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1 Introduction

Abstract. Thin and highly flexible telescope mirrors need to be sup-
ported carefully to avoid undesirable elastic deformations and a reduc-
tion of their optical quality. In this study, a wide variety of support topol-
ogies are examined to provide a basic set of optimized point supports
for these telescope mirrors. This is carried out for mirrors without a cen-
tral hole, with circular and annular entrance pupils. Efficient topologies
introducing a small amount of zenith-angle-dependent defocusing are
also proposed. The number of supporting points ranges between 3 and
36. Optimal forces and locations of point supports are calculated using
thin-plate bending theory. Numerical methods include a linear least-
squares method for determining the best forces, and a downhill simplex
algorithm to optimize the support locations. The robustness of the pro-
posed solutions is tested by simulated annealing. Scaling laws are briefly
reviewed, and support efficiencies are given for each optimized topology.
Resuits show that taking into account the central obscuration ratio (an-
nular pupil) and tolerating a homologous (paraboloidal) deformation of
the mirror allows an improvement of efficiency of up to 50% over the
case of an unobscured pupil where defocus is not permitted. This work
includes a study of support efficiencies versus the Poisson'’s ratio of the
mirror material. Wavefront errors are also estimated in the case of a
defective cell, to specify tolerances on forces and support locations.

Subject terms: telescope mirror; mirror deformation; elasticity; mirror support; pas-
sive support; active optics; optimization.
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medium-size telescopes of the 1-m class, in which active
optics is not justified for several practical reasons: limited

Reducing mirror thickness is important in telescope design.
It allows lighter optics, thereby reducing the weight and con-
sequently the cost throughout the whole instrument. Thin
mirrors also have superior thermal behavior. However, a
well-working supporting system, either passive or active, is
required to avoid undesirable deflections under gravitational
Joading. These deflections must be small enough to maintain
the required optical quality.

Geometries and forces have been previously calculated
for several axial supporting configurations to minimize the
variance of the mirror deflection due to uniform loading. This
minimization has been carried out by Nelson et al.! for unob-
scured pupils. In this paper, we first extend this work to
mirrors without a central hole but with a central obscuration
providing annular pupils. We then permit a small amount of
homologous deformation, which, after refocusing, does not
degrade the image quality. As will be shown, this noticeably
increases the efficiency of the support.

Several of the proposed topologies allow a grouping of
the supporting points in flotation subsupporting systems, also
called Joad spreaders, such as balances or triangles. This
allows passive supporting designs, useful for small and
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number of sources (poor sky coverage) for wavefront sensing
because of the small primary-mirror diameter; rapid changes
of telescope attitude (as in photometric work, supernova sur-
veys); no change of telescope attitude (as in scanning with
CCD in time-delay-integration mode); fully automated and
low-maintenance telescopes; minimizing the overall cost of
the instrument.

The design of an ideal support would allow for numerous
factors: a central hole in the primary; corrections for axisym-
metric variation of thickness due to the concave optical sur-
face,? the lightweight cored mirror structure,> the effect of
shear forces,>* or the shape of the mirror blank (plate or
meniscus).*> The following study is limited to mirrors of
uniform thickness without a central hole.

Section 2 presents the scaling laws characteristic of mirror
bending under gravitational loading. This allows us to define
the efficiency of a support, which is the parameter to be
optimized to minimize the rms of the mirror deflection. In
Sec. 3, we examine the theoretical problem of support op-
timization and describe the numerical methods we have used.
Section 4 presents the results and discusses the effect of the
permitted homologous deformation. It also includes a study
of the effect of a change of mirror material on the proposed
support efficiencies. In Sec. 5, we quantify the performance
of a defective support to fix the tolerances on support loca-
tions and forces.
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2 Scaling Laws

By modeling the mirror as a circular thin plate of uniform
thickness and describing its deformations under gravitational
loading by pure bending theory,* we obtain the well-known
scaling law!®

Brms = x = )

where d___is the rms deflection, g the external load per surface
area, a the plate radius,  the plate thickness, and D the
flexural rigidity

3
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Here E and v are the material’s elastic (Young’s) modulus

and Poisson’sratio, respectively. The coefficient £,  depends

on the support geometry and support forces. A more general

form of this law for noncircular plates is given by’

o —, 3)

where A is the plate area, and £, is a dimensionless number
called the support efficiency that depends on the plate shape
and, like k., on the support configuration and support
forces. The efficiency in terms of peak-to-valley errors, &,
can be defined in the same manner. Note also that £ and k
depend smoothly on v, a characteristic of the mirror substrate.
Table 1 summarizes the most useful parameters of standard
mirror materials. Thus Egs. (1) and (3) show that, for a given
topology and a given mirror, the deflections 8, and 8,,,, can
be approximated. We note that, the lower the efficiency &,
the better the support.

