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Thermal  Stress in Bonded  Joints 

This paper considers the stress distributions in bonded materials  induced by  differential expansion or contraction  of these 
materials. The analytical approach is similar to the lap joint theories attributed  to Volkersen and expanded by  Goland 
and Reissner. Several simple and  typical  analytical models are presented  to bring out the relative importance of dlrerent 
geometrical and material parameters and to  give  some insight into different modes in which the bonds might fail. 

Introduction 
The reliability of any  electronic device  depends  to a great 
extent  on  its  construction.  The  structural design and fab- 
rication dictate  the  amount of power dissipation, the num- 
ber of thermal  cycles,  and  the  intensity of mechanical im- 
pact and vibration which the device can  sustain  without 
degrading  its  performance. 

Since electronic  devices are  characterized by hetero- 
geneous  materials  joined together by different methods, 
including adhesives  and solder, a key consideration in the 
packaging of the devices is that  the bonds  between the 
different materials are capable of sustaining the mechani- 
cal and thermal stresses  over  the  service life of the  de- 
vice. A general  discussion of the commonly  used  materi- 
als and  their fabrication  and assembly  processes may be 
found in [ 11. 

The reliability of electronic devices and their packaging 
considerations  are discussed in many  technical journals 
and  monographs. Some  recent review  papers are found in 
[2]. This paper  considers the stresses induced in bonded 
materials  by differential expansion  or contraction of these 
materials. A number of simplifying assumptions made in 
the  present  treatment  are  described  later in this paper. 
These  are believed to be good approximations leading to 
valid results provided that  the  elastic modulus of the  ad- 
herend is about ten (or more)  times  that of the  adhesive 
and provided that  the thickness ratio of adherend  to  adhe- 
sive also is about ten  (or  more). The guiding philosophy 

behind this paper is to  keep  the  treatment simple. Then, 
any or all parameters can be varied  through a reasonable 
range easily,  and considerable  insight  can be obtained as 
to  the effects of various  physical parameters on the  ther- 
mal stresses. 

This paper  presents several  simple  and  typical  analyti- 
cal models to bring out the relative  importance of dif- 
ferent  geometrical  and  material parameters.  It  also gives 
some insight into different modes in which the  bonds 
might fail. 

While one usually associates  thermal  stress with the 
stresses  that  arise from high temperature service  condi- 
tions on heterogeneous  materials with dissimilar thermal 
expansion coefficients, such  stresses can  also  be in- 
troduced during the fabrication processes. One such  ex- 
ample is the internal stress condition produced in the sili- 
con oxide film during the  etching, diffusion, and metal- 
lization processes. Many films show “intrinsic” stresses 
which greatly exceed  the calculated  values for  thermal 
stresses [3]. 

Taylor and Yuan [4] studied  fracture failure in some 
semiconductor  devices, and  developed  mathematical 
analysis for thermal stress  concentrations in the silicon 
bond area to explain the  observed  fracture.  The analytical 
approach  adopted by Taylor  and Yuan has its roots in the 
lap joint  theory commonly attributed  to Volkersen [ 5 ] .  
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In  that  theory  the joint (adhesive, solder) was treated  as 
a  distribution of shear springs  similar to  the well-known 
Winkler foundation  theory.  The  joined materials (adher- 
ends) were treated  as beams in tension.  The Volkersen 
lap joint  theory has  been further  expanded and  improved 
in the now classic paper by Goland  and Reissner [6]. 
With the widespread  use of adhesives  today, it is not sur- 
prising that many of the later  developments  are motivated 
by calculation of stress in adhesive bonds. Fortunately, 
the mathematical  analyses are usually applicable to  other 
bond materials, given the assumption  that  the  joint mate- 
rial (adhesive) is less stiff than the  joined materials (adher- 
end). 

