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FUNDAMENTALS OF ESTABLISHING AN OPTICAL TOLERANCE BUDGET
Warren J. Smith

Santa Barbara Applied Optics
P.0. Box 989, Santa Barbara, California 93102

ABSTRACT:

The basis for, and the specific steps involved in, the determination of a suitable
tolerance budget are discussed, using an R.5.3. (square Root of the Sum of the Squares)
statistical addition of the tolerance effects. A numerical example is given.

I INTRODUCTION

When an optical system is designed, the performance of the nominal "paper" design is
normally somewhat better than the performance specifications require, in order to allow for
the degradation expected to result from the fabrication tolerances. The determination of
the fabrication tolerance budget should balance the relative sensitivity of the individual
construction parameters against the cost of maintaining the tolerances in such a way as to
assure the performance of the optical system in the most economical fashion.

We will consider first the manner in which the effects of tolerances can be expected
to combine, and the statistics of the combination of several tolerance effects. Then we
will take up the establishment of a performance requirement based on wavefront deformation
(Optical Path Difference, or OPD).

The resultant of a trial tolerance budget is determined by calculating a '"change
table™, that is, a table of the partial differentials of the aberrations (and any other
significant system characteristics) with respect to the construction parameters of the lens.
The individual effects of the tolerances are combined by taking the square root of the sum
of the squares of the effects. This is compared with the performance requirement, and the
trial budget is then adjusted to achieve conformance with the goal.

II THE STATISTICS OF AN ASSEMBLY OF SEVERAL COMPONENTS

We approach this aspect of the subject through a hypothetical, but not unrealistic,
example. Assume that the SPIE Manufacturing Company makes a line of products which are
simply stacks of disks, each disk 0.1 inch thick. Our model Mark-1 consists of one disk,
Mark-2 is two disks, Mark-3 is three disks, etc. The SPIE production machinery can control
the disk thickness to + 0.005 inch. Our problem is to determine what tolerance on total
thickness we can hold for Mark-1, Mark-2, etc.

Let us make a simple, slightly unrealistic, f
but conservative, assumption about the SPIE pro- PRoO®BABILITY
duction process, namely that each disk is equally
likely to be made to any thickness within the
toleranced range of 0.1 inch + .005 inch. This
is called a uniform, or rectangular, probability
distribution, and is plotted in Fig. 1. What
this means is that the probability of a disk being v w P
fabricated in the thickness range between, say, 088 o.l A05
.095 inch and .096 inch is one in ten; this is THICKNESS —=
the portion of the area under the curve between
those two thicknesses (shown shaded) as a fraction Fig. 1 - Uniform probability
of the total area under the curve. distribution
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Thus for our Mark-1 model, consisting of only one disk, the situation is quite clear.
We can guarantee that 100% of the product will fall between a thickness .095 inch and a
thickness of 0.105 inch. If we wanted to accept a 20% rejection rate at final inspection,
we could establish a product tolerance of .096 inch to .104 inch, and so on.

Our Mark-2 product, consisting of a stack of two disks, obviously has a nominal thick-
ness of 0.2 inch, and the total range of thickness permitted by our + .005 inch individual
disk tolerance is equally obviously .190 inch to .210 inch. However, the probability dis-
tribution is no longer uniform. As we have seen, the probability of the first disk being
made between .095 and .096 inch is one in ten; the probability is exactly the same for the
second disk. Therefore, the probability that both disks in the same assembly will fall
into this range is one-tenth of one-tenth, or one in one-hundred.



This means that only 1% of our Mark-2
assemblies can be expected to fall in the
total thickness range of .190 to .192 inch.
Similarly, the probability is one in four
hundred (0.25%) that the assembly will
have a thickness between .190 and .191 inch.
The probability distribution curve for the
Mark-2, two-disk assembly, is shown in Fig. 2;
it is far from uniform; its shape is tri-
angular. It can be seen that three-quarters
of the assemblies will fall between .195 inch
and .205 inch, which is just one-half the
possible total range of .190 inch to .210
inch. Thus, the effect of a multiple com-
ponent assembly is to concentrate its charac-
teristics about the nominal values and to

reduce the number of assemblies that take on Fig.

values at the extreme ends of the possible
tolerance range.