For the optimum method of filling the area under the mirror
with supporting points to limit the deflection under gravi-
tational loading, we consider the five two-dimensional Bra-
vais crystal lattices. These describe the five basic geometries
of a natural 2-D crystal: oblique, square, rectangular, centered
rectangular, and hexagonal lattices. The hexagonal lattice is
a grid of adjacent equilateral triangles.” It is easy to see that
this lattice provides the highest density of nodes per unit area
for a given length of the lattice parameters: its density is
equal to 2/(u2\/§ ), where u is the distance between two nodes.
Therefore, the triangular arrangement of supporting points
using the hexagonal lattice will provide the most efficient
support for an infinite plate. The rms of the deflection is then!

qu*

B s = 0000908 @

and the peak-to-valley amplitude, adapted from Ref. 8, is

3 qu
=— . S
PV 768 D ®)

Here, the numerical coefficients do not depend on v. It is
evident therefore that for finite circular plates, it will be rea-
sonable to choose a priori a hexagonal lattice for point ar-
rangement and then adjust it to minimize the edge effects.
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Table 1 Mechanical properties for mirror blank materials, adapted
and extended from the ESQ VLT propasal '2 Materials with asterisks
are polycrystalline pure metals.

Material Specific Mass  Young's Modulus  Poisson's Ratio
E v
(ka/m?) (GPa)
Aluminivm® 2700 06 0345
Titanium® 4500 1202 0361
Stee} 13/4 7750 210 028
Invar 8130 145 030
Borosilicate 2230 68 020
Ordinary Crown 2500 66 4 0225
Fused Silica 2202 745 017
ULE Titanium Silicate 2205 676 017
Zerodur 2530 91 024
CFRP (UHM quasi isotropic) 1800 105 032

Some useful scaling laws concerning the extra deflection
due to shear forces are given by Nelson et al.' and Wan et
al.? The results presented below do not include the effect of
shear. We assume therefore that the mirror thickness is always
smaller than the value of the typical distance u between the
N supporting points, defined by

Nmu=A . (6)
3 Optimization and Methods

Our task consists in minimizing the variance 8, of the de-
flection w over the pupil area S:

=JJ (w—pg)* dS . %)
s

The term py is a piston term representing the mean value of
the deflection. For each support configuration, we optimize
forces and locations for the N supporting points. This yields
3N — 4 parameters that should be optimized. Fortunately, this
large number can be reduced by adding symmetry conditions
on the points’ locations. For example, in the three-point sup-
port case, points are placed on the same ring, in a three-fold
symmetry, and only the supporting radius is optimized.

For larger N, points are initially placed fitting a hexagonal
lattice under the mirror. Then the method is the following:
points are first grouped in sets of 3n having a 3n-fold sym-
metry, 1 being an integer equal to 1 or 2 to fit the hexagonal
lattice symmetries. The deflection over the pupil is then com-
puted for each set, and the fraction of mirror weight that each
carries is optimized by a least-squares method. This gives a
unique solution to minimize &, with the constraint that the
total loading of the support must equal the mirror weight. If
we denote by ; the fractional load carried by ring j, the
equation (7) can be written

=Jf (anw p(,> das . (8)
s\j=1

The constraint is therefore

m=1. 9)
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Taking the derivative of Eq. (8) with respect to all m; and p,
provides a set of /+ 1 linear equations. The constraint (9)
shows that the variables n; are not independent, so a Lagrange
multiplier method is used to include Eq. (9) in the compu-
tation.? Then the constraint (9) can be added to the J+ 1
equations as a (J+2)’th equation. We thus obtain a linear
system of J + 2 equations to be solved for the J + 2 unknowns
mj» Po» and N, where X is the Lagrange multiplier. Except if
the task is to support an optical flat, a homologous defor-
mation, inducing a small change of focal length, can be easily
balanced by refocusing. Therefore the expression to minimize
becomes