Further development of the  adhesive  joint analysis  may 
be found in the survey  articles  by  Benson [7] and in many 
monographs [8-121. There  have been many publications 
on  the subject  since the work of Goland and  Reissner,  and 
an  exhaustive bibliography would be outside  the  scope of 
this paper. Some recent  contributions may be  found in 
[13, 141. The  present  paper  expands from the work of 
Taylor and Yuan to  other physical  conditions  and  geome- 
tries. 

Process engineers and  adhesive  scientists often  employ 
peel tests  to  assess  the  strength of the bond. To relate the 
measured peel force  to  the maximum stresses in the peel- 
ing process,  the peel adhesion theories developed by 
Spies [15], Bikerman [16, 171, and Kaelble [18, 191 are 
used.  These theories are  also  founded upon the Winkler 
type  foundation  theory for  the  joint material. Sometimes 
a peel test may be  used for obtaining a bond strength to be 
used as a criterion of failure in the thermal stress calcu- 
lations of the  present  paper.  However, if this is done,  care 
should be taken  to  ensure  that  the basic  assumptions  used 
in the  theory for obtaining bond  strength  from a measured 
peel force  are compatible with the  assumptions used for 
computing the bond stress in the  actual  device by the 
methods of this paper. 

The first case considered in this paper is three  elastic 
layers bonded together  at two  interfaces. The layers are 
assumed to remain straight as in Volkersen's  theory.  The 
two-layer  elastic  solution is also given and is found to re- 
duce  to  Taylor and Yuan's result  when one  layer is as- 
sumed to  be rigid. The  analyses  for circular  plates bonded 
together are  also studied. 

It is shown that in the limit of radius-to-thickness ratio 
approaching infinity, the previous  solution  can be  recov- 
ered. Finally, the two  elastic layers  are allowed to bend 
freely,  such  as in flexible printed  circuits. It is shown that 
the analysis  follows  naturally  from  Goland  and Reissner's 
work.  It is particularly  interesting to find that  stress con- 180 
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centration in shear and tension  occurs simultaneously, 
and  debonding would be mixed mode in character. 

Analysis 

Three elastic layers with  two bonded  joints (adhesive, 
solder) 
The  assumptions inherent in the Volkerson's  lap joint 
analysis are adopted here with the addition of thermal 
consideration. The  three  layers being bonded together are 
assumed to be of uniform thicknesses ( t , ,   t , ,   t3)  and with 
elastic moduli ( E , ,  E,,  E3),  and  thermal expansion coeffi- 
cients (a,, a,, a,). The  joint  between layers 1 and  2 will 
have  thickness 7) and shear modulus G. The  joint  be- 
tween layers l and 3 will have  thickness 7' and  shear 
modulus G'. 

As  shown in Fig. 1 ,  the  forces in the elastic  layers are 
assumed  to be uniform through the thickness (F,, F,, F J .  
The bonded joints  exert  shear  stress r between layers 1 
and 2, and  shear  stress 7' between  layers 1 and 3. 

At some  temperature To the  joints  are  stress  free. What 
will be the  shear  stresses T and r' and  forces F, ,  F,, F, 
with  a temperature change of T? 

Considering the equilibrium of forces in the x direction 
(see Fig. I), the following three  equations  are derived: 

- + r " r = O .  dF1 
dx 

3 
dx 

+ r = o ,  

3 ,  
- 7  = o .  

dx 

The  stress-strain-temperature  equations of the  three lay- 
ers  are 

du F 3-3 - 

dx Est3 
+ a,T 

And for  the bonded joint materials  under shear,  the 
stress-strain  relationships are 
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The solutions of the previous set of eight equations  are 
straightforward. The general  solution for 7 and 7' is found 
to be 

r = A ,  sinh p,x + A ,  sinh &x + A ,  cosh p,x 

+ A ,  cosh &x, 

r' = A,k,  sinh p,x + A,k, sinh p,x + A3k, cosh p , x  

+ A4k4 cosh &x. (4) 

Here *p ,  and *& are roots of the equation 

and the  constants A i ,  ki (i = 1,  4) are to be determined by 
boundary  conditions. Let us impose  the boundary  condi- 
tions that  the bond areas  are completely filled up as in 
Fig. I ,  and  that  the  ends x = are  free.  Four of the 
constants  are found to be zero: 

