Tolerancing in Zemax Zeyu Zhao OPTI 521 12/18/2015

Introduction

- Tolerancing is an important skill to have as an optical engineer.
- Having designed a lens, it is important to know how it will perform once it is built.

- Define quantitative figures of merit for the requirements
- Estimate system tolerances
 - Component manufacturing tolerances
 - Mechanical alignment tolerances
 - Optical tolerances
- Execute Zemax tolerance analysis
- Review tolerance results
- Adjust tolerances appropriately. Keep cost and schedule in mind

- Define quantitative figures of merit for the requirements
- Estimate system tolerances
 - Component manufacturing tolerances
 - Mechanical alignment tolerances
 - Optical tolerances
- Execute Zemax tolerance analysis
- Review tolerance results
- Adjust tolerances appropriately. Keep cost and schedule in mind

System Figure of Merit

- Must propagate all performance specs through to assembly
- Typical requirements
 - RMSWE (Root Mean Square Wavefront Error)
 - MTF at particular spatial frequencies
 - Distortion
 - Fractional encircled energy
 - Beam divergence
 - Geometric RMS image size
 - Dimensional limits

- Define quantitative figures of merit for the requirements
- Estimate system tolerances
 - Optical tolerances
 - Component manufacturing tolerances
 - Mechanical alignment tolerances
- Execute Zemax tolerance analysis
- Review tolerance results
- Adjust tolerances appropriately. Keep cost and schedule in mind

Rules of thumb for Optical Tolerances

Parameter	Base	Precision	High precision
Lens diameter	100 µm	25 µm	6 µm
Lens thickness	200 µm	50 µm	10 µm
Radius of curvature	20 µm	1.3 µm	0.5 µm
Surface sag	1%	0.1%	0.02%
Value of R			
Wedge (light deviation)	6 arc min	1 arc min	15 arc sec
Surface irregularity	1 wave	$\lambda/4$	λ/20
Surface finish	50 Å rms	20 Å rms	5 Å rms
Scratch/dig	80/50	60/40	20/10
Dimension tolerances for complex	200 µm	50 µm	10 µm
elements			
Angular tolerances for complex	6 arc min	1 arc min	15 arc sec
elements			
Bevels (0.2 to 0.5 mm typical)	0.2 mm	0.1 mm	0.02 mm

Rules of thumb for machined parts

- ± 1 mm for coarse dimensions that are not important
- ± 0.25 mm for typical machining without difficulty
- ± 0.025 mm precision machining, readily accessible
- < ± 0.002 mm high-precision, requires special tooling

Rules of Thumb for Optical Assemblies

Parameter	Base	Precision	High precision
Spacing (manual machined bores or spacers)	200 µm	25 µm	6 µm
Spacing (NC machined bores or spacers)	50 µm	12 µm	2.5 µm
Concentricity (if part must be removed from chuck between cuts)	200 µm	100 µm	25 µm
Concentricity (cuts made without de-chucking part)	200 µm	25 µm	5 µm

- Define quantitative figures of merit for the requirements
- Estimate system tolerances
 - Component manufacturing tolerances
 - Mechanical alignment tolerances
 - Optical tolerances
- Execute Zemax tolerance analysis
- Review tolerance results
- Adjust tolerances appropriately. Keep cost and schedule in mind

Zemax tolerance analysis

- Zemax conducts an analysis of the tolerances using one of these three tools:
 - Sensitivity analysis
 - Inverse sensitivity analysis
 - Monte Carlo analysis

Sensitivity analysis

- "Forward" analysis
- Considers each defined tolerance sequentially and independently.
- Parameters are adjusted to the limits of the tolerance range, and then the optimum value of each compensator is determined.
- A table is generated listing the contribution of each tolerance to the performance loss.

Inverse sensitivity analysis

- "Backwards" analysis
- Iteratively computes the tolerance limits on each parameter when the maximum degradation in performance is defined.

Monte Carlo

- All tolerances are considered at once.
- Random systems are generated using the defined tolerances.
- Every parameter is randomly perturbed using appropriate statistical models. All compensators are adjusted and then the entire system is evaluated with all defects considered.

Zemax example

Let's open Zemax file DOUBLET.ZMXPresenting in Zemax