Figure 3 shows the situation for assemblies
consisting of 1, 2, 4, 8 and 16 pieces. Each
probability distribution curve has been normal-
ized so that the total range of the tolerance
is the same, and also so that the area under
each curve is the same. It is quite obvious
that the more parts (or tolerance effects)
there are to an assembly, the more concen-
trated the distribution becomes about the
nominal value, and the smaller the percentage
of assemblies which are at the extremes of
the total tolerance range. Figure 4 illus-
trates this situation in another way, showing
the fraction of the total possible tolerance
range which will contain a given percentage
of all the assemblies as a function of the
number of parts in the assembly.

The importance of this is quite straight- Fig.

forward. If we can accept a relatively modest
rejection rate in final assembly, we can in=-
crease the individual piece-part tolerances

by a significant factor over the level which
would otherwise be required to guarantee that
100% of the assemblies would be within the same
range. For example, in our Mark-16 product,
containing 16 disks with a nominal thickness
sum of 1.6 inch and a possible total tolerance
range of + .08 inch, Fig. 4 indicates that less
than 0.2% of the assemblies will exceed a
tolerance of % .04 inch, which is only half of
the total possible range.

Thus, we could either 1) specify our Mark-16
product at 1.6 inch + .04 inch or 2) use a less
expensive production technique which produced
a piece-part tolerance of % 0.010 inch and specify
the product at 1.6 inch + .08 inch. 1In either
case, we could require a final inspection and
we should expect to reject about 0.2% of the
assemblies produced.

Fig.
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Notice that as more and more parts are added to the assembly, the curve in Fig. 3 begins to
look more and more like the "normal distribution curve" so beloved of statisticians.
Further, if our production process does not produce a uniform distribution (as in Fig. 1),
the progression of Fig. 3 can be started at any stage. For example, if the production pro-
cess produces a triangular distribution for each part (as in Fig. 2), the curve labeled "i4"
in Fig. 3 would apply to a two-part assembly, "8" to a four-part assembly, and so on. The
significance of this is, of course, that most production processes produce a distribution
resembling the "normal" curve rather than the rectangular, or uniform distribution of
Fig. 1. Thus, the distributions indicated in Figs. 3 and 4 are a relatively conservative
evaluation of the usual situation.

It turns out that the statistics of "normal" distributions are such that if some per-
centage (say X%) of the individual pieces making up an assembly fall withinlsome fraction
of their tolerance ranges, then X% of the assemblies will fall within (1/N)z of the range
sum, yhere N is the number of pieces making up the assembly. For an assembly of 16 parts
(1/N)z is 0.25, and if, say 95% of the individual parts fall with a range of * Y, then 95%
of the assemblies should fall within a range of * 0.25 x 16 x Y = + 4 Y (rather than the
+ 16 Y one might expect).

Happily, we need not concern ourselves with rigorous statistical analysis. A simple
expression will allow us to estimate the effect of a combination of a number of tolerances.
The expression is the square Root of the Sum of the Squares, which is often abbreviated
R.S.3. In our case, the expression takes the form

T =V It]

(M

where ti are the effects of the individual tolerances and T is the maximum value that the
combination of all the effects will produce. Actually, T is the value that will be exceed-
ed by only a very small fraction of all the assemblies produced. For parts produced to

a rectangular or uniform probability distribution (as in Fig. 1), the fraction is about 10%.
For a triangular distribution (Fig. 2), the fraction is 1% to 3%. Obviously, the fraction
decreases as the individual piece part distribution is more concentrated about the nominal
value.

A few numerical examples are instructive. If the individual tolerance on some char-
acteristic produces a change of X, and we have an assembly of n parts, then Egqn. 1 tells
us that most assemblies will vary from the nominal by less than

Tp = /n*X%2= X vn

For an assembly of four parts, n = 4 and Tp = % 2X, which is just half of the possible
total range of + nX = + U4X. For an assembly of 16 parts, n = 16 and T, = £ 4X, Jjust one-
quarter of the possible range of +16X.

If some tolerances produce larger changes than others, that is, if the tolerance
effects are not uniform, Eqn. 1 shows us that the larger effects will dominate the assembly.
For example, assume we have 10 tolerances. Nine of them are * X and the tenth is equal to
+ 10X. Then we have

Tp =79 X2 +(10X)2 = /109 X2 = + 10.44 X

and we see that the nine tolerances of + X have increased T, by only 0.44X from the value of
10 X which would result from the + 10X tolerance alone.