Write the  shear  stresses as 

sinh p,x sinh p,x 

cosh p,e cosh p,e ' 
r = C 1 -  + c, ~ 

Z Z  

sinh p,x 
cosh p,f ' + C,k, 

and D l ,  D,, D, are  constants defined by 

E1f1[E3t3(a3 - a,) + E2f2(a2 - 5 ) l T  

Eltl + E,', + E3f3 
D l  = 

It is clear, merely from the  general form of the  equations 
(6) and (7), that  the  shear  stresses r and r' vary from zero 
at  the middle symmetric  point to a maximum at  the edge 
x = e. When the  layer's length-to-joint  thickness ratio is 
very  large, the  stresses  at  the  edge  approach 

r ( x  = e) = c, + c,, 
r'(x = f )  = C,k, + C,k,. (11) 
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F " Y 
" 

F ,  - I 1 - F ,  +;\F, 

-T - 
F ,  - r-1 - F , + A F 2  

(b) 

Figure 1 (a)  Notations  on  three  joined  layers. (b) Force  balance 
on three  joined  layers  for a section dx. 

These  are  the  expressions  for  the maximum shear 
stresses  at  the edge of the  two bonded  joints. Discussion 
of numerical  examples will be reserved  for a later  section. 

Two elastic  layers  joined  by  one  bonded joint 
The analysis  follows  the same  steps  as before. In the  case 
of a  completely filled joint,  the  shear  stress is given by 

(a,  - a,)TG sinh px 
r =  

pq cosh 

where 

Physically the  shear  stress is zero  at  the  center,  and in- 
creases gradually to a  maximum at  the  free edge. The 
value of this maximum stress is 

Often it may be sufficient to  take tanh p f  - I and  use the 
estimate 
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I I ,  

/=-x 
+ q ,  

Figure 2 Two circular sheets bonded together. 

If p f  could  be  small,  then the  shear  stress would ap- 
proach the usual simplified estimate of 

r =  (16) 

since (tanh p f ) / p e  would approach  unity.  However, with 
physically realistic parameter, /3f is never small. There- 
fore  the usual simplified estimate  [Eq. (16)] is often  a poor 
approximation. 

(a1 - a p c  

77 

Two circular sheets bonded together 
The foregoing  analysis has been  one-dimensional. It  was 
considered useful to study the  axisymmetric situation of 
two circular  sheets bonded together  as shown in Fig. 2. 
The analytical  development is given in Appendix  A.  As 
may be expected  the solution is in the form of modified 
Bessel functions. In the  case  where  the bond area be- 
tween the  two  sheets is completely filled, the  shear  stress 
is zero at the  center of the  circle, and gradually rises to 
the  free edge with increasing r according  to  the  formula 
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The maximum stress  occurs  at r = R ,  and is equal  to 

Two elastic layers with one joint allowing free flexure 
When two  layers expand unequally, but are  bonded  to- 
gether,  there is the natural tendency  for the  composite to 
bend. This is the basic  theory  behind a bimetallic thermo- 
stat analyzed by S. Timoshenko [20] many years  ago. 
Timoshenko assumed  that the  two  layers behave like 
beams capable of axial and  bending deformations,  and 
that  there is no slip at  the  interface between the  two lay- 
ers.  In this  section we consider  that  the two layers  are 
separated by an amount 77 and  are filled with a material 
capable of deforming  under shear and tension. This is es- 
sentially the  approach  taken by Goland and  Reissner [6], 
who dealt  with  externally  applied forces  rather  than  the 
internally  generated  thermal stress. 

Figure 3 shows  the  forces  and moments  acting on an 
elementary section of the bonded  composite. Equilibrium 
of moments requires that 

Equilibrium of horizontal forces  requires that 

And for equilibrium of vertical forces 

dV2 __ + uo = 0. 
dX 
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Figure 3 (a)  Notations on joined  layers. (b) Force  and moment  diagrams on a section dx. ( c )  Positive sense of displacement com- 
ponents. 

