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Abstract

This paper is a synopsis and commentary on the technical paper by DeBruin (1991) on
the derivation of stabilization equations for gimbaled-mirror systems. The relevance
of the paper is discussed followed by the basic derivation of the stabilization equations
using two distinct algorithmic methods. One method which is completely general
but somewhat cumbersome and another that is simpli�ed but restricted to a subset of
possible implementations. Examples of stabilized optical systems are discussed.

1 Introduction: Why This Paper is Relevant

This paper provides a synopsis and commentary on the technical paper "Deriva-
tion of line-of-sight stabilization equations for gimbaled-mirror optical systems".
The paper was written by James C. DeBruin at Control Systems Technology
Center, Texas Instruments in 1991. I found this particular paper both inter-
esting and practical for a variety of reasons.
First, the basic equations for gimbal mounted mirror stabilization are still

quite valid and give the user signi�cant insight into the dynamics involved in
gimbaled mirror systems. In many ways, these equations are more applicable
today then they were when the paper was written. As computing power has
increased signi�cantly and the cost of sensing and actuating devices has decrease,
the past decade has seen a proliferation of smaller, less expensive, stabilized
optical systems. A common example of these are image stabilization systems
for hand held cameras which would have been unthinkable back in the early
nineties.
Another reason why I found this paper quite interesting is that is serves

as a benchmark to changes that have occurred in the science of optical system
stabilization in the recent past. At the time this paper was written, comput-
ing hardware and software were much more restrictive on the size and speed of
matrix manipulations required for transformation of reference frames. Many
excellent real time software programs now exist which can easily manipulate
the matrices for multiple coordinate transformations. Modern sensing and ac-
tuating devices have also changed the way stabilization is performed on optical
systems. When this paper was written, optical stabilization systems required
large and expensive gyroscopic instruments which were only practical to im-
plement on large and expensive programs. Advances in MEMS technology,
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particularly of accelerometers, has seen tremendous reduction in size and cost
of sensing instruments, making optical stabilization systems practical for much
smaller and less costly systems.

2 Derivation of the LOS Stability Equations

2.1 Derivation of the LOS Reference Frames

The paper begins by introducing the concept of a line-of-sight reference frame
and how that is de�ned. The author de�nes the LOS reference frame as the
combination of a line-of-sight vector and two mutually normal image plane vec-
tors. This is simply an orthonormal triad which has one unit vector along
the boresight of the optical system, the other two unit vector orientations must
be orthogonal but the rotation is somewhat arbitrary and is usually left as a
matter of convenience. The transformation of the incoming LOS vector ~r1 to
the outgoing LOS vector ~s1 is given by

~s1 =
�
�M
�
~r1

where �M is the matrix found from the mirror normal vector components, ni

�
�M
�
=

24 1� 2n1n1 �2n1n2 �2n1n3
�2n2n1 1� 2n2n2 �2n2n3
�2n3n1 �2n3n2 1� 2n3n3

35
In this paper, the author allows the handedness of the reference frames to

change due to parity changes of the mirror. My experience in control algorithm
design suggests this is not wise as it will almost certainly cause confusion during
implementation and testing of the software. It seems that it would be better to
de�ne a conventional right handed coordinate frame at each transformation and
live with the fact that the sign of a particular matrix element may be reversed.
Once the LOS reference frame has been de�ned, the stabilization equations

can then be derived and used to relate the gimbal rotational rates to the angular
velocity of the platform on which the optical system is mounted. The relations
given by the stabilization equations are useful for so-called feedforward control
systems in which the angular velocities of the platform are measured, then solved
for the gimbal angle rates. The computed gimbal angle rates are then used as
commanded inputs (feedforward) to the gimbal servo loops which attempt to
drive the line-of-sight angular rate error to zero.

2.2 Angular Velocity of an LOS Reference Frame

From basic dynamics, the time rate of change of a rotating coordinate system
V relative to a Newtonian reference frame N is given from [2] as
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Nd~v

dt
=

N�~v

�t
+N ~!V � ~v

and for angular motion relative to the platform on which the optical system
is mounted

Nd~v

dt
=N ~!V � ~v

Using some vector algebra, this leads to the de�nition of angular velocity
given in the paper

N~!V �
�
~v1 �

d~v2
dt

� ~v3
�
+

�
~v2 �

d~v3
dt

� ~v1
�
+

�
~v3 �

d~v1
dt

� ~v2
�

where the author de�nes the Newtonian reference frame as the base frame.
It is often desirable to use intermediate reference frames for the computation
of angular velocity in which case we can employ the addition theorem. For
example, if we know the angular velocity of frame N with respect to P and
the angular velocity of frame P with respect to V , then we can compute the
angular velocity of N with respect to V by simply adding the two known angular
velocities.

