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This report and the file “FlexureForOptics.ppt” are to be submitted together. The document “FlexureForOptics.ppt” illustrates different flexure configurations and for different applications. This document discusses the basic mechanisms employed to achieve the nanometer-scale precision in those flexure designs.
Abstract

In order to manipulate and redirect light very precisely, an optical system often requires an opto-mechanical design that can guide the motion of light in the nanometer scale and be highly repeatable. Flexure is a mechanism that can be configured to achieve such task. Simply put, flexures are beam bending. In laying out a system, one often starts with back-of-envelop calculation using 1st order approximation. However, in designing flexures to achieve nanometer-scale precision, one must also consider the higher order effects when bending such beams. Using the cantilever model, cross-talks and parasitic motions in bending a cantilever are examined. The undesirable effects can often be eliminated by carefully configuring symmetry into the flexure design. 
Introduction
Most mechanics textbook shows cantilever beam bending as a “stick figure”, as illustrated in Figure 1(a). The stiffness k of a rectangular cross-section cantilever can be expressed as its geometric parameters k = (¼)(bh3/L3)(E). It can be seen from the expression that k is linearly proportional to the base width b and the Young’s modulus E, and it strongly depends on the third power of the ratio (height/length) or  (h/L)3. Therefore, in designing a flexure, one can grossly “tune” the stiffness by varying the ratio (h/L), or one can “fine tune” the stiffness by varying the base width b.  
One of the most common mis-conception about the cantilever is the geoemtry at its free end. See Figure 1(b). It is often drawn and represented as a vertical line. In reality, the free end behaves more like Figure 1(c). This detail is often ignored in the 1st order approximation, and it is righteously so. However, for precision mechanics, we must take this effect into account. In addition, there is a parasitic displacement  along the x direction as a result of the y motion. See Figure 2(a). Again, the 1st order approximation ignores this effect. 
In precision mechanics, we must consider the effects of the end point slope and the parasitic motion along the x direction for such cantilever deflection. By using symmetry, we attempt to eliminate and decouple “other motions” from y in order to obtain a pure tranlation motion with nanometer-scale precision.
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Figure 1: Cantilever beam F = k
Basic Element - Parallelogram
Figure 2(a) illustrates how a simple cantilever deflects when a force is applied. Specifically, it shows the displacement of the free end in the y direction, a parasitic motion along the x direction, and a small rotation  of the free end. This configuration can not be considered as a high accuracy translation stage, because there are three motions coupled together. 
To decouple the motions, symmetry is applied to the free end, or the “translation stage”. Figure 2(b) and 2(c) show how symmetry is used to decouple the motions for the translation stage. However, in order to achieve such pure translation motion, it comes with the expenses of increasing design complexity and larger packaging volume. The basic element employed in 2(b) and 2(c) is a parallelogram flexure. 
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Figure 2: Simple, double, and compound flexure

In 2(b),  rotation is eliminated; the boundary condition constrains all four end points of the double flexure to be perpendicular to the end surfaces. However, free body diagram shows that there are internal moments being applied to the translation stage (not present in the simple flexure). See Figure 3. Those moments are being counteracted by the top and bottom cantilevers. In this configuration, the top cantilever is being stretched while the bottom one is being compressed. The translation stage must have enough stiffness to resist such bending, so it can be considered as a rigid body. Strictly speaking, there is a net rotation of the translation stage due to the axial loads of the top and bottom flexures; tension and compression in the top and bottom flexures lead to +L and -L in the flexure lengths. However, ±L are extremely small, and the net rotation is negligible. Even though  rotation is eliminated, there is still a parasitic x motion not yet decoupled.
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Figure 3: Free body diagram of a double flexure
In 2(c), both  rotation and parasitic x motion are exactly cancelled, and y translation is completely decoupled from  and x.  rotation is eliminated through the two sets of double flexures. In addition, this compound flexure utilizes a primary and a secondary motion stage to create + and – displacements along the x direction. Therefore, the net displacement of the primary motion stage along the x direction is 0. However, the location of the applied force is important, and it is desirable to have the force be collinear with the ground A (stationary points). If the location of the applied force is collinear with ground A, then there is 0 net moment with respect to the ground. See Figure 4(a). If the location of the applied force is off-axis from ground A, for example r = x0, then ground A must also exert a net moment to counter act the moment M = F x r. See Figure 4(b).

Figure 4: Free body diagram of a compound flexure
XY Translation Stage Based on Compound Flexures
Figure 5 is an XY translation stage based on compound flexures. The stage can be divided into four quadrants, and each quadrant consists of an individual x and y compound flexure. 
One may choose to use only a quadrant of Figure 5 (two compound flexures oriented orthogonal to each other) to form an xy stage, and this configuration perfectly decoupled the x/y motions (introduces no  rotation either). Even though possible, however, it is difficult to arrange a primary motion stage such that the location of applied force exerts symmetry on both flexures simultaneously. If the location of the applied force is not collinear and symmetric to both flexures simultaneously, then the ground and/or the intermediate stage will need to counter a twisting moment M = F x r as described in Figure 4(b). In addition, an x compound flexure is inherently unstable with an applied force along the x direction Fx. It can be thought as a two-bar linkage in compression, and it has a negative stiffness due to the inherent instability. This is especially evident for soft cantilevers, so each cantilever must be designed to have enough stiffness to avoid buckling. 
By arranging the compound flexures in a highly symmetric configuration as shown in Figure 5, there is no net moment with respect to the grounds. Therefore, under applied loads, the stage as a unit will not “twist” and there is no in-plane rotation. The in-plane xy translations are very well decoupled. Even though the out-of-plane stiffness is reasonable, however, the out-of-plane motions are left “open-loop” and unconstrained. 
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Figure 5: XY stage based on compound flexures
Rule of Thumb for Flexure Stage
Flexure stages are almost always made by water jet machining or wire EDM.

The biggest advantage of a flexure stage over a micrometer stage is the absence of friction. Without friction, a flexure stage can move very smoothly, continuously, and be extremely repeatable. The resolution of a flexure stage is limited by its driving mechanism. Piezoelectric actuator often provides a very good force-to-displacement figure of merit, compared to the capacitive or inductive actuators, thus it is very suitable to drive a stiff flexure stage. It is not difficult to achieve nanometer-scale positioning resolution by combining a piezoelectric actuator with a flexure stage; however, the range of motion is often limited to 10’s of microns or sub-millimeter at most. 
Two important flexure design rules are visualization and knowing the basic flexure elements. By placing flexures in serial, one can gain travel distances. By placing flexures in parallel and with certain symmetry, one may decouple parasitic motions. Flexures are often forgiving of over constraints, and deflection due to imperfect alignment can be stored as potential energy in the flexure.

In designing a flexure stage, one starts by examining the requirements such as the travel distances, load capacity, stiffness, and degrees of freedom needed. It is important to achieve the desirable load capacity with minimum spring stiffness (softer spring, more travel), so one does not “waste” actuation forces. However, low stiffness is more susceptible to parasitic forces and motions. In addition, flexure stiffness and its natural frequency must also be high enough to reject vibration in the working environment (expect 2-5% damping from the base metal). Otherwise, damping devices must be incorporated. Therefore, trade-offs must be carefully balanced.
Conclusion:

Flexures are beam bending, and they are very well understood and have very well defined analytical solutions. For precision mechanics, one must pay close attention to all the boundary conditions and apply symmetry to eliminate parasitic motions. By doing this, flexure translation and rotation stages can achieve nanometer-scale precision. Since the motions can be decoupled, one can then combine different flexures to form any combination of x/y/z/ stages. See FlexureForOptics.ppt for examples.
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