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ABSTRACT

The focus of this paper is concerned with the practical aspects of
designing optical instruments which are intended for production in large or
even small quantities. Certain aspects of performance are required of an
instrument which is its reason to exist. It is usually expedient, plus
fiscally and ecologically sound, to strive for an overall efficient use of
resources in the 1life cycle of the instrument (i.e., keep the net cost
down). This includes the processes from concept through design, prototypes,
production, use, and disposal. The design and tolerancing aspects of the
process have a major effect on the life cycle cost and efficiency of the
system and that is the principal subject of this paper.

We discuss what makes up the cost of a lens and the effects of tolerances
and other factors on that cost. This results in a new lens cost estimation
formula. We describe the interactions of lenses and lens cells from the
tolerance viewpoint. We then explain the principles whereby the system
tolerances can be determined which will give the minimum cost system which
meets the performance requirements. We conclude with an example from real
life of the preliminary application of the principles.

1. INTRODUCTION

The assignment of tolerances to the various dimensions and parameters of an
optical system is a CRITICAL element in determining the resulting
performance and cost of the system. This has historically been complex and
ill-defined and therefore a distasteful aspect which the designer has had
to deal with in one way or another. Much of the tolerancing of systems in
practice has been done by art and experience more than by scientific
calculation. Here, we attempt to make the ENGINEERING principles as simple
and clear as possible so that they may be applied in a straightforward
manner. We use the term ‘"engineering" to imply that practical
approximations based on empirical data are used to reduce the problem to
terms that can be handled in the real world. That is to further imply that
we are dealing here with the application of optical design to produce a
functional set of hardware as opposed to the theory and/or science of lens
design as an exact and abstract study. In the production of an optical



system, random errors in parameters occur. These cause the results to be
statistically predictable, but not exactly calculable. Therefore, the use
of reasonable engineering approximations is appropriate and justifiable.

It is sometimes possible to tolerance a system such that each of the
components is fabricated to an accuracy which will insure that the
instruments will be adequately precise and aligned to give the required
performance by simple assembly with no alignment or adjustment. This may
be the case in certain diamond turned optical assemblies. The other
extreme is where almost every parameter of a system can be adjusted to
bring the system to the desired performance. However, neither of these
approaches 1is wusually the least cost way to meet the performance
requirements. We discuss philosophical principles and practical ways of
approaching the least cost solutions and give an illustration of the
application of the techniques.

This paper is the forth of a series (1,2,3) which started in 1982 where the
authors invesitgated how to achieve the least-cost tolerancing of an
optical system. Since that time, Wiese (4) has compiled a very useful
collection of papers on tolerancing in its many aspects. That volume
includes a paper by Plummer (5) which played a role in our earlier work and
a paper by Adams (6) which judiciously utilized some of our findings.
Fischer (7) did a more recent survey based on Plummer's work which we
compare with some of our wupdated cost versus tolerance data below. Parks
(8,9) and Smith (10) have papers in Wiese's collection that have many
practical and helpful discussions on the subject. The works referenced
form a good general background for this paper, but we will reiterate the
salient points below for the convenience of the reader. We will alsoc cite
other specific references as they apply below.

It is the autliors' experience and opinion that there has been a great deal
of waste resources in the past due to poor tolerancing "art". A rigorous
and all encompassing treatment of all but the simplest system can be VERY
complex. It is our aim to move the practice of tolerancing from the art
stage to the engineering stage with as much simplification as is reasonably
justifiable. Warren Smith (10) has done a great deal to move the status of
the practice in this direction, we are attempting to move another step
along the way by adding the real influence of cost into the tolerancing
process.

The optical and mechanical designers of instruments have by far the
greatest influence on the ultimate cost and performance of an instrument.
All others, including the manufacturing operations, cannot have as much
power as the designers to change the potential satisfaction of the user

and profitability of the producer. Figure 1 illustrates this graphically.
Figure 2 outlines the detail design process and how the subjects of this
paper interplay in the process.
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2. BASE COSTS

We will first review the concepts of base costs from our previous work and
then add the results of new work on the estimation of the base costs
directly from the data on a drawing and/or the specifications of a given
component.

Let us take the example of fabricating a single 1lens. If someone asked
that we make a biconvex lens of glass, we would typically have to go
through the following steps:

generate (or mill) a radius on the two sides
mount the lens on a spindle

grind and polish the first side of the lens
remount the other side of the lens on a spindle
grind and polish the second side

edge the lens

There are obviously a few other small steps such as obtaining materials and
grinding and polishing tools, dismounting, cleaning, etc. We have said
nothing to this point about further specifications such as diameter, radii,
thickness, and tolerances. Without these there is still a cost in time and
materials and equipment necessary to make the biconvex glass lens. This is
what we call the base cost. As we get more specific about the lens and
add more restrictive tolerances on the parameters, more care and time and
equipment will probably be required to make the lens to the new
specifications. Therefore the cost will increase with increasingly
stringent requirements/tolerances/specifications.

Our previous work (1,2,3) went into some detail on the relationships of the
increase above the base cost with changing tolerance values. However,
neither we nor Plummer(5) quantified those base costs. We will quantify
the base costs in this work and thereby add significantly to the usefulness
of the technique and somewhat to the accuracy of the results. What was not
made clear in the earlier work was that the base costs to be used in a
given cost versus tolerance case are not the same for grinding and polishing
as they are for centering and edging. As we shall show below, the
centering and edging operation is not influenced by grinding and polishing
costs or tolerences and vice versa. Not incorporating this concept can
lead to some error in the application of our earlier work and Adams'(6)
extension of it. There is a different base cost to which the increase with
tolerance is to be applied for the two classes of operation. Figures 3 and
4 show the tolerance of 1lens diameter and eccentricity costs as a
percentage of base cost for the centering and edging operations. This
applies to the centering and edging base cost (CE). Figures 5 through 10
show the tolerance costs as a percentage of the base grinding and polishing
costs (GP) for tolerances of radius of curvature, irregularity, diameter to
thickness ratio, center thickness, scratch and dig, and the glass stain
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characteristics. It was also interesting to us to recognize that the
milling or generating costs are not particularly affected by tolerances
with today's equipment and they are not part of the base which the tolerance
factors multiply. The milling costs are therefore part of the base, but
only a function of material and dimensions, not tolerances.

