Eq.
(A.1) expresses both possibilities:

⇀

δ SIi + ⇀

δ

∣∣∣∣
preloadSIi

= ⇀

δ

∣∣∣∣
errorSIi

=⇀

δ c + ⇀
ε × ⇀

r iε

=



δSIix î

δSIiy ĵ

δSIiz k̂


 (A.1)

In developingEq. (A.1), we assume the coupling is built to
limit rotation errors on the order of several microradians, thus
small-angle approximations are valid. We also assume that
good coupling design practices have been followed so that the
coupled components can be considered as rigid bodies. The
rigid body assumption requires that the mated components
and their interfaces with the balls and grooves are more than
10 times as stiff as the ball–groove contacts.

A.3. Step 3: distance of approach between far field points
in ball–groove joints

The compression of ball and groove material may vary
about the arc contact. For example, consider a sphere mated
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in a cone. If we displace the sphere into and along the
cone’s axis of symmetry the compression about the resulting
circular contact will be uniform. Subsequent displacement
perpendicular to the axis of symmetry will lead to variations
in compression about the contact. As reaction force depends
upon the compression of material, we expect the force per unit
length of contact arc will vary about the ball–groove contact.

A common metric used to describe material compression
between contacting elements is the distance of approach,δn,
between two far field points[12].Fig. 15shows the distance of
approach (asδn(θri)) between far field points, SIi andGi(θri),
in a cross-section through a joint cut atθri. The distance of
approach in a cross-section is a function of the axial (δ

⇀

SIiz)
and radial (δ

⇀

r (θri)) displacement of the SIi relative to the
JCSi. Eq. (A.2)provides the axial and radial displacements
as a function of ball displacement.[
δr(θri) r̂

δSIiz k̂

]

=
[
(δ2SIix

+ δ2SIiy
)0.5 cos[θri − atan(δSIiy/δSIix)] r̂

δSIiz k̂

]

(A.2)

UsingFig. 15andEq. (A.2)we can produce the relationship
for δn(θri) given inEq. (A.3).

⇀

δ n (θri) =
{
−(δ2SIix + δ2SIiy)

0.5 cosphantom

(
δSIiy

δSIix

)
[
θri − atan

(
δSIiy

δSIix

)]
cos(θc)+ δSIiz sin(θc)

}
n̂

(A.3)

A.4. Step 4: modeling interface forces as a function of δn

For solid ball–groove joints that experience elastic contact
deformation, one may use classical line contact solutions to
relate the distance of approach to the force per unit length of
contact,f

⇀

n (θri) [15,17]. A more general, flexible approach
is needed to model a wide range of contact situations. For in-
stance, consider situations with only elastic contact deforma-
tion, with contact deformation in combination with integral
compliance, or with elastic and plastic contact deformation.
Practical applications that use one or more of these contact
situations were discussed inSection 2.2. Given the material
properties and geometry characteristics from step 1, we can
obtain the relationship betweenf

⇀

n (θri) andδ
⇀

n (θri). This
can be accomplished using classical line contact solutions,
FEA, or other suitable analyses from which results can be fit
to the form ofEq. (A.4).

⇀

f n (θri) = K[δn(θri)]
bn̂ (A.4)

In Eq. (A.4), K is a stiffness constant and the exponentb is
used to reflect the rate of change in contact stiffness with
changingδ

⇀

n (θri). BothK andb are functions of ball–groove

Fig. 16. Contact load–displacement (fn vs. δn) behavior of a QKC joint
(θc = 32◦; K (N/�m2.07) = 1 × 10−2; b = 1.07;Rc = 0.66 cm).

material and geometry. Let us consider an example which il-
lustrates whatEq. (A.4)can tell us about a coupling’s perfor-
mance. InFig. 16, we see the contact behavior of a joint that
has experienced plastic deformation during the first mate, i.e.
as needed to close a gap. In subsequent couple–uncouple cy-
cles, the load–unload behavior of the contact follows the right
most curve as indicated. The instantaneous slope of this par-
ticular curve increases with increasing preload. The geometry
of the ball can be “tuned” to achieve different values ofK and
b, thus controlling the magnitude (K) of coupling stiffness and
the non-linearity (b) of the coupling’s force–displacement
behavior.

