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Abstract. Optical designs often consist of lenses that are mounted in a
common lens barrel. For lenses having diameters greater than 20 cm
and subject to large temperature differentials and/or shock ioading, stan-
dard metal retainer ring mountings may not be acceptable. An aiternate
method for mounting these lenses is to mount each individual lens in its
own subcell using an adhesive and then to use an interference or press
fit to mount these subcelis in the lens barrel. When mounting lenses in
this manner, it is necessary to evaluate the stress induced in the glass
and the residual difference in the optical path. A closed-form analytical
derivation was made for a simple lens mount that relates the allowable
magnitude of the interference fit to the stress in the glass. This theoret-
ical expression was then modified using finite element models for use
with complex lens designs. Moreover, since lens mountings may require
the use of relatively thick layers of flexible elastomer to mount the lenses
in their individual cells to prevent large thermal and/or mechanical
stresses, the equation for determining the decentration of lenses
mounted in circumferential flexible elastomers is also derived. The the-
oretical expression was used to verify finite element models that then
may be used for more complex mounts.

Subject terms: lens mountings; subcell mountings; interference fits; elastomeric
mountings; lens cells; lens decentration; optical path differences.
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1 Introduction 2
For small optical devices, glass lenses are generally mounted

Interference Fit Equations
The equations that give the displacements and stresses be-

directly into their metal cell and held in position with metal
retainer rings. However, optical elements with diameters of
20 cm or greater that are subject to adverse temperature and
shock loadings may require an alternative mounting using
relatively thick and flexible layers of elastomers to reduce
thermal and mechanical stresses in the lenses.

Closed-form analytical equations for simple lens mount-
ing may be derived from the classical theory of elasticity and
solid mechanics. These equations, in addition to defining
stresses and displacements for simple lens mountings, also
provide solutions that may be used to verify finite element
modeling techniques that, in turn, can be extended to more
complex lens mountings. These finite element models may
also be used to generate empirical relationships that, when
used with the classical solutions, provide closed-form solu-
tions to complex lens mounting problems. Presented here are
derived equations that may be used to predict stresses, strains,
and displacements in lenses mounted in acommon lens barrel
using elastomers and interference or press fits. Comparisons
are made between classical and finite element solutions that
provide a high confidence level for the complex lens mounts.
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tween and interior to cylinders that are force-fitted are derived
from compatibility and equilibrium considerations of the the-
ory of elasticity. Shown in Fig. 1 is a cross section of a short
cylinder of length /; that is force-fitted into a longer cylinder
of length I,. For the case where /, is equal to /; and the
cylinders are of the same material, the following equation
gives the relation between the interference (difference in the
diameters) and the interface pressure!:

30,2 2
Sz_;.é%_q)_z 2 , (1)
B*—a®(*-b) E

where § is the interference between the two cylinders; p is
the pressure between the two cylinders; Eis Young’s modulus
of the material; and a, b, and ¢ are the cylinder radii shown
in Fig. 1.

For the usual geometries of subcells (inner cylinder) that
are mounted in a common lens barrel (outer cylinder), the
radii a, b, and ¢ are approximately equal because the subcell
and lens barrel are thin. Using the approximationa = b = ¢
in Eq. (1) gives

2
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Fig. 1 Force-fitted cylinders to model a barrel lens mount.

where t, and t; are the thicknesses of the outer and inner
cylinders, respectively. The radial displacement inward of
the inner cylinder as shown in Fig. 1 is'

py’

.= . 3
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Using Eq. (2), this radial displacement may be determined
as a function of the interference fit, i.e.,

o\ ¢
=|=]—=. 4
“ <2>to+ti ()

Equations (1) through (4) apply only when the inner cylinder
is the same length as the outer cylinder. However, in barrel-
mounted lenses the inner cylinder that represents the subcell
is shorter than the barrel as shown in Fig. 1. To model this
latter case, Eq. (4) is modified by introducing an effective
thickness of the inner cylinder,

’i*’—‘B’i B (5)

where B is an empirical function of /, and /;, which are the
lengths of the outer and inner cylinders, respectively. Using
finite element models of the two cylinder system of Fig. 1,
the B function of Eq. (5) was found empirically to solve this
axisymmetric elasticity problem:

TARRATAY
8—0.444[]—5(1—”>+4<[”>] . (6)
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2.1 Subcell Strains, Stresses, and Displacements

Shown in Fig. 2 is a typical barrel lens mount. It comprises
a lens mounted in a metal ring using an elastomer annulus.
This assembly is then force-fitted into the barrel tube. If
Young’s modulus of the elastomer is much less than those
of the glass lens and the metal ring, the radial displacement
at the outer boundary of the elastomer, u,, is given by Eq. (4)
modified by Egs. (5) and (6):

{3\,
u,= 3 _f(,‘*'f,-*. @)

The radial strain €, in the elastomer is*

&=, ®)

e

where 1, is the radial thickness of the elastomer.