Before we discuss the cost versus tolerances in detail in the next section,
we will show the development of the base cost formula. The present view
and cost estimating scheme is the authors best effort to date resulting
from their experience and discussions drawing on the work and experience of
Stephen Cupka, Manager of Estimating and Reinhard Seipp, Assistant Manager
of Optical Manufacturing at Opto Mechanik, Inc., most of these persons also
have experience from one or more other shops than OMI to draw upon.

Let us call the total base cost to make a lens MT, which is in either time
or money which differ only by some multiplicative factor. If we call the
milling or generating cost MG, we can represent the total base costs as the
sum of milling, grind and polish, and centering and edging costs as given in
Egn. 1.

MT = MG + GP + CE (1)

2.1 Milling/generating costs

We find a reasonable fit with experience in milling to be given in Eqn. 2
where IM is the number per lot to be milled and d is the diameter in
inches. The milling of both sides of the lens is included here.

MG = 4 + 90/IM + 0.1%d™2 (2)

This implies that there is some base cost to mill the optic plus some setup
cost divided by the number of parts to be run from that setup plus a
factor due to lens size. Since the material to be removed from a molded
blank is usually about the same thickness independant of blank diameter,
the generating time is only a function of a blank's area (d"2).

2.2 Centering and edging costs

We will deal with CE before GP because it is simpler. The cost is a
function of the number in the lot LC to be centered on one setup, the
diameter d, the number of chamfers C, and the number of flats F (planes
perpendicular to the lens axis). Equation 3 represents our collective best
estimate.

CE = (2+d+C+F)/3+ (30 + 10%C + 15%F)/LC (3)

This accounts for a setup cost for the diameter, chamfers, and flats plus
the edging of each lens.
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2.3 Grinding and polishing costs

The grinding and polishing cost is a very strong function of the number of
lenses which can be ground and/or polished at one time on a block. If the
radius is short the number NS which can be blocked for that side is
determined by the radius R and the lens diameter d. If the radius is
long, the number which can be blocked is determined by the maximum block
diameter G and the lens diameter d. The precise calculation of this number
can be done when flats, chamfers, and center thicknesses are properly
accounted for. That subject might be worthy of a paper on its own. For
simplicity and practicality, we will use a conservative approximation
without showing its derivation here. If the R/d is less than .87, only a
single lens can be polished at one time, and at least 3 per block can be
done if the ratio is greater. If the radius is short the number per block
NS will be given by integer value in Eqn. 4.

NS = INT(2.9%(R/d)"2) (%)

Here R is the radius and d is the diameter of the side in question, and N1
would be NS for side 1 and N2 would be NS for side 2.

If the radius of the side is long, the number per block will depend on the
diameter G of the largest block which can be used as shown on Eqn. 5.

NS = INT(.64%(G/d)"2) (5)

Whichever NS is smaller for a given side (for R or G) will be the number
which can be ground and polished per block for that side. Our experience
is that less than the maximum number will often be used when the radius is
long. This is not of great cost consequence, however, because the change in
cost with a few parts more or less when NS is large is seen in Eqn. 6 to be
small relative to other costs.

Our collective experience with the grind and polish costs GP per lens and
per side in a block of NS lenses is given in Eqn. 6.

GP = 7 + 14/NS (6)

It is also usually appropriate to consider a yield related factor Y due to
scrapage, etc. This is the factor times the number of lenses to be
delivered which must be started to give the yield; it is actually inverse
yield then. When this is applied and both sides are considered, the total
GP base costs are given in Eqn. 7 where N1 and N2 are the numbers

GP = Y*(14 + 28%(1/N1 + 1/N2)) (7)
of lenses per block for side 1 and side 2. We now have all of the

components of the base cost (in relative units) for a lens based on a
collective empirical history and in a fairly workable form. We only need to



apply the effects of tolerances and other influences such as material
properties and diameter to thickness ratio to these base costs in the next
section and we can then predict the cost to produce a given lens to its
specifications. The derivative of that cost with a change in any tolerance
or parameter will be used to determine the distribution of tolerances which
will minimize system cost and insure the desired yield.

3. THE EFFECT OF TOLERANCES AND OTHER FACTORS ON COSTS

We have generally wupdated and included here the cost versus tolerance data
presented in our previous work (3) in Figs. 3 through 10. The dots were
Plummer's work (5), the triangles were our previous experimental and or
estimated values, the c's are factors from Cupka's earlier estimates, and
the f's are the averages from Fischer's survey (7). The lines drawn are the
functions which we currently choose to use as the best estimate from
experience and the functional equations are indicated on each figure. On
the figures where appropriate, we have included information from Smith(10).
He indicated tolerances that he thought we "low cost" which we have plotted
as "$". We show his "commercial’ as "$$", "precision as "$$$", and "extra
precise' is shown as "$$$$". These are in general accord with other data.
For a more extensive discussion of the previous work, see the references.

Figure 3 shows the cost effect of lens diameter tolerances which is not a
strong factor up to the 1limit of the capabilities of the edging process.
The various authors' data are in good agreement. We have shown the
tolerance scale in inches, and micrometers on this and some of the other
figures for the readers convenience.

Figure 4 shows the cost effect of the lens centering tolerances. The
centering tolerance is sometimes expressed as light deviation, wedge, or
total indicator runout (TIR) at the edge of a lens or window. These

different versions of the requirments can be reconciled in the following
way. The wedge angle in radians is the same as the TIR divided by the
diameter being measured. The deviation depends on the wedge times the
refractive index minus one and conversion to arcminutes as needed. The
KW-factors in the figure account for this. Plummer's and Fischer's data are
in good accord and are well represented by the approximation which we use.

Figure 5 deals indirectly with the cost of radius of curvature tolerances.
The work of Thorburn (11) reported in Wiese's collection made it clear that
we should refine our approach to radius of curvature. We had previously
just used the percentage of the radius as a measure of stringency of the
radius tolerance. But it becomes apparent after a little analysis that the
delta in sagitta over a surface is much more meaningful. This is what a
spherometer or an interferometer can measure. One can derive that the
change in sagitta with a change of radius is approximated by Egn. 8.

dz/drR = .125%(d/R)"2 (8)
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This is what we now use as seen in Fig. 5. The graph is plotted as cost
versus the reciprocal of the delta sagitta dZ which is a function of delta
radius dR and R and d. The delta R and R alone are not enough to estimate
the real cost of the tolerance, the surface diameter must also be taken
into account. It might be more appropriate to refer to the sagitta
tolerance of a surface than the radius tolerance, but shops are used to
seeing the radius tolerance spelled out on a drawing. Equations 9 and 10
can be used to convert either way between dR and dZ (typically in inches).

drR = dZ * 8%(R/d)"2 (9)
dZ = drR * .125%(d/R) "2 (10)

The cost function chosen is based on Thorburn's (11) statement that a tight
tolerance on sagitta is .000005 inch and .0001 inch is loose.

