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1. Strehl Ratio 
 
The wave aberration function, W(x,y), is defined as the distance, in optical path length 
(product of the refractive index and path length), from the reference sphere to the 
wavefront in the exit pupil measured along the ray as a function of the transverse 
coordinates (x,y) of the ray intersection with a reference sphere centered on the ideal 
image point.  It is not the wavefront itself but it is the departure of the wavefront from the 
reference spherical wavefront (OPD) as indicated in Figure 1. 
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Figure 1.  Wave Aberration Function for a distant point object 

 
For small aberrations, the Strehl ratio is defined as the ratio of the intensity at the 
Gaussian image point (the origin of the reference sphere is the point of maximum 
intensity in the observation plane) in the presence of aberration, divided by the intensity 
that would be obtained if no aberration were present, 0(0) / (0)S I IΦ Φ==  , here is phase 
aberration.  

Φ

 
Strehl ratio is a very important figure of merit in system with small aberration, i.e., 
astronomy system where aberration is almost always well corrected, thus a good 
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understand of the relationship between Strehl ratio and aberration variance is absolutely 
necessary.  
 
Now we switch to polar exit pupil coordinates, from the definition of Strehl ratio,  
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By expanding the complex exponential of equation (1) into a power series and keep the 
first 2 terms only for small aberration, the author derived the following approximated 
expression for Strehl ratio (Marechal formula), 
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Now neglecting the 4
Wσ  term in formula (2), the author provided another famous 

approximated expressions for Strehl ratio, 
2
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Wσ  is the variance of phase aberration across the exit pupil             (3)                                      
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From Equation (1)-(4), we can see for small aberrated system, we can maximize the 

Strehl ration by minimize the wavefront variance. So we need to figure out a standard 

way to minimizeσΦ  for any given wave aberration function W(x,y). 

 
2. Power series expansion of ( , )W ρ θ  
 
A standard way of describing the wave aberration is to use a Taylor expansion 
polynomial in field (object height) and pupil coordinates.  
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From equation (4) above, we are able to see wavefront variance is integration over the 
pupil function, so we can suppress the image height by absorbing it into the wave 
aberration coefficients.  The wave aberration polynomial is also typically expressed in 

terms of the normalized pupil radius, r
a

ρ = , where a is the exit pupil radius. So we can 

rewrite the power series expansion as: 
2 2 2 3 3 3 4

11 20 22 31 33 40( , ) cos( ) cos ( ) cos( ) cos ( ) ...W a a a a a aρ θ ρ θ ρ ρ θ ρ θ ρ θ ρ= + + + +＋ +  (5) 
 
However, the terms in the Taylor series do not form an orthogonal set of basis 
functions, thus if we put (5) into (4), we will get many terms and make our calculation 
complex.  Therefore power series expansion is not recommended for data fitting and 
describing experimental measurements of wavefront aberrations. 
  
 
3.Why Use Zernike Polynomials? 
 
Optical system aberrations have historically been described, characterized, and 
catalogued by power series expansions, where the wave aberration is expressed as a 
weighted sum of power series terms that are functions of the pupil coordinates.  Each 
term is associated with a particular aberration or mode.  For example, spherical aberration, 
coma, astigmatism, field curvature, distortion, and other higher order modes. 
 
Many optical systems have circular pupils.  So many analyses and calculations (e.g. 
diffraction) will involve the integration of the pupil function and wave aberration 
function over a circular pupil.  Experimental measurements will also be performed over a 
circular pupil and will commonly require some form of data fitting.  It is, therefore, 
convenient to expand the wave aberration in terms of a complete set of basis functions 
that are orthogonal over the interior of a circle.  Experimental data can be fit to a 
weighted sum of these orthogonal basis functions. 
 
Zernike polynomials form a complete set of functions or modes that are orthogonal 
over a circle of unit radius and are convenient for serving as a set of basis functions. 
They are unique in that they are the only polynomials in two variables ρ and θ , which 
(a) are orthogonal over a unit circle,(b) are invariant in form with respect to rotation of 
the coordinate axes about the origin, and (c) include a polynomial for each permissible 
pair of n and m values. This makes them suitable for accurately describing wave 
aberrations as well as for data fitting.  They are usually expressed in polar coordinates, 
and are readily convertible to Cartesian coordinates.  These polynomials are mutually 
orthogonal, and are therefore mathematically independent, making the variance of the 
sum of modes equal to the sum of the variances of each individual mode.  They can be 
scaled so that non-zero order modes have zero mean and unit variance.  This puts all 
modes in a common reference frame that enables meaningful relative comparison 
between them. 
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Different Zernike polynomial definitions are currently in use.  The convention adopted by 
the OSA has x “horizontal”, y “vertical”, and θ is measured counter-clockwise from x-
axis (i.e. right-handed coordinate system).  More traditional notation measures θ 
clockwise from y-axis. There is the Orthogonal type where the polynomials are 
normalized to have unity magnitude at edge of pupil.  There is also the Orthonormal type 
where the terms are normalized so that the coefficient of a particular term or mode is the 
RMS contribution of that term. Here I am going to adopt Prof. Mahaja’s definition. 
 
 
4. Zernike Polynomials expansion of ( , )W ρ θ  
 
For detail of Zernike polynomials, please refer to Prof. Mahajan’s published paper1 . I 
am going to list the results here only. 

9−

 

 

 

 

 

 
The orthonormal Zernike polynomials and the names associated with some of them when 
identified with aberrations are listed in table 1 blow for n ≤  8. The number of Zernike (or 
orthogonal) aberration terms in the expansion of an aberration function through a certain 
order n is given by 
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Table 1. Orthonormal Zernike circle polynomials 
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Consider a typical Zernike aberration term: 

 

 
Thus, each expansion coefficient, with the exception of , represents the standard 
deviation of the corresponding aberration term. The variance of the aberration function is 
accordingly given by:        

00c

           
 
Thus by using Zernike polynomials expansion, the variance of the aberration function 
becomes a simple adding of squared expansion coefficients, which greatly reduced our 
calculation of wavefront variance in the calculation of Strehl ration. 
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