The next step is to relate moments and forces  to dis- 
placements. From  elementary  bending theories, 

Di = 
Eit: 

12(1 - 7:) '  

and 

Finally, the  stress in the  joint  material is assumed to de- 
pend on the displacements (ul,  u,) and (",, u,), according 
to  the  equations 

Here G, and E, are  shear modulus  and Young's modulus 
of the  joint material. 

Now the  stress analysis problem is fully formulated. 
With the  appropriate boundary conditions,  the  analysis  is 
complete. An inventory of Eqs. (21) to (29) discloses that 
there  are twelve  such equations.  The  above  set of equa- 
tions can be  reduced to a single sixth-order differential 
equation for u,,. A solution of the differential equation  can 
be  found  containing six constants of integration  permit- 
ting the six boundary  conditions to  be satisfied.  This 
sixth-order differential equation is 

d6u, G,c d4u, E b d2u G,E,(bc - u')u, - +OL- 
dx6 r )  dx4 r)  dx' 77' - 0 ,  

(30) 
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where the  constants a, b ,  and c are defined as 

(33) 

The solution of Eq. (30) is related to  the roots of the alge- 
braic equation 

It can be shown  that the  roots  to  the  above equation al- 
ways  contain one pair of complex conjugates and  one 
positive real root.  In  other  words  the solution  must  be in 
the form 

u,, = A ,  cosh p,x + A ,  sinh p1x + A,  cosh P,x cos &x 

+ A,  sinh p,x cos &x 

+ A ,  sinh pHx sin &x + A,  cosh P,x sin &x. (34) 

In general,  there  are six boundary conditions from which 
to determine A ,  to A,. But symmetry about  the plane 
x = 0 would reduce  the solution to 

u,, = A ,  cosh /3,x + A,  cosh pHx cos &x 

+ A ,  sinh pHx sin &x. (35) 

The  constants A , ,   A , ,  and A,  are completely  determined 
by the  boundary  conditions that at the edge x = e,  mo- 
ments, horizontal forces,  and  shear  forces vanish. Also 
the shear  stress is given by 

T, = C, sinh p,x + C, sinh P,x cos pvx 

+ C, cosh p,x sin &x. (36) 

Details of expressions  for A , ,  A, ,  A, ,  and C,, C,, C, are 
given in Appendix B. 183 
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Numerical  examples  and  discussion 

l o  5 10 15 20 25 

Distance from center (mm) 

Figure 4 Shear  stress distribution over width of joint. 

l o  5 10 15 20 25 

Distance from center (mm) 

Figure 5 Force induced by thermal  expansion. 

Y" I 

/o 5 10 15 20 25 

Distancefromcenter (mm) 

Figure 6 Shear  stress distribution over width of joint for four 
184 joint  thicknesses. 
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Two layers  without  bending 
Numerical  examples are  shown  for  the following material 
and  geometrical parameters  for a 100°C rise in temper- 
ature: 

Young's  modulus E 1 .I7 X 10"Pa 2.75 x 10" Pa 

Thickness t 1.57 mm  1.52  mm 

Thickness 
exp. coef.  1.6 x 10-5/0C 6.5 x 10-6/0C 

Shear modulus 
of joint material 1.23 x IO9 Pa 

Joint thickness 0.051 mm 

Joint width 51  mm 

Figure 4 shows  the shear  stress distribution in the  joint. 
As may be  expected,  the maximum shear  stress  occurs  at 
the edge and is found to  be 5.3 X lo7 Pa. The  associated 
shear strain is 0.043. Often one  assumes  the  shear modu- 
lus of the  joint material to be  very  soft  compared to  the 
joined  material; and the strain and  stress calculated under 
that  assumption are 0.475 and 5.85 X IO8 Pa, more than 
ten  times  larger  than the elastic  solution. Also, Eq. (15) 
gives a very accurate  estimate (0.5% low) of the  actual 
shear  stress. Figure 5 shows the tensile force in the  layer 
and how it drops  to  zero  near  the  edge of the  joint. This 
calculation  illustrates that, in this situation, about 60%  of 
the  joint material in the  center is not really structurally 
effective. Only the section from 15  mm outward is ef- 
fectively stressed. 