Figure 6 shows the impact of surface figure irregularity tolerances. We
described the earlier experimental data in Ref. 2. We have added the
points from Fischer and Cupka and a slight reformulation and labeling. The
data from the various sources seems sufficently consistent and is
reasonably represented by the chosen function.

Figure 7 shows the effects of the diameter to thickness ratio of a lens.
This has to do with the flexibility of the part when trying to hold a good
surface figure and sometimes the temperature effects when working thin
negative lenses. Our simplistic treatments of this to date are probably
not as adequate as we would 1like., This might be worthy of a paper by
itself. Fischer (7) reported a much less severe effect than our previous
work (3). In our work we estimated that the effect was inversely
proportional to the flexibility of a disk which goes as the cube of the
diameter to thickness ratio d/T. We will now accept (conditionally)
Fischer's data collection as possibly more representative and we have fit
our function to a compromise between our old data and that of Fischer where
both are seen in Fig. 7. There is little doubt that plano-plano windows can
be worked very thin by contacting them to rigid plates which lend the
effect of their d/T ratio. In the case of lenses, this is not the practice
however. Structural shape and thermal effects, etc. need to be studied in
more detail. We will use this function until we or someone else can refine
it further.

Figure 8 deals with the cost of center thickness tolerances. A major
effect here is that once a thickness goes under the tolerance limit it is
lost and must be replaced. We believe that this is what is reflected in
the radical change in cost in Plummer's data as a .0005 inch tolerance is
approached. At some point, a given tolerance would not allow a scatch or
pit to be ground or polished out and the part would be lost due the
combination of the thickness and scratch and dig specifications.
Plummer's and Fischer's data are in reasonable agreement, and Cupka only
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divided the costs into above and below a .002 inch thickness tolerance.

Figure 9 shows the effects of scratch and dig tolerances. The various data
cluster reasonably near the very simple function that we choose to employ.

Figure 10 shows the simple function of cost versus glass stain code that we
fit to our previous data and Fischer's. We might comment that we feel that
even the 5 code glasses can be worked on a fixed price basis now, but at a
significant added cost.

The "polishability'" factor should also be applied as a cost impact. Each
shop has its own experience that pyrex takes more time to grind and polish
than BK7 and fused silica takes longer than pyrex, etc. In an attempt to
include this factor, we have collected the estimated time factor for a
variety of materials as compared to BK7. Some suggest that germanium has
the same polishing time as BK7, and others think it takes significantly
longer. This will, of course, vary from shop to shop and the procedures
used. The author believes that typically germanium lenses will polish to
spec in about the same time as BK7, but that the typical polish spec may be
160/100 for Ge and 80/50 for BK7. Therefore, the Ge will take longer to
meet all of the same specs as a piece of BK7. The numbers in Table 1.
reflect the author's best estimate based on a variety of inputs, but each
shop needs to examine which factors to use in their own case. The grind
and polish time will then be multiplied by this material polishability
factor P.

TABLE 1.

Polishability Factor of Various Materials

BK7 100%
SF56 120%
Pyrex 125%
Germanium 130%
Fused Silica 140%
Zerodur 150%
ZnS, ZnSe 160%
FK2, BaF2, Amtir 170%
LaKN9, LaFN21 200%
Electroless Ni 250%
CaF2, LiF 275%
MgF2, Si 300%
Electrolytic Ni 350%
Ruby 700%
Sapphire 800%

Once the lenses are fabricated, they are typically mounted in metal cells.
We have to coordinate the tolerancing of the metal and the glass to get the
desired results. Similar cost versus tolerance curves can be developed.
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Figure 11 shows the cost versus lens cell diameter tolerance for both manual
and automatic machining. The same curve applies to the length tolerances
between bores as in spacers. Once an automatic is setup, the parts repeat
within the capability of the machine with little change in the cost versus
tolerance. The manual operations are more and more labor intensive as the
tolerances increase.

Figure 12 shows the cost versus tolerances of bore concentricity and length
run-out such as tilt in a spacer. There is no difference from manual to
automatic here. However, the big difference here is whether both bores are
cut without removing the part from its holder (chuck). If so, then the
concentricity will be limited only by the accuracy of the machine. If the
part must be rechucked for the second bore, much more time is consumed to
hold a tight tolerance in the rechucking or mandrill type operation. There
is a strong motivation to design for single chucking as much as practical.

We will use the results of Figs. 11 and 12 when we come to distributing the

tolerances in the instrument design. The base cost for the machining
operation will be needed to multiply times the metal tolerance factors in
this process. For simplicity we will ignore setup costs and use a base

machine fabrication cost of 6 units per bore or spacer cut in the same
denomination as those used for the lenses above. For an automatic, we will
use 4 units. This aspect could be made much more complex and refined, but
this approximation is adequate to allow us to properly distribute
tolerances in the later sections, but not estimate total machining costs.

These cost versus tolerance and cost versus other parameter functions are
the major ones influencing the optical component fabrication cost. Now that
we have them reasonably characterized, we can apply them to the base costs
given in Sec. 2 to estimate the total component cost as specified. We can
also find (to a sufficient approximation) the change in total component
cost with a change in any of the parameters or tolerances. This, coupled
with the sensitivity of the system performance characteristics to each of
the parameter and tolerance changes, will then allow us to distribute the
tolerances in such a way as to minimize the system cost while maintaining
the required successful product yield. This is the major goal toward which
we now strive.

4, TOTAL LENS COST ESTIMATION

When we combine the base costs given in Eqns. 2, 3, and 7 with the
tolerance and other factors on Figs. 3 through 10 and Table 1, we get the
total lens cost estimation given in Eqn. 11. This obviously cannot be
scientifically rigorous, but is only a practical estimate for engineering
or business purposes. The detail factors will vary from shop to shop and
time to time. It is the author's belief that this sort of an estimation
formula will be more accurate and consistent than most estimators or shop
cost records now.
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TOTAL LENS COST= MT=
(GENERATING) + MG

(PART SETUP)  + Y14

(SIDE 1, G&P) + (PrYx14/N1)X (1+.25+K1/A I1)%(1+(R1/d)* +8+KZ/ AR1+ 0003+(d/T)*)
+40+KT/ ATH(1410/51+5/D1)*(1+.01#SC%))

(SIDE 1, G&P) + (PxYx14/N2)K (1+.25%K1/A 12)%(1+(R2/d)* *B+KZ/ AR2+ 0003+(d/T)>)
+404KT/ ATH(1410/52+5/D2)(1+.01%SC%)) (11)

(CENTERING) + CEx(1410%KD/ Ad+.145xKW/ AA)

Although Eqn. 11 is extensive, it is not particularly complex. Table 2
sumarizes the parameters of the equation.