If the elastomer is thin relative to the lens edge thickness
so that the elastomer is confined normal to the radial axis,
the radial stress in the elastomer is?

Eg v ’
== 1+ , 9
i ]+ve( l—2v0) ©)

where E, is Young’s modulus of the elastomer and v, is
Poisson’s ratio of the elastomer.

However, if the elastomer is not thin relative to the lens
edge thickness so that the elastomer is confined only circum-
ferentially, the radial stress in the elastomer is?

. (10)
(I=v)

Finite element analyses indicated in Egs. (7), (8), and (9) are
accurate for glass lenses mounted in metal rings with elas-
tomers having a Young’s modulus as high as 34.5 MPa.
However, for stiffer elastomers, finite element analyses in-
dicate that the empirical B function of Eq. (5) should be
modified as follows:

%
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Fig. 2 A typical barrel lens mount.
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B*=p(1+7.83x107°E,) , (11)

where the modulus of the elastomer E, is in units of mega-
pascals.

The radial stress o, on the boundary of the lens is ap-
proximately equal to elastomer radial stress. It is this radial
compressive lens stress that may be used to compute the
optical path difference due to the glass stress.

2.2 \Verification Using Finite Element Modeling

To verify the semiempirical formulation, finite element in-
terference fit models were constructed using the GIFTS pro-
gram.® Shown in Fig. 3 is one of the axisymmetric finite
element models used. A lens is held in a mounting ring with
epoxy and is then pressed into an outer ring. For this model]
the lens has a radius of 12.7 cm, a thickness of 2.54 cm, and
the following material properties: E=6.9X10* MPa,
v=0.17. Both the inner and outer rings have the properties
of steel (E=20.7 X 10* MPa, v=0.30) and a thickness of
0.38 cm. The layer of epoxy has a thickness of 0.5 cm. This
is a representative thickness recommended by manufacturers
and suppliers of epoxies for optics of this size.

The factors that have the greatest influence on the stress
induced by one of these mounting methods are the epoxy
properties and the I,/ ratio. To investigate the effects of the
epoxy properties, a study was conducted where the diamet-
rical interference and the [/l ratio were held constant.
Young’s modulus of the epoxy was varied from 3.45 to 345
MPa with a Poisson’s ratio of 0.4. The results of this study
are shown in Fig. 4. There is good agreement between the
finite element results and the analytical solution when the
Young’s modulus of the epoxy is less than 10% of that of
the mounting rings. It is also noted that the calculated stresses
do not vary linearly with the Young’s modulus of the epoxy.

The effects of varying the length of the mounting tubes
(1,/1,) were also studied. As in the previous study, the dia-
metrical interference was held constant as were the properties
of the epoxy (E=3.45 MPa, v=0.4). The values for ///I,
were varied from 0.125 to 1 to obtain the results tabulated
in Table 1. For all cases, there was good agreement between
finite element and semiempirical solutions (less than 7% er-
ror). This study showed that changing the ratio of /;//, had
a lesser effect on the stresses than the impact of epoxy prop-
erties. Manufacturers and suppliers of elastomers are often
unable or reluctant to specify the precise mechanical prop-
erties (E, v, and G) of elastomers due to the variabilities that
result from temperature, humidity, curing environment, etc.
For this reason it is advisable to perform parametric studies
using a range of expected mechanical properties to assess the
effects of these variables on the optical performance of the
lens.

2.3 Optical Path Difference

The stress induced in the glass when the lenses are mounted
with an interference fit influences the refraction index of the
lenses. The following relationship can be used to relate the
optical path difference (OPD) due to the glass stress:

A=Kao , (12)

where K is the stress optical coefficient, ¢ is the lens thickness
(light path in medium), and ¢ is the tensile or compressive
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Fig. 3 Axisymmetric finite element interference fit model.
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Fig. 4 Radial stresses for varying vaiues of Young's modulus of the
epoxy.

stress at the edge of the lens. If the lens is not of constant
thickness, the stress, and therefore the OPD, will vary as the
ratio of the edge thickness to the thickness at each point over
the lens. This coefficient K, which is derived from the rela-
tionship between the effective stress and the OPD that results
from stress-induced birefringence, is a material constant. This
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Table 1 Radial stress for varying tube length ratio (//1,).