7 2
&m=ff(2mm—m~mﬁ>dS’ (10)
S

Jj=1

where p is the radial coordinate in the mirror plane (Fig. 1).
The parameter p, represents the paraboloidal deformation.
Note that p, is scaled exactly as 8, and 3, and we can
define ¢, by

_£,,9A°

) (amn
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Taking the derivative of Eq. (10) with respect to all w;, p;,
and p, and adding the constraint (9) leads to a linear system
of J+ 3 equations with J + 3 unknowns 1y, po. o, and A. The
system is solved by singular-value decomposition,'® which
permits control of the numerical stability of the linear system.
When the optimal forces and 8,,,,, are computed, the process
is iterated: a downhill simplex algorithm'® chooses new po-
sitions (radii and aximuths) for each set of points, and optimal
forces are calculated again until the smallest rms is found.
Simulated annealing with a small temperature decrease serves
1o test if the minimum is global. Note that even with slow
annealing, one cannot be sure to have found the global min-
imum and the best support configuration. Nevertheless, our
results are encouraging in that several runs with different
temperature schedules converge towards the same result

The mirror surface shape was computed by using a series
expansion’ truncated after 13 terms. The mirror surface was
sampled with 28,800 points (288 X 100, angular and radial
direction, respectively), and the Poisson’s ratio was fixed at
v =1{.24, corresponding to Zerodur.

4 Results and Discussion

We give here the support efficiencies for configurations with
N=3 to N=36 (Fig. 1). They can be used for an active
support, where each point applies a force under the mirror
computed by the control loop for the mirror surface. Most
of the proposed topologies also allow a flotation (passive)
support design, including balances and triangles working as
load spreaders. In this last case, the mirror cell will consist
of one flotation stage with N=6 or 9 It is arranged in two
stages with N=12=3X(2X2), N=18=3X(2X3), or
N=27=3 X(3X3) and three stages when N=36=3
X [2X(2X3)]. With several flotation stages, the support
must be very smooth for a correct force transmission from
one stage to the next. The system must also present good
damping behavior against vibrations

1 1
35 6 92

2! 155 18

27} 363

Fig. 1 Optimized topologies, from 3-point to 36-point (adapted from
Ref 1). Here p and ¢ are the polar coordinates across the mirror

The proposed topologies for circular or annular pupils,
with or without allowing defocus, are the same as those found
by Nelson et al.! for circular pupils with supports optimized
with respect to the mirror plane, except for the 36-point sup-
port, for which we found a slightly better configuration very
close to a hexagonal lattice. Our results thus concern, using
Nelson's notation, the topologies 3§, 6}, 97, 12},
15}, 181, 273, and 363. Figure 2 represents the results for the
363 topology optimized according to different criteria dis-
cussed below.

In a telescope, the secondary mirror usually vignettes the
central zone of the primary, and it is therefore not necessary
to minimize the mirror deflection in this zone. Results for
perfect support of unobscured and annular pupils are given
in Tables 2 and 3. In the case of N=3 and 6, Fig. 3 shows
the optimized radius versus the central obscuration ratio
(COR). The improvements of & are shown in Fig. 4. For a
typical COR of 0.3, the improvement of £, rises 10% for
N=18 and a few percent in other cases. These are rather
small and related to the small ratio (9%) of shadowed surface
when COR=0.3. Nevertheless, the positions and forces
change noticeably with respect to the unobscured pupil case.
Moreover, for Ritchey-Chrétien or Baker-Schmidt tele-
scopes, the COR can reach 0.5, and (as shown in Fig. 4 for
N=6) &, could be improved by 28%. As pointed out in the
introduction, the effect of a possible central hole should be
taken into account.