TABLE 2

MI  total lens cost estimate per piece (in relative units)

MG milling/generating cost from Eqn. 2

IM  number of parts milled in one lot setup

Y yield factor of parts started/parts acceptable
polishabilty factor from Table 1

N1  number of parts/block for Rl side from Eqns. & or 5

NZ " 11" " " 1" R2 n n ”" " on "

Rl  radius of side 1

R2 n " 1" 2

G diameter of largest block to be used for grind and polishing
d diameter of lens

T thickness of lens
S1  scratch number spec for side 1

SZ " mn n 1" n Z
Dl dig 1" n " " 1
DZ " t " 111 n 2

SC worst stain class of glass type

K's and delta's as on Figs. 3 to 10

CE centering and edging base cost per Eqn. 3

c number of chamfers on the lens

F n 1" flats " " "

LC number of lenses centered and edged in one lot setup

The generating and certain part setup costs are virtually independent of the
tolerances of the part. The centering and edging operation and tolerances
are virtually independent of the grinding and polishing operations and
tolerances. The operations and tolerances of the two radii of the lens are
in most senses independent. This is all reflected in Eqn. 11. There has
been some logic applied to whether the tolerance factors are added or
multiplied and to what they are applied. The irregularity cost factor
multiplies times the base cost of grinding and polishing each side. That
irregularity cost is further multiplied by the radius tolerance cost factor
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plus the flexure (d/T) difficulty factor which make the figure irregularity
harder to achieve. The decision to add the d/T influence to the radius
tolerance influence was made on the basis that they do not significantly
effect each other, but they both effect the cost of meeting the
irregularity specifications. The stain class interacts with and effects
the scratch and dig requirements and they both increase the difficulty of
holding the thickness tolerance, but they do not effect the irregularity
degree of difficulty. The edging operation is affected by the diameter
tolerance and the wedge or deviation tolerance. We will discuss the unique
interaction of the diameter and centering tolerances in the next section.

This formula then reduces the estimation of the fabrication cost of most
lenses to a clerical task of entering the parameters from the lens drawing
into a simple computer program. This could also, in principle, be worked
into a CAD program to allow the designer to see immediately the cost impact
of the design and tolerances. The key factor for tolerancing, however, is
that we can find the partial derivatives of Egqn. 11 with respect to each of
the reciprocal tolerances for use in finding the minumum cost tolerance
distribution for a system as discussed in Sec. 6.

5. INTERACTIONS OF LENSES AND MOUNTS

A lens system typically consists of lenses in metal mounts. The mounts are
bores that closely fit the lens diameters with '"lands" or rings of contact
between one or both of the radii and a metal locating surface in the
direction of the optical axis. The relationship of one lens to another
will be determined by the spacing dimensions and tolerances of the mount
and the concentricity and tilts between the locating surfaces. The
mounting metal (or other material) must be toleranced to be compatible with
the glass tolerances. In this section we will address how we deal with
this task.

There are several interesting references (11,12,13) dealing with tilts,
decentrations, and rolls (by whatever names) but none seem to have addressed
them in an analytic form appropriate to our cost minimization goals.

5.1 Lens Centering

Figure 13 shows a lens in a cell bore where only centering factors are
considered, not tilts. It is easy to evaluate the effect or sensitivity of
decentering a lens from the intended optical axis in most lens design
software. This decentering in a system is the sum of several factors. The
decentering of the optical axis of the lens with respect to the outside
diameter of the lens is what the optical shop works on. The centering of
the mounting bore with respect to the ideal axis is what the machine shop
works on. There needs to be some clearance for assembly to insert the lens
into the cell, we will call this f. The tolerances of the lens diameter d
and the bore diameter dM, delta d, and delta dM give rise to more potential
clearance. These clearances will allow the lens to move to extreme
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positions in the cell, such as fall to the bottom, and cause more
decentering. Equation 12 expresses the possible total decentering td as a
function of the lens decentering dc and the factors mentioned above.

td = dc + (f + delta d + delta dM)/2 (12)

The costs versus tolerances have been defined and quantified in Sec. 3. We
can see that the least cost distribution of tolerances for a lens in a bore
with respect to total decentering will dictate a certain ratio between the
dc, delta d, and delta dM. We will then reduce the tolerancing of the
"set" to a function of only delta d since the dc and delta dM can be taken
as the dependent variables.

The dc  of the lens is measured by the wedge delta A in Fig. 13 (here we
work 1in milliradians) or in the arcminutes deviation it causes which we
relate by the factor KW in Fig. 4. We can show that dc can be expressed in
terms of delta A as 1in Eqn. 13. (Some RSS possibilities will be ignored
here.)

de = (R1*R2/(R2-R1))/(1000%KW) * delta A (13)
Delta A in terms of delta d is found to be
delta A = SQR (.145%KW/10%KD) * delta d. (14)

If we call the base machining cost MF, then delta dM in terms of delta d is
given by Eqn. 15.

delta dM = SQR (MF#20%KM/CE*10*KD) * delta d (15)

The minimum fit clearance factor £ has to be determined by the assembly
plans for the cell and whatever allowances are made for differential thermal
expansion. At nominal temperature, it will allow a shift in an otherwise
perfectly fitting cell of f/2. This decentering will have to come right off
the top of the total decentering budget for this lenstbore set leaving the
residual budget to be partitioned amoung deltas d, dM, and A. We express
the result in Eqn. 16.

td-£/2 = (( 1/2 + SQR ((MF%20%KM)/(CE*10%KD))
+ SOQR (.145/(10%KD*KW)) % ABS(RI®R2/((R2-R1)*1000)) ) * delta d (16)

This factor times the delta d is to be used in the tolerance allocation
process with the decentering sensitivity to determine delta d. The delta d
can then be used to assign delta A and delta dM (which are dependent on
delta d) in a secondary operation using Eqns. 14 and 15. The diameter of
the cell bore dM is also determined by this process as expressed in Eqn.
17.

dM = d + £ + delta d + delta dM (17)



Although Egn. 16 might not appear to simplify anything, it is a relatively
straightforward application of the cost and geometric factors which allow
us to properly spread the cost and tolerances in the lens and its cell.