III ESTABLISHING THE "PERFORMANCE" TOLERANCES

Occasionally, the specification of the "performance" characteristics of an optical
system may be directly used as tolerances. For example, the focal length, back focus,
vertex length, etc., may be directly specified. However, the image quality aspect of per-
formance is often not as definitively established, and even when it is clearly stated its
relationship to the ray aberrations is not as direct as one might wish.

For optical systems which operate with detectors, it is frequently a simple matter to
specify the image quality requirement in terms of the percentage of the flux in a point
image which falls within some given area. Since such systems often are far from diffraction
limited, this performance criterion can be directly related to the calculated geometrical
aberrations,



However, for many systems not only must
diffraction be accounted for, but image
quality or resolution is the performance
characteristic which must be maintained.
Happily, if we can express the image quality
as the Modulation Transfer Factor (MTF)
at a given frequency, we can relate it to the
wavefront deformation (OPD) caused by the
aberrations.

Figure 5 shows the changes in MTF produced
by various amounts of defocussing, which is the
simplest of all the aberrations. Although
the degradation of MTF caused by the various
other aberrations is not identical to that due
to defocussing, the effects are very similar
and, for our purposes, we can use the de-
focussing relationships as representative of
all of the aberrations. Levi and Austing
(Ref. 2) published an extensive table of
numerical values of the data contained in
Fig. 5. Notice that Fig. 5 is normalized so
that it can be applied to systems of any
Numerical Aperture (or f/#) and wavelength.

The conventional ray-traced aberrations
can be converted to wavefront deformations,
or OPD, by the following relationships:

Fig.

OPD in wavelengths = Transverse Spherical

OPD in wavelengths = Tangential Coma

OPD in wavelengths = Defocus or Field Curvature
OPD in wavelengths = Longitudinal Chromatic

OPD in wavelengths = Lateral Color

where NA is the numerical aperture, and NA =

1/(2f/#), and X is the wavelength.

Thus, the aberrations and the changes
in the aberrations can be expressed in
waves of OPD, and their effect on the MTF
can be forecast from Fig. 5 or its
equivalent.

We can proceed somewhat along the
following line if the performance is
specified as a certain MTF at a given
spatial frequency in lines per milli-
meter (LPM). The nominal design is
analyzed and the MTF at the specified LPM
is determined. From Fig. 5, we can
determine that this corresponds to the
MTF produced by a certain amount of OPD;
we will call this OPD (design). Next,
again using Fig. 5, we can determine the
OPD corresponding to the specification
MTF, which we call OPD (spec.). Then the
amount of OPD available for the fabrica-
tion tolerances is the difference between
these two values. The difference can be
taken as OPD (tol) = OPD (spec.) - OPD
(design); in many instances however, we
are justified in assuming that tolerance
and design OPD's combine according to the
R3S rule, so that

086

04

02

0

L
.

NN

AVAN
AN A
A\ 8 .
\% = o
3 =

\| T

0

0t 02 03 04 05 06 07 08 09 10
v/ vg—>-

5A - The effect of defocussing on

X
X
X
X
X

the MTF. Curve A, in focus;
curve B, 0.25 wave out of
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Fig. 5B - The effect of OPD due to de-

focussing on the MTF for
various spatial frequencies,
expressed as fractions of the
cutoff frequency vgo= 2NA/A=
W/x (£/7#).
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Occasionally performance is specified as a requirement that the MTF at a certain
LPM be maintained over some depth of focus. Again the nominal design can be analyzed to
determine the MTF which it will maintain over the specified depth; this can be correlated
(using Fig. 5) to an OPD. Comparison of this OPD to the amount required to reduce the MTF
to the specified level then indicates the difference available for tolerances.

When the image quality is specified by a description of the energy distribution in the
(diffraction) image of a point, one can often utilize the Strehl ratio (see Egn. 8). The
Strehl ratio is the intensity of the peak of the diffraction pattern. The relationship
between OPD and the enrgy distribution in the diffraction pattern (see, for example, Ref. 1,
p. 298) is often useful as well.

