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ABSTRACT

Stresses formed by the contact of two radii can cause extremely high surface stresses.  The 
application of Hertzian Contact stress equations can estimate maximum stresses produced. 
These stresses can then be analyzed in context of the application.   In many cases, the 
resultant stresses are not of design significance, but in some cases failure can occur.  Ball  
bearings or kinematic mounts that are repeatedly removed and remounted can start to show 
damage from fatigue caused by the Hertzian stresses.  The Hertzian contact stress equations 
come in two forms, spherical and cylindrical.  The details and applications of these equations 
will be explained. 

INTRODUCTION

Any time there is a radius in contact with another radius or flat, contact stresses will occur.  In  
the  case  of  two  spheres  contacting  each  other,  the  entire  force  will  be  imparted  into  a 
theoretical point.  Due to elastic properties of the materials this point will deform to a contact  
area.  The deformation that occurs will produce high tensile and compressive stresses in the 
materials.  Even if a singular loading does not produce a failure, it can lead to future fatigue or  
surface damage.  

Cai and Burge have shown that for the case of a glass lens mounted against a sharp corner 
with calculated contact tensile stresses approaching 20Ksi no failure was observed.  20Ksi is 
far beyond the practical 1Ksi tensile stress design limit.   Due to the fact the depth of the 
tensile stresses did not exceed 4 μm, a critical flaw was not created. i  This is good news for 
using sharp edge contacts to mount glass lenses.  Though the stress created did not damage 
the lens in this testing, the stress is still present.  For systems that need to survive extreme 
environments or have no room for failure would need to carefully examine risks and benefits  
of allowing these high contact stresses.  

The stress field created by the contact stresses was first introduced by Hendrick Hertz in 
1881.  His equations work well using a computer spreadsheet format, allowing a plot of the 
stress field to be quickly created.  These equations assume the system has no friction are 
elastic, isotropic, homogeneous and do not account for surface roughness. ii  If a frictionless 
assumption does not apply with the system being analyzed the classical Hertzian equations 
cannot be used.  The Hertzian equations will provide lower shear stresses than actually exist.  
The Smith-Liu equations must be used in this case.  These equations will not be covered in  
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this paper but  are worth investigating for contact  stresses of a rolling contact  or a shear 
surface load.iii 

Once the stresses have been calculated they must be analyzed for fatigue or implications in 
stress flaw propagation.  Often the Hertzian stresses calculated with be overly conservative 
and will call for a design change when not necessary as shown by experimentation.  In many 
cases it is best to err on the side of caution and make a simple change to reduce the contact  
stresses.  This may be as simple as increasing a contact radius or reducing the forces in the 
joint.  Ease of manufacture, ease of assembly and system performance must be weighted 
against potential for system failure.   Since contact stress failures consist mostly of surface 
damage, evaluations must be made on the allowable surface indentation or surface fatigue. ii  

SPHERICAL CONTACT STRESSES

For spherical contacts like a ball and socket or ball on a flat plate the pressure  distribution is 
circular and extends out as shown in the hatched region of figure 1.  The size of this region  
depends on the elastic properties and geometries of the parts in contact.  Figure 2 gives the 
equation for calculating the radius of the contact area produced by the deformation of the two 
spheres from force F.  Where E1, ν1, R1 is the elastic modulus, Poisson's Ratio and radius 
respectively of sphere 1.  The same is true respectively for sphere 2.  

Figure 1: Contact stress between two spheres.  (Cross hatched area is the pressure 
zone)
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Figure 2:  Equation for the radius of the contact area of two spheresiv

The maximum pressure within the contact area occurs as a compression in the center.  For  
the equation in figure 2 use R=∞ for a sphere against a flat surface.  For an internal radius like 
a ball and socket joint a negative radius would be used for the socket.   Figure 3 shows the 
equation for calculating this pressure.  Knowing the maximum pressure then allows you to 
calculate out the principle stresses along the z axis.  Figure 4 shows the equations for the 
principle/normal stresses and the maximum shear stress with in the contact region.  Note: be 
sure to use the Poisson's ratio for the side of the contact you are interested in.