5.2 Lens tilt and roll

An otherwise perfect lens might be tilted with respect to the system's ideal
optical axis because the metal locating surface of the cell is tilted by an
angle delta AT as shown in Fig. 1l4a. This can be simply dealt with using
the cost versus tilt curve in Fig. 12 and the sensitivity of the system to
tilt of the whole lens. This assumes that the tilt is not otherwise
limited by such factors as a retainer on the other side of the lens or the
fit of the cylindrical lens diameter into the cylindrical cell bore which
prohibit that much tilt.

The perfect lens might also '"roll" in an oversized bore as shown in Fig.
14b. This shows that the left hand surface tilts while the right is
correctly located against the "perfect'" cell. The lens will roll about the
center of curvature of the right hand surface R2. The left hand surface,
which we have shown plano for clarity, will tilt through an angle of delta
AR which is approximately V/R2 radians. We can show that:

V= (f+delta d + delta dM ) / 2. (18)

We know delta dM in terms of delta d from Egn. 15. This allows us to
express delta ARl of the left surface R1 as a function of delta d in Eqn.
19.

delta ARl = (f + (1 +SQR((MF*20%KM)/(CE*10%KD)))/ABS(2%R2) * delta d (19)

This and the system performance sensitivity to a tilt of R1 will allow us
to allocate the tolerance budget for a tilt of Rl. However, note that
controlling this requires the control of delta d which is already
determined by the decentering requirements! Generally, one or the other
will be the more demanding on delta d. It would appear that we should find
which is the more stringent and use it to determine the tolerance
allocations. The other would still make some contribution to the error
budget, but not be independently determined. As in the tilt case, the
ability of the element to roll to the full extent indicated in Eqn. 19 may
be otherwise restrained by (but might also be caused by) a retainer ring,
etc. Since this can be the case, it may be appropriate for the designer to
use some judgement in the application of tilts and rolls after looking at
the particulars of the sensitivities and the mounting designs to decide if
they should be given the full force of the equations. This unfortunately
seems to bring us back a bit from the engineering to the "art" in
tolerancing.

Having now dealt with the necessary elements of the cost versus tolerances
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and other parameters and the applicable geometric simplifications, we will
next proceed with how we can apply the foregoing to distribute the
tolerances for the maximum performance and cost benefit.

6. ASSTGNING TOLERANCES FOR MINTMUM COSTS, AN EXAMPLE

We described the general principles of distributing the tolerances for
minimum cost in our first work (1) on this subject. Adams (6) made some
significant additions to our work which we shall draw from below. If there
is more than one performance criterion that must enter into the tolerancing

process the solution to the equations is somewhat involved, but it can be
done. However, many problems, including the one which we will use as an
example, have one performance criterion which dominates all of the others as
relates to the tolerances. That is, if the tolerances are chosen to meet
that performance requirement, then all of the others will also be met.
This reduces the computation considerably and makes it easier to
visualize. For the balance of this paper, we will use the single
requirement case with the understanding that it can be extended to multiple
criteria by the methods of the previous papers as needed.

Figure 15 shows the Multi-Focal Length Tracking Telescope (MFLTT) that we
will use as an example of the tolerancing process. It has a catadioptric
telescope section of 300mm aperture and about 2000mm focal length with a
25% central obstruction due to the secondary mirror. The telescope image
is then collimated by a focus lens set. The afocal beam is then imaged by
one of three relays to the final focal plane. These relays are alternately
positioned in the beam to give the effective focal lengths of 1000, 2000,
and 4000mm. Before the final focal plane there is an auto-iris system of
variable neutral density filters and a reticle projection unit (AIR). There
is also a 500mm system which is partially separated from the others to allow
a larger field of view. The 500mm system is folded into the same optical
path as the others by a movable prism. There are sealing windows in front
of the telescope and the 500mm lens.

In this complex telescope system example, the most stringent requirement of
the system is the on-axis MIF at 30 lp/mm. When this is satisfied, the
off- axis MIF at 30 lp/mm, the on- and off-axis MTF at 10 1p/mm, and the
boresight, etc. requirements will all also be satisfied without additional
or adjusted tolerances being required. To be consistent with our previous
report (1), we will designate this performance requirement by E which
represents the maximum permissible error in MIF from ideal for the system.
We will actually convert this E to units of RMS wavefront error (RMSWE) for
simplicity. The total E will eventually be partitioned among each of the
tolerances which affect it.

To make a tractable example for this paper, we will partition the total E
among the various sections of the system. The partial E will then be
allocated to the parameter tolerances within one section based on the cost
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minimizing technique. This "divide and conquer" approach is needed here,
plus any justifiable simplifications in general, to reduce the overwhelming
magnitude of typical problems that have hundreds of component tolerances to
be determined. The way to eat an elephant is one bite at a time!

In the final analysis, it is most correct to tolerance the whole optical
train from object to image in one operation. This will truly allocate the

tolerances for the required performance at the minimum cost. The
simplifying partitioning will cause some deviation from the ideal result
unless the estimate used in the partitioning was exactly correct. In the

example used here, it would be best to tolerance the 4000mm from
end-to-end, but the data would be too cumbersome to make a good
illustration in this paper.

6.1 Simplifying approximations

The MIF of a system is often the best performance measure to use because it
most directly relates in many cases to the performance of an overall system
when it is used. It is, however, not generally possible to measure the MIF
effect of each component lens of a system in the production process. The
characteristics that are readily measured on a lens were discussed in Sec.
3, such as irregularity, radius, centration, etc. We chose to work here
with the effects of each tolerance on RMSWE, because we think that it can
be reasonably related to the system MIF.

We estimated the reduction in MTF per wave of RMSWE at 30 lp/mm for the
2000mm effective focal length, £/8 system by introducing errors into the
system and evaluating it for MIF and RMSWE. With parameter deviations, we
produced defocus, spherical aberration, coma, and astigmatism. Defocus was
introduced by evaluating the system at different focal planes from the best
focus. Spherical aberration was introduced by varying the y 4 aspheric
coefficient from the nominal. Coma was evaluated in an "equivalent" ( £/8,
2000mm ) parabolic mirror system with the stop at the focal plane so that
astigmatism was zero. The system was evaluated off-axis to introduce coma.
Lastly, astigmatism was introduced in an "equivalent" ( £/8, 2000mm )
Ritchy-Chretien telescope where coma and spherical aberration were zero.
The system was evaluated off-axis to introduce astigmatism. The results
appear in Fig. 16. All of the data forms a reasonably consistent pattern
except the coma. We do not presently understand this anomaly which may be
worthy of a separate study. However, since the effects of coma are less
severe than the others, we will ignore them and use the conservative numbers
indicated by the others.