If a small amount of defocus over the mirror is tolerated,
Tables 4 and 5 show that ,,,, can be improved by 20 to 40%,
depending on the configuration. The small change in focal
length is not static, but depends on the zenith angie z, being
proportional to cosz. The variation € of focal length is given
by
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Fig. 2 Mirror shapes for the 36-point support represented with a constant verical scale:
(a) optimization for unobscured pupil with respect to the mirror plane; (b) optimization for annular pupil
(COR =0.3) with respect to the mirror plane; (c) optimization for unobscured pupil with respect to the
nearest paraboloid; (d) optimization for annular pupil (COR=0.3) with respect to the nearest
paraboloid

Table 2 Optimized topologies for unobscured pupil: central obscur-
ation ratio=00 No defocus is tolerated Poisson’s ratio is set at
v=0 24, n;is the number of points on ring i, m; p; and ¢; have been
optimized, and integer values of ¢; have been fixed.

Table 3 Optimized topologies for annular pupil: central obscuration
ratio=0 3. No defocus is tolerated Poisson’s ratio is set at v=0.24;
n; is the number of points on ring ;; v, p;, and ¢; have been opti-
mized, and integer values of ¢, have been fixed
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Normalized support radius
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Fig. 3 Optimized support radii p for the three-point and six-point supporis versus central obscuration
ratio (COR) The rms deflection is minimized with respect to the mirror plane (a) or to the nearest

0.6505"""'":"'m'“T"""'" AR SRR~
2] E 3
2 E H 3
FRUE e R e R R AR E
. : 5
& 0.630E I I 3
Q. e . . =
> E ' ' 3
0 E . . 3
E ] s S DN 3
£ E 3—point support : 3
g E ' . : E
£ 0.610L-------1 RIS B s RAREE X
2 E no defocus ig toleroted 3
O.B600 B i s v bt Lt o]
0.00 0.10 0.20 0.30 0.40 0.50
COR
0.695 [T T T T e
s B—pdint support J
Rel L ‘ N : : -
2 L no defocus ig toleroted : J
] I S R ]
g R
a L i
o)
[72] L .
el L . . . -
()] . . . .
N 0.685 (- el REREREE
(=] - . ‘ N . -
£ L 4
2 L J
= ] ; : : ]
0.680 L e s e
0.00 0.10 0.20 0.30 0.40 0.50
COR
(a)
paraboloid (b)
=16 L —pﬁ(l—cos:) . (12)
D,) -

or, with Eq.(11) corresponding to the thin-plate mirror
model,

£\ E,.gA
= — —_— _— S 13
16(D’> D (1 —cosz) . (13)

where fis the focal length and D, the telescope diameter.
Let us consider, as an example. a 30-mm-thick, 600-mm-
diam borosilicate mirror, With a focal ratio of 5, this primary
can be combined with two different secondary mirrors in two
f/15 Cassegrain or f/30 Coudé-Cassegrain configurations. We
assume the mirror is horizontal and supported by a perfect
nine-point system optimized for an unobscured pupil. This
leads to 90-nm peak-to-valley and 19-nm rms wavefront er-
rors afterrefocusing The parameter £, isequal to 175X 107 3
and induces. at =60 deg. focus changes of €~1.0 mm and
e=~4 1 mm. respectively. If this defocus is not corrected. the
Strehl ratio decreases to =77% and = 1% . respectively. when
other sources of aberrations. including seeing effects. are

neglected.'' Fortunately, focusing routines are usually pro-
vided on telescopes to balance the change of focal length
brought about by thermal effects. Note also that if the defocus
induced by &, is considered too large, £, can be fixed at an
intermediate value fulfilling the specifications, and the sup-
port reoptimized. This leads to intermediate values of &,
and &,

A by-product of the better efficiency obtained with a mir-
ror cell incorporating correctable defocus is a reduction in
the scalloping of the mirror surface. Thus, larger telescopes
having active and adaptive systems, and thus diffraction lim-
ited, will have a point spread function where the first dif-
fraction ring will not be segmented, nor modulated in bright-
ness This is useful from an astrophysical point of view, when
methods involving deconvolution are used to study stellar
rings or diffuse shells

As pointed out in Sec. 2, the efficiencies & depend
smoothly on the Poisson’s ratio v. The previously optimized
configurations from Table 2 for Zerodur (v =0 24) were used
to calculate the relative variation of efficiency, A€, ), given
by

gr"“(v) - gl m_-a( Zel‘Odur)
£, ms(Zerodur)