1, u radial |t (;ft) o radial (Rg. 9) | o radial(F.E.) | Brror between

1, (mm) (MPa) (MPa) methods
0.128 0.442 1.63 0.6431 0.6123 58
0.167 0.442 1.63 0.6431 0.6116 58
0.250 0.439 1.65 0.6394 0.6019 68
0.500 0.414 1.98 0.6009 0.5716 Ss
1.00 0.315 3.81 0.4580 0.4309 68

stress optical coefficient of glass is typically determined from
a uniaxial stress test. Equation (12) is a simplified approxi-
mation for this case; the stress optical coefficient for various
glasses as well as a more detailed description of this formula
can be found, for example, in the Schott-Glass Catalog.*

3 Decentration of Lenses

Decentration of lenses may be significant if the lenses are
large and mounted in a relatively thick and compliant elas-
tomer. The following analytical derivation for decentration
may be used for gravitational, mechanical, and inertial lens
loadings.

3.1 Analytical Derivation

To determine the decentration of lenses mounted in a cir-
cumferential flexible elastomer due to self-weight, consider
the model of the tangent bar support system shown in Fig. 5.
This model comprises six springs, three of equal stiffness &,
that act radially and three of equal stiffness &, that act tan-
gentially. For typical tangent bar designs the tangent spring
constant is several orders of magnitude greater than the radial
spring constant. Moreover, since the mirror or lens may usu-
ally be treated as a rigid body, the stiffness of the tangent
bar support system in the plane normal to the optical axis is
given by the following equation’®:

e ke o
\% =7
C K /
7 S
kf"
/
K =3/2 k, K = 3/2 ky
K= 3/2 (kpt kyo

Fig. 5 Combined tangent bar support system.
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K=—2—<k,+k,> , (13)

where K is invariant, i.e., equal in all directions, in the plane
of the support system.

If these springs are considered to have differential stiffness
per unit length of k, and k, acting over a differential length
of R d6 on the optical element boundary as shown in Fig. 6,
the differential stiffness of this support system is

dK=%(§,+E,)R de ,

(14)
where R is the radius of the optical element.
For a continuous elastic support system, then,
T3
K=J —(k,+k)R db , (15)
o 2
K=mR (k,+k) , (16)

where, for an elastomer, k, is the extensional stiffness per
unit length and %, is the shear stiffness per unit length. When
the elastomer thickness (radial) is approximately equal to the
lens edge thickness, the elastomer may be modeled as a plane
strain rectangular (quadrilateral) element. For a unit length,

Fig. 6 Notation for analytical derivation.
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E=< Eq)é, a7
. 1—v/1t,

d
k=G . (18)

where E is Young’s modulus, G is the shear modulus, v is
Poisson’s ratio, d is the optical element thickness, and ¢, is
the elastomer thickness (radial). The stiffness of the annulus
of the elastomer is then

K="n'R£(
t

€

+G) . (19)

1-1?

Decentering A of the optical element due to self-weight acting
normal to the optical axis of the mirror may then be computed
as follows:

_¥ 20
A X’ (20)

where W is the weight of the optical element. Substituting
for K,

A= . 2n

However, when the elastomer thickness (radial) is small
compared to the lens edge thickness, the term E/(1—1?)
in Egs. (17), (19), and (21) should be replaced by
[E/(1 +v)K{1 +[v/(1 —2v)]} to account for both tangential
and radial elastomer confinement.
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Fig. 7 GIFTS finite element mode! of a lens mounted in elastomer.
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Fig. 8 Deflection of the lens model in the elastomer subject to lateral
gravity loading.

3.2 Verification of Finite Element Modeling

To verify finite element solutions, models were constructed
using the GIFTS program.® Shown in Figs. 7 and 8 is a 20.32-
cm-diam lens with material properties of KZFSN9 glass. The
first study used a lens of thickness 1.27 cm whereas the sec-
ond study used a lens of 2.54 cm. In both cases the radial
thickness of the elastomer was 0.51 cm. For the first case,
the quadrilateral membrane elements were used as plane
stress elements since the depth-to-thickness aspect ratio is
2.5. For the second case, these elements were used as plane
strain elements since the depth-to-thickness ratio was 5.0.
The results of this study are presented in Table 2 where the
finite element solutions that use a low depth-to-thickness
aspect ratio formulation for the thin lens and a high aspect
ratio formulation for the thick lens are given. These analyses
demonstrate the dominating influence of the mechanical
properties of the elastomer, especially Poisson’s ratio.
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Table 2 Comparison of deflections for GIFTS and analytical solutions.

MATERIAL CONSTANTS

Lens Material = KZFGN9

= 6.600E4 MPa

lens

0.271

Lens Radius = 10.16 cm

Elastomer = 93-500 (DOW CORNING THIXOTROPIC)

B = 3.45 MPa

elastomer

v = 0.40

Lens Tickness (cm) 1.27 2.54

Lens Weight (kg) 1.231 2.462
A (mm)

Analytical Kethod 28.4E-3 2.05E-3

Gifts (¥YEN) 29.0E-3 1.80E-3
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