Therefore we will use delta RMSWE = delta MIF/.60 as the amount of
reduction in MTF that will be accompanied by a corresponding RMSWE. This
will allow us to work with the effect of tolerances on the RMSWE which we
will assume are quasilinear in the regions where we are applying them.
This may be a conservative estimate, but we would like to err on that side.



Another approximation that we will draw upon comes from Smith (10) where
RMS = ( Peak-to-valley ) / 3.5 (20)

approximates the RMSWE expected from most types of error. It would seem
that sharp departures over a small portion of the wavefront would violate
this rule, but those are not usually encountered. We made a small
investigation of our own by comparing the RMS and P-V data on many
interferograms from a ZYGO interferometer. This leads us to think that the
factor in Egn. 20 might be more like 7 than 3.5 when small irregularities
such as those on surfaces intended to be spheres are examined. For this
example, however, we will use Smith's value.

In the example design, the apertures were selected at the first order stage
to yield the required MIF when the diffraction effects of the obstruction
plus one quarter wave of design and frabication errors were taken into
account. This is not much error to spread across the many elements from
the object to the focal plane. One help is the fact that certain
compensating alignments can be made at assembly since the systems will not
be made in very large quantities. We will use the approximation of Egn. 20
to establish a preliminary total error budget of 0.071 RMSWE (1/4 wave P-V)
from all sources in laboratory tests. In the final application, obviously,
atmospheric and other effects might influence the results further.

6.2 Error budgets

We need to now decide how to distribute this 0.071 RMSWE among the many
facets and tolerances of the system. Smith (10) describes how to work with
the root-sum-of-the-squares (RSS) to combine error effects. McLaughlin
(14) shows that RSS tends to be too pessimistic and Smith (10) himself
concludes that it may err on the conservative side. McLaughlin shows that
the total system error will tend to be 0.42 times the RSS prediction if the
fabrication errors have a Gaussian distribution which is truncated at the 2
sigma level. Although there is a major move at this time in industry to
apply 6 sigma tolerancing, we believe the 2 sigma to be appropriate in this
case where individual adjustment and testing is required. We will
therefore use McLaughlin's 0.42 factor for the fabrication errors.

To simplify the example, we will partition the 4000mm path of the system.
In looking at Fig. 15, we count 32 surfaces through the 4000mm optical
path. The authors chose to emphasize the sensitivity effects of mirrors by
counting them twice to give 34 as the surface count. Of this 34, 8 are in
the telescope, 8 in the focus system, 12 in the 4000mm relay, and 6 in the
AIR. The other paths are less complex. This one will be the critical path
and set the pace for the telescope, focus system, and AIR tolerances. We
will allocate the budget to the four sections of the 4000mm path
(telescope, focus, relay, AIR) in proportion to the square root of the
number of surfaces in the section divided by the total number of surfaces.
This is an engineering estimate of the relative influence of each section.
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The division of the system into these sections is also because they can be
tested independently by section for RMSWE in production. Figure 17 shows
the error budget broken down this way. The top level requirement was
determined above to be effectively .071 RMSWE. We know from the design
stage that the disign has used wup .030 RMSWE. Another analysis indicates
that the effects of alignment focus errors and the laboratory environment
should be on the order of .009 RMSWE. This leaves .0637 RMSWE to RSS with
the other two (three) parts of that level of the budget to give .071 RMSWE.
From McLaughlin's information and the assumption of Gaussian errors, we then
divide the fabrication budget of .0637 by .42 to give 0.1517 RMSWE which
can be distributed over the four sections of the 4000mm system. The
bottom four boxes of the budget in Fig. 17 show how these work out when
the above argument is applied. We will work through the simplest section,
the focus lens with .0736 RMSWE budget, as an example of the procedure for
tolerance distribution to give the minimum cost while meeting the
performance requirements (to within some statistical uncertainty).

6.3 Derivatives of costs with respect to tolerances

In the assignment of tolerances for minimum cost as we will show below, it
is necessary to have the partial derivatives of the total cost with respect
to the reciprocal of each tolerance. These are basically derived from Eqgn.
11 and the metal tolerance costs in Fig. 12. Since we showed that the metal
diameter and lens centering tolerances can be made dependent on the glass
diameter tolerance, we only have five types of tolerances to allocate in the
framework which we have been discussing. These are irregularity, radius,
thickness, diameter, and tilt of a lens due to the errors of the cell. Roll
is shown in Fig. 14b and can be derived from delta d. Tilt is just the cell
run-out parallel to the optical axis (delta LE of Fig. 12) divided by the
diameter d of the 1lens. We will call the partial derivatives of the total
system cost with respect to the reciprocal of these tolerances $I, $R, $T,
$d, and $L. The $L applies to both the metal bore diameters and axial
run-out. The first three will be functions of the base grind and polishing
costs with a common factor that we will call BP which is defined in Eqn. 21.

BP = P %Y * 14 /N# (21)

The N# is the N for the given surface number just as we will use delta I#,
delta R#, etc. for those values associated with that surface number. The $d
has as a factor of the base centering cost CE while $L has as a factor the
base machining cost MF. There are additionally three "fudge'" factors FI,
FR, and FT associated with $I, $R, and $T which can be taken as unity for a
simplifying assumption or calculated in each case as we will explain below.

Equations 22 through 26 give these partial derivatives which will be needed
to allocate tolerances.

$I# = BP % FI * .25 % KI (22)

$R#

BP % FR *# 8 % KZ (23)
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$T = BP % FT % 40 % KT (24)
$d = CE % 10 % KD (25)
$L = MF * 80 % KM (26)

The factors FI, FR, and FT come from taking the partial derivatives of Eqn.
11 with respect to the reciprocal of the tolerances. They are due to the
modifying effects of other parameters and are given in Egns. 27,28,and 29.