A(E, ) =100 X (14)
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Fig. 4 Three-point and six-point support efficiencies versus central obscuration ratio (COR) The rms
defiection is minimized with respect 1o the mirror plane (a) or to the nearest paraboloid {b) The dashed
line represents the efficiency over an annular pupil when the support has been optimized over an
unobscured pupil The solid line represents the improvement of the efficiency over an annular pupil
when the support has been optimized over the same annular pupil
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Table 4 Optimized topologies for unobscured pupil: central obscur-
ation ratio=0.0. Defocus is tolerated Poisson’s ratio is set at
v=0 24, n;is the number of points on ring i, m, p; and ¢; have been
optimized, and integer values of ¢; have been fixed

Table 5 Optimized topologies for annular pupil: central obscuration
ratio=0 3 Defocus is tolerated. Poisson’s ratio is set at v=024; n,
is the number of points on ring /, m; p, and ¢, have been optimized,
and integer values of ¢; have been fixed.

A Lot 10° Ermy 10%;, 10°  mi, pi10%, 9 10%, &y (deg)
3 15 248 539 =3991

6 158 345 224 p=5729

9 136 279 175 n=3 3 3

p=1475 6345 6326
n=1014 4470 4517
$=0 000 6000
12 448 0840 105 n=3 3 3 3
p=2626 6905 7148 7148
n=1995 2899 2553 2553
¢=0 60 2006 -2006
15 333 0600 963 n=3 3 3 3 3
p=2709 7017 7017 7296 7296
n=2098 2118 2118 1833 1833
¢=0 4500 -4500 1505 -1505
18 191 0373 765 =n=3 3 3 3 3 3
p=4004 2894 7448 7448 7576 7576
1=1222 1612 1863 1863 1720 1720
$=0 60 4494 -4494 1516 -1516
27 0816 0161 473 n=3 3 3 3 3 3 3 3 3
p=1895 7989 4426 5013 5013 8075 8075 7956 7956
n=068 1234 1097 967 967 1130 1130 1254 1264
¢=0 0 60 2032 -2032 2413 -2413 4791 -4791
36 0564 00958 371 n=6 6 6 6 6 6
=2352 5202 5403 8250 8214 8214
n=1390 1589 1534 1750 1864 1864
¢=0 30 0 0 1991 -1991

as a percentage versus v, ranging between fused silica
(v=0.17) and titanium (v =0.361, Table 1). This was done
initially without readjusting the forces, although that should
further decrease the variation of &, Figure 5 represents
A(g,,,,,) for the 36-point support, for which the effect is the
largest. It shows that the variation of efficiency is quite small,
typically =~5%. A loss of efficiency is observed for
v # 0.24. Deformations are mostly defocus and spherical ab-
errations. Nevertheless, A(§ ) remains small, and (with the
exception of titanium, which is the extreme case) the pro-
posed support topologies do not need to be reconsidered.

5 Tolerance Analysis

It is important in practice to know the tolerance on the points’
locations and forces for use in mechanical specifications. This
can be estimated by a simple model where the positions and
forces of the N supporting points are perturbed. Ideally, po-
sition and force would be perturbed independently for each
supporting point, with the exception of three points for which
forces should be constrainted to maintain static equilibrium.
In our model, points are grouped in sets of two or three, and
the center of symmetry of a pair or a triplet of points cor-
responds to the mirror center. This arrangement allows the
use of a series expansion for each elementary set (see Sec. 3).
The radius p, the azimuthal position ¢ under the mirror, and
the carried load m are perturbed for each set of points, and
the deflection computed. The global deflection is then derived
by superimposing the contributions of all groups. The three
perturbations follow a Gaussian probability law. The standard
deviations for p and ¢ are related to o, and o, the standard
deviations for the points’ locations in the mirror plane in