To ensure that contact is not lost between the ball and
groove, we monitor a “constant contact” constraint,δ

⇀

n

(θri) ≤ 0, along the arc of contact. If this is violated, the ball
and groove have separated over some portion of the contact
and our analysis may predict tensile contact forces. Clearly
this invalidates the model.

A.5. Step 5: reaction force on an arc contact

We define a unit vector,̂s(θri) = n̂(θri)× l̂(θri), that is tan-
gent to the contact arc and changes orientation withθri. This
unit vector points into the page in the cross-section within

Fig. 17. Contact arc and̂n(θri), l̂(θri) coordinates for a cross-section at
θ = θri.
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Fig. 17. In Eq. (A.5)we calculate the resultant force on the
arc contact via a line integral along the arc of contact.

⇀

Fj =
∫ sfinal

sinitial

[fn(θri)n̂(θri)+ fl(θri)l̂(θri)+ fs(θri)ŝ(θri)] ds

≈
∫ θjr final

θjr initial

[fn(θr)n̂(θri)]Rc dθri (A.5)

The limits of the integral are defined by the ends of the arc
contact as illustrated inFig. 5B. The subscriptsn, l, ands
differentiate between unit contact forces in the subscripted
directions. It is good design practice to minimize friction
(µstatic< 0.10) at a coupling’s contacts to prevent tangential
stress build up. InEq. (A.5)we have assumed this practice in
QKC design and take the contribution of the tangential con-
tact forces (in thel ands directions) as negligible compared
to the contribution of the normal forces. If a rare applica-
tion requires the tangential components, they can be added
to the analysis. UsingEqs. (A.4) and (A.5)simplifies to
Eq. (A.6).

⇀

Fj=
∫ θjr final

θjr initial

{K[δn(θri)]
bn̂(θri)}Rc dθri (A.6)

We now use the matrix inEq. (A.7) to transform the unit
contact force into the frame of the CCS.

n̂(θri)

ŝ(θri)

l̂(θri)


 =




−cos(θri) cos(θc) −sin(θri) cos(θc) sin(θc)

−sin(θri) cos(θri) 0

cos(θri) sin(θc) sin(θri) sin(θc) cos(θc)


 ×



î

ĵ

k̂


 (A.7)

In combining Eqs. (A.6) and (A.7)we obtainEq. (A.8)
which provides the total reaction force for contact arcj:

⇀

Fj=




∫ θjr final
θjr initial

{Rc K(δn(θri))
b[−cos(θri) cos(θc)] dθri} î∫ θjr final

θjr initial
{Rc K(δn(θri))

b[−sin(θri) cos(θc)] dθri} ĵ∫ θjr final
θjr initial

{Rc K(δn(θri))
b[sin(θc)] dθri} k̂


 (A.8)

When the contact forces are summed over six contact arcs as
in Eq. (A.9), we obtain the reaction force between the mated
components.

⇀

FReaction=
6∑
j=1

⇀

Fj (A.9)

The reaction torque inEq. (A.10)is the sum of torques about
the coupling centroid due to each ball–groove reaction force
(F
⇀

i) and moment arm (r
⇀

SIi ) between the CCS and the re-
spective ball’s SIi.

⇀

T Reaction=
3∑
i=1

⇀
r SIi × ⇀

Fi (A.10)

A.6. Step 6: stiffness calculation

After specifying a preload displacement, the coupling stiff-
ness in the direction of the error displacement is calculated
by dividing the change in reaction forces by the magnitude
of the error displacement:

kimposed= d(Reaction)

d(Imposed error displacement)
(A.11)

When we apply linear displacements, the reaction is the force
given byEq. (A.9). When we apply rotation displacements,
the reaction is the torque given byEq. (A.10).

Appendix B. Theory implemented in MathCAD
program

The MathCAD program discussed inSection 4is ap-
pended for inspection. The tool is available for download at
http://psdam.mit.edu.

http://psdam.mit.edu
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