Note that the abové describes the aberrations in terms of their peak-to-valley (or
peak-to-peak) wavefront deformation. Shannon (ref. 3) has discussed the same relationships
Wwith respect to the RMS wavefront deformation, which is useful for high-order aberrations
and abruptly irregular surface errors. Typically, the relation between peak-to-valley and
RMS is that a deformation described as a quarter wave peak-to-valley will be about one-
fifteenth or one-twentieth wave RMS. For simple aberrations RMS = (P-V)/3.5. In this
article, we use the peak-to-valley measure.

The peak-to-valley OPD produced by a bump or an irregularity (departure from the pres-
cribed surface figure) is given in wavelength units by:
OPD = 0.5 (# FR)(N'=N){(At/Af) wavelengths (7)
where (# FR) is the number of interference fringes departure of the surface from the best
fit prescribed surface, (N'-N) is the index difference across the surface, At is the wave-
length at which the fringes are measured and Af is the wavelength at which the system is
used, i.e., the wavelength in which the OPD is reckoned.

TABLE 1 - 14mm NA O0.42 LASER RECORDING LENS

Radius Thickness Glass Clear Aperture

0 Object 76.539

1 +50.366 2.80 SF 11 11.65
2 -39.045 . 4353 Edge Contact at 11.62
3 -19.836 2.0 SF 11 11.62
4 -34.36 0.2 11.90
5 +17.42 2.65 SF 11 11.81
6 +79.15 11.84 11.22
7 + 7.08 2.24 SF 11 5.24
8 +15.665 3.182 4.13
9 Plano 2.032 Acrylic
10 Plano

NUMERICAL EXAMPLE: The prescription in Table 1 is for a 14mm NA 0.42 laser disk re-
cording lens which operates at 0.82 microns and covers a field of 0.7mm at the short
conjugate with a magnification of 0.18X. The specification for this lens is that the peak
of the diffraction pattern of the image of a point must be not less than .75 of that of a
perfect lens, over the entire field. This is the Strehl ratio; it is related to wavefront
distortion by

S = (1 - 212 w?)? (8)

where w is the RMS wavefront aberration. If we assume that the RMS OPD is approximately
equal to 1/3.5 times the peak-to-valley OPD, then the specification of a Strehl ratio of
0.75 corresponds to an OPD of 0.288 waves of peak-to-valley wavefront distortion.

The nominal design has an OPD of .04 waves on axis and an OPD of 0.23 waves at the edge
of the field. Using the latter value, we find that if the fabrication tolerances combine
to produce an OPD of 0.173 waves, then the RSS sum of design OPD and the tolerance OPD will
be just 0.288 wavelengths. Thus our task is to determine a tolerance budget for this lens
which will produce no more than 0.173 waves of OPD.
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IV CALCULATION OF THE "CHANGE TABLE"

A "change table" is simply a tabulation of the changes in several selected aberrations
produced by small changes in the construction parameters of the lens. Such tables can be
calculated in several ways. An algebraic calculation of exact partial differentials is
possible. Most full scale optical design programs will calculate partial derivatives by
changing one parameter at a time by a small amount (an amount to the order of the size of
the expected tolerance on that parameter) and calculating the change in the aberrations.

The parameters of the optical system subject to tolerance variation include surface
radius and figure, element thickness, airspace , refractive index, chromatic dispersion,
and surface tilt (or decentration). The aberrations of interest usually include spherical,
coma, astigmatism, Petzval curvature, distortion, longitudinal and lateral chromatic.

Focal length, image position, magnification, or similar characteristics are often included
as well.

Thus, we arrive at a tabulation of the change in OPD corresponding to the change in
each aberration produced by a "tolerance-sized" change in each dimension of the system.
Table 2 is the change table for our laser recording lens. Each entry is the OPD change
(in peak-to-valley wavelengths) produced by a parameter change of the size indicated. For
example, the entry in the first column of the first row indicates that a change of radius
#1 corresponding to 10 fringes departure from the nominal test plate radius produces a
change in the spherical aberration corresponding to an OPD of .014 wavelength.