Figure  6  shows the different  maximum shear  stresses 
where  the  joint thicknesses are  taken  to be 0.051, 0.076, 
0.127, and 0.178 mm. It illustrates that while the thick- 
ness may change from 0.051  mm to 0.178 mm,  an in- 
crease of 3.5 times,  the  shear  stress  decreases by a factor 
of 1.8 only. While this may be expected from  examination 
of Eqs. (13), (14), and (15), it is not immediately obvious 
from intuition. 

Three  layers  without  bending 
It is difficult to  draw any  general  conclusion  from the 
three-layer  case  because so many  physical parameters, 
thicknesses, expansion  coefficients,  and  elastic moduli 
could all be varying. Consider the previous case of two 
layers illustrated in Figs. 4 and 5. Let us put another  layer 
of material in between with modulus E = 2.62 X 10" Pa 
and thickness 0.51 mm. The  other  joint  thickness and 
modulus remain the  same  as  before.  The thermal expan- 
sion coefficient is taken as 3 X 10-6/oC,  less than  the  other 
two coefficients. The  shear  stress distributions are  shown 
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Figure 7 Shear  stress  distributions  over width of joints. 

in Fig. 7.  The solid line may be compared  to Fig. 4,  show- 
ing that  there is a slight increase in maximum shear  stress. 
The  dotted line shows  the  shear  stress distribution in the 
joint between the  two materials with expansion coeffi- 
cients 3.0 x and  6.5 X The maximum stress is 
not at  the edge.  This  example  illustrates  that when there 
are  three  layers, simple physical  intuitive  ideas may be 
useful but not always  applicable. 

Two layers allowing free flexure 
For illustrative purposes numerical results  are  presented 
for  the  case of different layers allowing free flexure for the 
same material  properties  used in the previous  two-layer 
case without bending. 

Figures  8  and 9 show the  tensile and  shear  stress distri- 
butions in plane  strain for  two different thicknesses.  The 
joint  material is given by E = 3.45 x IO9, G = 1.23 X 

lo9 Pa.  Note  that  the  thicker  joint  produces  the  lower 
stress. Particularly of note is the  characteristic  that  the 
stresses remain almost zero for most of the  joint  length, 
except in the vicinity of the edge,  where  the  stress rises 
dramatically. Also,  the tensile stress changes from nega- 
tive to positive a small distance in from the edge; but  the 
shear  stress  does not change  sign. This is a  common char- 
acteristic of this  problem. Finally, it is noteworthy  that 
the  maximum shear  stresses  for  the  two  cases  are 4 X lo7 
and 2.56 X IO7 Pa, respectively. The corresponding shear 
stresses  for plane stress  are 2.75 X lo7 and 1.75 X lo7 Pa, 
respectively. A simple stress  estimate by using differ- 
ential  thermal  expansion  divided by joint thickness would 
give a gross  overestimate of 5.85 X 10' and 2.34 X IO* Pa, 
respectively. 

IBM 1. RES.  DEVELOP. 0 VOL. 23 NO. 2 MARCH 1979 

- 7 = 0.05 mm 

-. -.- 9 = 0 . 1 3 m m  40 MPa - 

listance from  center (x/P) 

Figure 8 Shear  stress  distribution in joint with flexure. 
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Figure 9 Tensile  stress  distribution in joint with  flexure. 185 
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Layer  thickness, f 2  (mm) 

Figure 10 Effect of variation of layer thickness t,. 

Figure 10 shows the  effects of varying the  thickness of 
layer 2 from 0.76 to 1.52 mm. The tensile stress at the  free 
edge changes from  positive to  negative, while the  shear 
stress  increases slightly. If the  joint material is weak in 
tension, a  condition  often referred  to  as peel stress,  keep- 
ing this stress component negative may be desirable. 