  Figure 3: Maximum pressure within the contact area. iv 

Figure 4: Principle stresses along the Z axis. iv

With the principle stresses and the shear stresses known, evaluations must made.  The first 
evaluation should be to compare the maximum stresses to the yield or shear strength of the 
material.  Permanent plastic deformation will occur if these values are approached.  If the  
contact stresses are in a precision alignment system it may be wiser to use the micro yield  
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and micro shear strengths.  Fatigue due to multiple mounting cycles or cyclic operation should 
be evaluated.  

Appendix 1 shows an example of a Hertzian stress analysis of a micrometer ball pushing 
against an aluminum plate.  Here the aluminum plate being R2 and having no radius was set  
to infinity.  The depth of maximum shear stress was calculated only .48a = 0.06mm below the 
surface.  The calculated stresses far exceed anything 6061 can withstand.  This leads to the 
prediction that the material will  yield affecting the precision of the 10μm micrometer.  This 
result should lend well to anyone who has setup a quick prototype fixture with a micrometer 
pushing on aluminum.  You will get a surface fatigue and indentation in the aluminum if your 
loads are to high.

CYLINDRICAL CONTACT STRESSES

Cylindrical contacts stresses undergo the same procedure as spherical contact stresses with 
the  addition  of  a  length  turning  the  contact  area  into  an  ellipse.   Figure  5  shows  the 
calculation of the half width of the contact area.  In the case of cylindrical contact we call this  
half with “b” instead of “a” as in the spherical equations.

The extra length component allows for a larger contact area reducing the resultant stresses.  
Note any time you have a sharp edge pushing against a flat or radius, the cylindrical contact  
stress equations can be used.  In the example Cai and Burge finite element analysis was  
used to evaluate a round tube ground to a sharp edge pressed against a flat plate of glass.  
To use the cylindrical contact stress equations the best fit radius of the sharp edge, and use 
the circumference of the tube for length would be used for “R1” and “l” respectively.   

Figure 5:  Equation for the half width of the contact area of two cylinders. iv

Figure 6: Maximum pressure within the contact area. iv 

Unlike the spherical contact equations the principle stresses do not always equal the normal  
stress  components.   There  is  a  distance  below the  surface  were  the  principle  stresses 
reverse.  0.436b below the surface is the switching point.

Figure 7 below shows the equations for calculating all the principle and normal stresses of the 
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material a distance “z” away from the surface.  These equations lend themselves well to a 
spreadsheet to plot out the stress distribution.  

Figure 7: Principle stresses along the Z axis. iv

Analysis of results 

The equations above lend themselves well to sanity checks of finite element analysis.  With a 
full understanding of the contact stresses present in the system, an analysis must be made of  
the failure modes.  The first thing to look at is the maximum compressive stress versus the  
compressive strength,  of  the materials.   If  the maximum compressive stress exceeds the 
compressive strength plastic deformation of the part will occur.  The basic Hertzian equations 
focus mainly on compressive stresses.  If the Smith-Liu equations were used or finite element 
results are available, the resultant tensile stresses should be evaluated against the  material  
yield strength.  Finally, the shear stress should be evaluated in respect to the shear strength  
of the material.  High shear stresses is believed to contribute heavily to subsurface fatigue 
crack  initiation.  ii  Though  the  stresses  calculated  dissipate  quickly  though  the  material, 
surface stresses are high.  High surfaces stresses can cause wear and surface fatigue.  In 
many cases this surface damage would be inconsequential and not of concern for the system. 
Or in the case of a micro-positioner surface damage could lead to inaccurate positioning.  
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Summary

 Stresses due to contact of spherical or cylindrical components can have extremely large 
magnitudes.  The depth of the stress fields tends to be very shallow though.  The low depth of 
the stresses tends to lead to purely surface damage.  Cai and Burge have shown that even in 
the  case  of  glass  that  fails  from  the  propagation  of  defects,  total  structural  failure  is 
improbable.   Surface  damage  or  surface  deformation  can  be  of  concern  in  precision 
alignment systems.  The Hertzian contact equations can provide an analysis of the stress 
fields present.  Though it has been shown through experimentation the Hertzian equations 
maybe on the conservative side but in many cases the stresses can be mitigated with simple 
design changes.  
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APPENDIX 1
Example of Hertzian Contact Analysis
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