TABLE 2 - TABULATION OF THE ABERRATION CHANGE PRODUCED
BY PARAMETER CHANGES, IN WAVELENGTHS OF P-V OPD

TA COMA¢t ASTIG. RSS RSS OF CLASS
R1¥ +.014) +.0072 +.003A .016A
R2¥* -.005 -.020 -.002 .021
R3¥ -.051 +.027 -.005 .058 Radius
RU* +.017 -.021 -.005 .027 L1017
R5* -.027 -.010 +.002 .029
R6¥ +.028 ~-.006 -.003 .029
RT¥ -.013 +.004 +.003 .014
R8#* +.057 +.017 -.005 .060
T1%% -.001x +.003) +.002) L0042
To*¥ -.020 +.029 +.000 .035 Thickness
T3*% -.037 -.004 +.003 .037 .091x
TU*% +.017 -.021 +.002 .027
T5#% +.021 -.029 +.005 .036
To** +.037 -.044 +.008 .059
T7*% -.008 -.009 +.002 .012
N %% +.007A .000x -.004x .008x
N3*x¥ +.002 .000 -.003 .004 Index
NG ¥ % ¥ -.005 .000 .000 .005 L0112
N7*®%% -.004 .000 .000 .004
TR1¥#%%% -— +.043) +.009A L0443
TR2¥*%% - -.069 +.010 .070
TR3**%% - +.179 -.015 . 180
TRU¥*%¥ - -.093 +.009 .093 Tilt
TR5**##% _—— +.101 +.013 .102 L2TTx
TRE* % %% _— -.106 +.006 .106
TR7*#%% - +.024 -.014 .028
TRB#*%% --- -.080 +.010 .081
RSS TOTAL .110M .286 .034x .308) .308x
R¥* Change of radius corresponding to 10 fringes (rings) departure from the nominal
test plate radius (see Ref. 1, p. #12).
T#% Change of thickness or airspace of 0.2mm.
N¥&# Change of index of .001.

TR*¥*%¥¥ Tilt of surface of 0.001 radians (3.4 minutes).

201



202

A surface irregularity (asphericity) of one fringe produces an OPD of

OPD = 0.5 (1) (1.764-1)(.59/.82) = .275

per surface according to Eqn. 7, for an index of 1.764 if we assume a test wavelength of
0.59 microns (Sodium-D) and an operating wavelength of 0.82 microns. Since there are eight
surfaces, the RSS summation is the square root of eight (2.83) times this amount. Thus

the probable OPD introduced by one fringe of irregularity on each surface is 2.83 times
0.275, or 0.778 waves.

The table has been limited to 3 aberrations, Transverse Spherical Aberration (TA),
Tangential Coma (COMAt), and Astigmatism. This is done for two reasons: 1) to simplify
and condense our discussions and 2) because in this example these are the predominant
factors affecting the image quality. This latter situation is very often the case. One
can markedly reduce the labor and complexity of the tolerancing task without affecting its
accuracy or value, by dropping from consideration those aberrations whose changes are small
in comparison with the others. This is, of course, justified by the numerical analysis in
the last paragraph of Section II above. Note that for most optical systems the tangential
field curvature (Xt) would be used rather than the astigmatism. In this particular appli-
cation, the lens is refocussed if the laser spot image is moved off-axis, and the field
curvature is effectively cancelled out by the refocussing.

\' THE TRIAL TOLERANCE BUDGET

The next step is to assume a preliminary set of tolerances which seems reasonable.
Table 3 is a rough indication of what might be considered as "typical" optical tolerances.
In the absence of other information, it can serve as the source for a preliminary tolerance
budget.

TABLE 3 - TYPICAL OPTICAL SHOP TOLERANCE

Radius Regularity Thickness Index Surface Tilt
Low Cost 50 rings 10 rings 0.5mm .002 .005 radian
Commercial 10 rings 2 rings 0.2mm .002 .001
Precision 5 rings 1 ring 0. 1mm .001 .0003
Extra Precise 1 ring .25 ring 0.05mm .0002 .0001

For our numerical example, we can begin by assuming that the changes used in Table 2
are an appropriate starting point for our tolerance budget. If we take the RSS of all the
changes in the Transverse Spherical Aberration (TA), we obtain .110 waves. Similarly, for
Comat we get .286X1 , and for Astigmatism we get .034A. We now take the RSS over the three
aberrations and find that we can expect a variation of about .308A in the OPD resulting
from our preliminary tolerance budget. If we include one fringe of irregularity, the total
variation becomes 0.84 waves of OPD (RSS .309x with .778X to get the .84 sum).

VI ADJUSTING THFE TOLERANCE BUDGET

The OPD of 0.8Y4 wavelengths exceeds the value of .288 which we determined in Section
III to be the maximum which we could allow in order to maintain the Strehl ratio of 0.75.
Since it is too large by a factor of .84/.288 = 2.9X, we could simply reduce our trial
budget by this factor across the board. This is usually not the best way.