FI = ( 1 + 8%KZ%(R#t/d) 2 /(delta R#) + .0003 * (d/I)"2 ) (27)
FR = ( 1+ .25 % KI / (delta I#) ) (28)
FT = ( 1+ 10/S# + 5/D# ) * ( 1 + .01 % SC"3 ) (29)

There is one problem with Eqns. 27 and 28, however. The values of delta R#
and delta I# are not defined until after the tolerancing process. We can
include the effects of FT in Eqn. 24 because all of its parameters are known
at the start. We chose to approximately include the effects of FI and FR
after the tolerances are calculated by dividing the resulting tolerances
for irregularity and radius by the cube roots of FI and FR respectively.
The reasons for this will be more apparent from Eqn. 32 in Sec. 6.4. The
other alternative would be substituting FI and FR back in an iterative
procedure.

We now only need to address the simple allocation equations and procedures
and we can finish the task of finding the least cost tolerances.

6.4 Tolerance allocation process

We showed previously (1) that the total error E was the sum of all of the
contributions from each error source which is the product of that tolerance
value t(i) times the sensitivity S(i) of the performance to variations of
that parameter as seen in Eqn. 30

E = sum over all i ( S(i) * t(i) ) (30)

We showed that the tolerances could be distributed for minimum cost by
applying Egn. 31 to each tolerance in turn. The A(i)'s are the
coefficients of the derivatives of cost given in Eqns. 22 through 26. In
Eqn 31, the sum of all the square roots of the products of the cost
coefficients A(k) and the sensitivites S(k) 1is divided into the total error
budget E to get a constant which is multiplied by a function of the cost
and sensitivity of each tolerance.
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Adams (6) pointed out that Egn. 31 gave the solution which represented the
tolerances all going to the worst case limit condition, and this is
obviously too severe. He showed that the RSS condition would be satisfied
by the tolerance distribution if Eqn. 32 was applied instead. We are
indebted to Adams for this contribution and will apply it to the problem at
hand as the most appropriate solution.

I 3/ Ag E
v Soz\/g 3 2 (32)
= 3 (AcSq)

The allocation is then very straightforward in the single E case. It is
only necessary to develope a table of A(i) and S(i) for all appropriate i
and process the data in accord with Eqn. 32. Table 3 gives these values
for the example case and the resulting t(i) which we seek are in Table 4.

The example case has a total of four lenses which we illustrate in Fig. 18.
The field lens is close to the focal plane and has negligable sensitivity.
We therefore remove it from consideration since we can assign minimum cost
tolerances to it without affecting the rest of the task. This then reduces
the example to a three element lens where the surfaces and dimensions are
numbered as in Fig. 18.

The necessary data processing is very conveniently set up and done using a
spreadsheet program for data entry and all of the necessary calculations.
Table 3 starts with the parameters determined from the "lens drawing'" or
design parameters. The number per block for each side is determined from
Eqns. 4 and/or 5. The sensitivities of the system performance to each
parameter are determined from the lens design program. The base costs and
cost versus the reciprocal tolerance derivative coefficients are calculated
from Eqns. 22 to 26. The constant multiplier in Egn. 32 is calculated.
The individual factors from the individual sensitivities and cost
derivatives are used to compute the tolerances for each of the toleranced
parameters. The adjustments to the I and R tolerances are made for FI and
FR as mentioned in the previous sectiom.

Table 4 contains the resulting tolerances for which we have been working.
It is the set of tolerances for each of the toleranced parameters which will
give the least cost solution and meet the performance with some statistical
"RSS" certainty. The assumption per Adams (6) is that the errors will be
distributed about the norm in a Gaussian manner and the tolerance limits
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TABLE 3

TOLERANCE DATA & COMPUTATIONS
EXAMPLE FOCUS LENS SET

E = 0.0736 RMSWE
SURFACE # 1
RADIUS 3.54
DIAMETER 2.35
THICKNESS 0.472
SCRATCH 80
DIG SPEC. 50
REFRACTIVE INDEX 1.5
STAIN 5.2
POLISHABILITY 3
CHAMFERS 1
FLATS 0
NUMBER/MILLING LOT 7
CENTERING LOT SIZE 7
YIELD 1.5
# PER BLOCK 6.580650
KI (fringes) 1
KZ (sag, inches) 0.000012
KT (thk, inches) 0.000012
KD (dia, inches) 0.000012
KM (met dia, in) 0.000012
KW (mrads wedge) 1
SI dRMS/FRINGE 0.05
SZ dRMS/INCH 78.125
ST dRMS/INCH 1
Std dRMS/INCH 250
SLE dRMS/radian 375
f, CLEARANCE 0
MF (MFG BASE) 6
BP (EQN 21) 9.573522
CE (EQN 3) 7.497619
A$T (EQN 22) 2.393380
A$Z (EQN 23) 0.000957
AS$T (EQN 24) 0.004786
A$d (EQN 25) 0.000937
A$L (EQN 26) 0.006
(A(K)*S(K))"2/3 I 0.242823
(A(K)*S(K)) 2/3 Z 0.177502
(A(K)*S(K)) 2/3 T 0.028397
(A(K)*S(K))"2/3 a4 0.380038
(A(K)*S(K)) 2/3 L 0.971424
CONSTANT E/SQR(SUM) =
(A(I)/S8"2)71/3 1 9.853515
(A(I)/872)"1/3 Z 0.005395
(A(I)/872)71/3 T 0.168561
(A(I)/S72)71/3 d 0.002467
(A(1)/872)"1/3 L 0.002629
delta I (fringes) 0.280863
delta Z (inches) 0.000153
delta AT(tilt,rd) 0.000074

2
-6.504
2.35
0.045
80

O~ W

1.5

7

1
0.000012
0.000012
0.000012
0.000012
1

0.05
176.471
17

2.25
0.0009
0.0045

0.233025
0.293258
0.180192

0.028503
9.652704
0.003070
0.024980

0.275139
0.000087

3
-6.346
2.31
0.237
80

50

5.12

N N N O

1
0.000012
0.000012
0.000012
0.000012

1

0.1
411.765
2

150

667

0

6

2.6
7.484285

0.65
0.00026
0.0013
0.000935
0.006
0.161647
0.225449
0.018904
0.270026
1.442507

4.020166
0.001153
0.068771
0.003466
0.001801

0.114590
0.000032
0.000051

4
59.203
2.31
1.969
80

50

5.1

D =N

1.3
7

1
0.000012
0.000012
0.000012
0.000012

1

0.083
250
1

2.6

0.65
0.00026
0.0013

0.142763
0.161647
0.011908

4.551835
0.001609
0.109163

0.129744
0.000045

5
2.319
2.04
0.237
80

50
1.5

2

W W N N O

.000012
.000012
.000012
.000012

1

0.05
66.667
6
41.67
42

0

6

.066666
.394285

.516666
.000606
.003033
.000924

0.006

.179144
.117813
.069181
.114035
.248018

463641
.005151
.043853
.008108
.011863

.2461246
.000146
.000338

6
1.941

0.000012
0.000012
0.000012
0.000012
1

0.067
220.588
0.001

0
6

18.2

4.55
0.00182
0.0091

0.452939
0.544196
0.000435

10.04277
0.003346
20.87125

0.286257
0.000095



TABLE 4

RESULTING TOLERANCES AND COSTS

TOLERANCES :