The maximum shear  stress  computed from Eq. (14) 
turns  out  to be  almost one half the value for this case 
(plane stress). This  has  been found characteristically so 
for a number of other  cases.  It  is concluded that  free 
bending relaxes  shear  stresses  at  the edge. 

A calculation for  the  forces  and moments in the  two 
layers in these numerical examples  checks with the  re- 
sults  given by Timoshenko's well-known bimetallic ther- 
mostat  solution.  This indicates that  for  the physical pa- 
rameters used in this paper  the numerical results  for 
forces  and  moments  agree with  this  analysis  extremely 

well. In  other  words, if one  is only interested in moment 
and deflection  but  not the  joint  stresses,  Timoshenko's 
analysis is still applicable. 

Summary 
This paper provides  some  insight and tools to  understand 
the  stress distribution  in  a bonded  joint induced by ther- 
mal expansion of dissimilar materials. The maximum 
shear  stress always occurs  at  the  edge of the  joint. When 
flexure is allowed, significant tensile stress may occur. 
However,  the flexure does  decrease  the maximum shear 
stress. 

It is difficult to  draw  conclusions from the  three-layer 
case, since many more  physical parameter variables are 
possible. The analysis still indicates  that  the maximum 
shear  stress in either of the  two  joints usually occurs at 
the  edges, and that  there is an  interaction from one  joint 
to  another if the middle layer is reasonably  thin. 

Appendix A: Analysis of two bonded  circular  sheets 
The physical  parameters and geometrical  dimensions are 
shown in Fig. 3. The polar coordinates ( r ,  0) are  em- 
ployed. The  stress-strain-temperature relationships of 
layers 1 and 2 are 

The  assumption of uniform shear  stress through the thick- 
ness of the  joint gives the relationship 

"U 7 u - u  
- 

G r )  

The equilibrium  conditions in each  sheet give 

and 

- + r t ,  = -rr 

The  thermal  stress problem is formulated by Eqs. ( A l )  to 
(A3) with the  proper boundary  conditions. The general 
solution for  the  shear  stress  to  the  above  equations is 
found in terms of the modified Bessel  functions, 

7 = A[I,(Pr) + BK,(Pr)l* (A41 

where A and B are  constants,  and 

The  stresses and  displacements in layer 1 are given by 
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The  expressions for corresponding quantities for  layer 2 
may be  found by changing the corresponding indices  from 
1 to 2 and adding a  negative sign to  one side of each  equa- 
tion. The  constants C,, C,, Dl ,  and D, are related by the 
equations 

Dl + D, = 0, (A81 

A ( C ,  + C,) = - 
2(a, - a,)TG 

”P 

There  are  four boundary conditions, which, together with 
the  above  two,  are sufficient to  solve  for all six constants. 

In  the  case of a solid disk  with  radius R ,  three of the six 
constants  are  zero: 

B = Dl = D, = 0. (A101 

The condition that  at radius R the radial stress  com- 
ponents  are  zero leads to 

The  shear  stress is given by 

From the properties of modified Bessel  function Zn, it is 
clear  that  the  shear  stress  reaches a maximum at  the  outer 
edge and is zero  at  the  center. 

Appendix B 
In  the main text  it has  been  explained that  the six roots of 
the  characteristics of Eq. (30) can be  written in the  forms 

pH + ipV, pH - i p V 3  - p H  + iPv, -pH - @,. 

The  three  constants A , ,   A , ,  and A ,  are determined from 
the following set of algebraic equations: 

cosh p l f A l  

+ [ ( p i  - p:) cosh pH[ cos p,e 

- 2pHp, sinh p,e sin p,e]A, 

+ [ ( p i  - BG) sinh p,e sin p,f 

+ 2pH& cosh pH[ COS P,f ]A,  = 0, (B 1 )  
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+ pH sinh p,ecosp,f A,  
(Pi + 1 

c, = ( L j  Eob (4) a [Y,A, - Y,A,I, 
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