Epre 105 6o, 10%,, 105 mi, i 10, w304, & (deg)
972 227 517 p=3560
132 304 198 p=5881
135 290 177 =3 3 3
p=3093 6386 6251
7=1236 4177 4587
$=0 000 6000
12 409 0819 101 =3 3 3 3
p=2005 7023 7128 7128
7=1884 2805 2656 2656
$=0 60 2002 -2002
15 307 0519 917 =n=3 3 3 3 3
p=2064 7124 7124 7244 7244
7=19702069 2069 1946 1946
¢=0 4500 -4500 1501 -1501
18 156 033 660 =n=3 3 3 3 3 3
p=3700 3700 7650 7650 7650 7650
p=1586 1586 1707 1707 1707 1707
¢=0 60 4485 -4485 1515 -1515
27 0753 0157 450 ~n=3 3 3 3 3 3 3 3 3
p=15718038 4800 5139 5139 8137 8137 8051 8051
7=1073 1212 1069 1042 1042 1090 1090 1191 1191
¢=0 0 60 2055 -2055 2413 -2413 4780 -4780
36 0437 00894 335 n=6 6 6 6 6 6
p=2837 5456 5825 8403 8316 8316
p=1786 1589 1474 1595 1778 1778
=0 30 0 0 1987 -1987

© o W o=

Cartesian coordinates. As no net moment is applied by the
perturbed doublets or triplets, only the force v for the final
randomly chosen set has to balance the mirror weight. The
model is best applied when the points are grouped by pairs
rather than by triplets. We therefore slightly modified the
previously studied topologies to allow this arrangement. For
example, we reoptimized the 18-point support in a new con-
figuration with three rings of six points. The efficiencies for
these new supports were very similar to the real optimal ones.

We carried out two different runs with o, = o, =0.002 and
o,= 0, =0.005, with the standard deviation of n equal to
zero. We then assumed o, =0.001 and 0.002 for two more
simulations, with o,= ¢, =0.0. The mean values of the ef-
ficiencies over 100 runs for each perturbed topology are given
in Table 6. A Zernike decomposition of the aberrated wave-
front mainly shows third-order astigmatism. The value of £,
can be deduced from the relation & /Em=3, derived from
this simulation. The theoretical value of this ratio for pure
astigmatism is 4.90. The results show that the efficiency de-
creases monotonically with increasing number of points when
only errors on point positions are present. But when ¢,20.0,
this is no longer true, and the 36-point support seems to be
more sensitive to noise on forces than the 27-point support.
The efficiency is more sensitive to noise on point forces than
on position. To adjust &, to a value close to the optimum,
it is necessary to be able to control the points’ loading with
an accuracy better than 0.1%, or even 0.01% for N212. Of
course, this fine tuning can only be done with levers or ac-
tuators with load cells. In the case of a simple passive mirror
cell with only balances or triangles as load spreaders, the
mechanics must be as smooth as possible to allow a good
force distribution.
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Fig. 5 Variation of 36-point support efficiency A(&ms) versus Pois-
son's ratio v. Curve 1: without removing the defocus of the defor-
mation; curve 2 with defocus removed; curve 3: when forces are
reoptimized

Table 6 Estimated efficiencies &, (X 10°%) after refocusing, for the
defective supports of Table 2 Topologies have been slightly modi-
fied as explained in Sec 5 Poisson’s ratio is set at v=0.24. Stan-
dard deviations for the points’ location in the mirror plane are o,, 0y,
and for the points’ loading, o,. The value of &, can be deduced
from the relation &, /&ms~5, derived from this Simulation and indi-
cating the presence of astigmatism.

N 6 9 12 15 18 27 36
Gey=00,0,=00 804 454 134 102 0567 0217 0125
0ey =00, 0, =0001 81 48 47 23 19 17 26
0ey =00, 0, =0002 84 51 52 33 34 32 48
0y =0002, 0, =00 83 438 47 18 11 001 063
0y =0005, 0,=00 93 59 57 30 22 19 17

6 Conclusion

The goal of this paper was to study the characteristics of basic
axial support topologies for carrying thin and flexible tele-
scope mirrors, based on a thin-plate model with constant
thickness under pure bending. We have here extended the
previous work by Nelson er al.! for unobscured entrance
pupils and studied several optimized supports, taking into
account the central obscuration ratio, and tolerating a small
change of focal length-induced by the support. We showed
that this allows noticeable improvements in efficiencies, of
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up to 50% over the best efficiencies computed for unobscured
pupils without tolerating defocus. We also examined the ef-
fect on support efficiency induced by a change of mirror
material. Furthermore, we have quantified the performance
of defective mirror supports.
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