SURFACE # 1 2
delta R (inches) 0.003452 0.006652
delta I'(fringes) 0.288933 0.344375
delta T (inches) 0.004804 0.000712
delta AR(roll,rd) 0.000013 0.000007
delta td (inches) 0.000070
delta LE (inches) 0.000176
delta d (inches) 0.000041
delta dM (inches) 0.000052
delta A (mrad.) 0.001419
delta A ('dev) 0.002442
Metal Dia.=dM 2.350094

BASE COST COMPUTATION

LENS 1-2
MILLING = MG 17.40939
GR & POL = GP 39.57352

CENT & EDGE=CE 7.497619

BASE COST TOTAL = 64.48053

COMPUTATION OF TOTAL LENS COST = MT

LENS # 1-2
MILLING/GENERATE 17.40939

PART SETUP 21

GRIND & POLISH 22.62849 699.6288
CENTERING 795.6429

TOTAL LENS COST 1556.309

3
0.002920
0.128449
0.001960
0.000008
.000098
.000118
.000050
.000063
.001715
.003541
.310114

NOOOoOOoOOO

BASE=MG+GP+CE

3-4

17.39075
23.4

7.484285

48.27503

3-4

17.39075

18.2
13.67048
658.6013

717.6634

4
0.344788
0.140610
0.003111
0.000000

9.800878

5
0.001924
0.249586
0.001250
0.000051
0.000231
0.000689
0.000106
0.000135
0.003611
0.006212
2.040241

5-6

17.27330
42.46666
7.394285

67.13425

5-6

17.27330

18.2
18.49274
312.9745

403.9732

6
0.000851
0.298252
0.594910
0.000062

37.03262
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will be 2 sigma.

However, a significant problem appears in Table 4. Many of the tolerances
are well beyond what can be achieved in normal practice; they are off the
chart in Figs. 2 to 12! This is a disappointing result for the designer,
but hopefully not the end of the road. Finding the problem at the design
stage is not nearly as frustrating or expensive as finding it at the
production stage.

The lower part of Table 4 shows the application of the above formulas to
compute the base cost for each of the lenses and the total costs when the
tolerances are included. The latter are about 15 times that of the easy
base lens if they could even be made. "Off-the-chart" implies in most cases
that it cannot be made or at least it would be much more expensive than the
linear chart data would predict. We may have therefore identified here an
impractical design. The designer then has the challenge of finding a
design and/or an approach which will be less sensitive. The addition of
more lens elements is not at all out of the question if they can reduce the
sensivity enough. If the added cost of one or more elements reduces the
tolerance costs sufficiently and all the 1lenses can be built, the total
cost will be less than the first design. It might be possible to cement a
doublet to get rid of a sensitive air-space. It might be practical to
make a centering adjustable and/or add other assembly tricks (15). The
designer can now evaluate the impact of design changes on cost by using the
tools put forth in this paper. The ‘'bottom line" in Table 4 can tell him
if he has improved the situation or not.

What we see here is an example of the processes in Fig. 2 where the
tolerance sensitivity analysis and distribution feeds into the
producibility analysis which sends us back to the detail optical design
for further work.

A complex system such as the whole 4000mm example system will have several
times as many columns as Table 3, but the process is the same and relatively
straightforward to apply. The most difficult aspect can be obtaining the
sensitivites of the performance criterion to parameter variations.
Existing lens design programs can do this with greater or less facility,
but all should be readily modifiable to straightforwardly generate to data
needed. This data generation is computer intensive and time consuming, but
probably unavoidable. The tolerancing program described above takes only a
few seconds on a PC to calculate the tolerances for the six surface case.
It should be approximately linear with number of surfaces as long as only
one performance criterion is to be considered. Multiple criteria would be
more cumbersome to evaluate as we showed in our first work (1). However,
Adams (6) shows that it is most likely that one criterion is all that is
needed, and more than two is highly unlikely.



7. SUMMARY AND CONCLUSIONS

We had previously (1,2,3) shown the principles of how to assign tolerances
to give the minimum production <cost and we mentioned the possible
application of the results to estimating total lens production cost. 1In
this work, the previous data and principles have been refined and some of
the results provided by Adams (6), Smith (10), Parks (8), and Fischer (7)
have been incorporated. The lens cost estimating formulas mentioned in the
earlier work (3) have been developed into useful tools. A new analysis is
presented of the interdependency of the lens and cell diameter tolerances
as a result of the cost versus tolerance knowledge. And finally, a minimum
cost tolerancing procedure has been reduced to practice in a form which is
straightforward and accurate enough for practical engineering application.

It 1is now practical to estimate the production cost of most lenses by
entering the drawing data into a spreadsheet program. This is essentially
an "expert system'" estimator which can be applied by one with very little
training or experience to get as good or better cost estimates for most
lenses than an expert. It is also now practical to distribute Ilens
tolerances using a spreadsheet program such that the production costs are
minimized and to find the impact of design changes on lens costs. Both of
these tools have advanced what was an "art" to an engineering discipline.
Both are more accurate than what has been the common practice, and they are
more accurate than the cost data as it typically is measured at this time.

The application of the estimating program can reduce the business overhead
cost of a production operation, and it can point to the cost drivers of any
particular lens such as: setup, milling, polishing, or centering. The
application of the tolerancing program can decrease the production cost of
systems from what they typically have been in both 1lens production,
assembly and testing. If the tolerances are unnecessarily tight, the lens
production cost is wasteful. If the tolerances are not tight enough to
give a good yield of deliverable parts, the assembly and testing costs are
wasteful. This tool attacks the economic problem at the point of the most
potential impact on the 1life cycle costs as shown in Fig. 1, the detail
design and analysis phase.
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