An inspection of Table 2 and its footnotes indicates that the sensitivity of the
tolerances varies widely, ranging from the total insensitivity of coma to the indicated
index changes, to significant effects from the radius and thickness changes and very heavy
contributions from the assumed surface tilts (or decentrations).

We have previously (in the last paragraph of Section II) noted that the RSS process
indicates that the larger tolerance effects are much more significant than the smaller;
the significance varies as the square of the size. Thus, a rational approach is to reduce
the tolerances on those parameters which are the most sensitive. conversely, one might
also consider increasing the tolerances on those parameters which are relatively insensi-
tive.



This is the technique which we shall apply here. However, there are practical con-
siderations which should be observed. In most optical shops there is a fairly standard
tolerance profile. For example, a shop may do most of its work to a five ring test glass
fit, a thickness tolerance of * 0.1mm, and centering to a one minute deviation. If a
larger tolerance is allowed, there will be a saving, but it will not be proportional to the
increase in the tolerance. This is because the shop will still tend to produce to its
customary profile., They may be able to relax their procedures a bit, and their usual per-
centage of rejections will drop, but the tendency will be very strong to produce the usual
profile whether it has been specified or not. Thus, there is a limit on the increase in
tolerance size which will produce a real savings. As another example, many optical
glasses are routinely produced to an index tolerance of + .001 or * .0015. There is no
saving in cost if the tolerance is increased beyond the standard commercial tolerance.

When tolerances are reduced below the "standard profile" however, the cost of fabri-
cation begins to c¢limb. This results from the additional care and effort necessary to hold
the tighter tolerances and/or an increase in the rejection rate. In most shops there is
effectively a practical limit to the smallness of a given class of tolerance, since the
cost of fabrication rises asymptotically toward infinity as this limit is approached.

Thus, for most shops there is both a high limit on tolerances, beyond which there is
ho savings, and a low limit, which the shop is barely capable of meeting. Obviously,
one should confine the tolerance specifications to this range (or find another shop whose
capabilities encompass one's requirements).

If we take the RSS of the contributions of each parameter tolerance individually, as
we have done in the last column of Table 2, then we get a convenient measure of the sensi-
tivity of each tolerance. Examination of the table indicates that the variations of
radius, thickness, index and especially surface tilt are all significant contributors to
the final RSS OPD. If there are a few very large contributors, a possible general techni-~
que would be to reduce any dominant tolerances by a factor approximating the factor by
which the OPD of trial budget exceeds the acceptable OPD. Another technique is to make the
tolerance size inversely proportional to its sensitivity, so that each tolerance produces
the same OPD; this is obviously subject to the limitations outlined above, as well as the
necessity to weigh each class of tolerance in some way so as to take into account their
different natures and costs.

Following this line, we get the following budget, for which the RSS OPD is 0.167x, just
slightly better than the 0.173A required for our Strehl ratio specification of 75%.

TABLE 4 - FINAL OPTICAL TOLERANCE BUDGET

Tolerance P~V RSS OPD
Radius test plate fit : 1 Ring .010 A
Surface regularity : 1/5 Ring . 156
Index variation : .001 .01
Surface tilt : .0002 Radians .055
Thickness tolerance T1: 0.10 .002
T2: 0.02 .004
T3: 0.05 .009
T4: 0.04 .005
T5: 0.05 .009
T6: 0.03 .009
T7: 0.07 .004

RSS Total 167 A
Edge of Field Design .23)

R3S Total L2841
Strehl Ratio = (1 - 2 72(.282/3.5)2) = 0.757
VII CONCLUSION
We have outlined a relatively simple and straightforward technique for the establish-

ment of a performance-determined tolerance budget. A numerical example was worked out, and
a budget was determined which corresponded to a specified image quality level.
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This technique has been used by the author for many years and has been applied to a
wide variety of optical systems. It has been applied to fabrication quantities ranging
from thousands down to lots of one or two. It has yet to fail. (This may indicate that
it errs on the conservative side.)

There exist more elegant and more "automatic™ methods of accomplishing this task. For
example, see Ref. 4. However, our primary aim here is to establish an understanding of
optical tolerancing and of the basic methods which can be used to solve the fundamental
problem of arriving at a useful optical tolerance budget.
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