N~!P =N ~!P +P ~!V

One other useful concept used in the derivation of the stabilization equations
is the idea of simple angular velocity. If a unit vector k̂ is �xed in both reference
frames A and B then we can say that A rotates about B along the axis de�ned
by k̂ through angle � given by

N~!P = _�k̂

2.3 LOS Stabilization

The line-of-sight is often de�ned as stabilized if the orthogonal components of
the LOS angular velocity are zero. The author of this paper uses an alternate
de�nition. He states that the di¤erence between commanded slew rates and
actual rates should be zero which includes cases where the optical system is
tracking or slewing. This de�nition is also somewhat problematic in that the
di¤erence (e.g. the error signal) is never actually zero as the control system
always lags behind the commanded rates. So from this de�nition, the LOS is
never completely stabilized. This is more of a mathematical concept and less
of an actual concern to the practicing controls engineer who is more interested
in the overall system response.
At any rate (pun intended), this leads to stabilization of the LOS frame if

the following two conditions are satis�ed
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N~!V � ~v2 � 
2 = 0 N~!V � ~v3 � 
3 = 0

where ~v forms the line-of-sight and image vectors of the LOS reference frame
V , and N~!P is the angular velocity of V with respect to N . 
2 and 
3 are the
commanded slew rates in N about ~v1 and ~v1 respectively.

2.4 Stabilization Equations

Using the results from the previous sections, we can now derive the equation
for line-of-sight stability. The form of the equations follow directly from the
stabilization conditions. Let V represent an outgoing LOS reference frame from
an optical system attached to platform P: Frame V is steered by a gimbaled
mirror on the platform and has the angular velocity P ~!V . The platform is in
motion with respect to the inertial frame N with angular velocity N~!P . Using
the two stability conditions and the addition theorem leads directly to�

N~!P +P ~!V
�
� ~v2 � 
2 = 0

�
N~!P +P ~!V

�
� ~v3 � 
3 = 0

Setting the commanded slew rates to zero, we get the stabilization equation
given in the paper�

N~!P +P ~!V
�
� ~v2 = 0

�
N~!P +P ~!V

�
� ~v3 = 0

The angular velocity of the platform in inertial space N~!P acts as a per-
turbation to the system. However, we have control over P ~!V which is some
function of the gimbal angle rates _�i. Thus, the stabilization equations are used
to control the line-of-sight by changing _�i as a function of the platform angular
velocities which drive the system to satisfy the stabilization conditions.

2.5 Two Di¤erent Methods

The paper presents two di¤erent methods for formulating the stabilization equa-
tions. The methods di¤er only in the manner in which P ~!V is computed and
in there applicability to speci�c problems. The �rst method, called direct dif-
ferentiation, uses the direct calculation based on the time rate of change of the
vector basis �xed in the platform frame.
The second method of intermediate reference frames involves �nding adja-

cent reference frames between the platform and the outgoing LOS frame, each of
which moves with simple angular velocity in the adjacent frame. The addition
theorem is then employed to compute P ~!V . This method considerably simpli-
�es the matrix transformations and, therefore, reduces the required computing
power. However, it is only applicable if, for each gimbaled mirror and for all
mirror orientations, a vector (~u) exists that is both �xed in the plane of the
mirror and orthogonal to the incoming line-of-sight.
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3 Examples

Although the examples provided by the author are helpful in understanding
the detailed process of deriving the stabilization equations for speci�c cases,
what is most important are the conclusions that the author draws from the
two examples provided.. Using the method of direct di¤erentiation results in
a somewhat complex 3 by 3 array of sines and cosines. The matrix must be
transposed and the matrix elements must be di¤erentiated using

N~!V �
�
~v1 �

d~v2
dt

� ~v3
�
+

�
~v2 �

d~v3
dt

� ~v1
�
+

�
~v3 �

d~v1
dt

� ~v2
�

This is, of course, algebraically complex if one is to attempt the calculations
by hand. Even for the computers of the day, this would be di¢ cult to implement
in a real-time system at a reasonable update rate.
The second example using intermediate reference frames is signi�cantly sim-

pler than the method of direct di¤erentiation in terms of required computation.
Even though the simpli�cations required limit the types of gimbaled system
which this method can be used, it would have been much more tractable and
easier to implement on the available computers and software of the day. The
author therefore concludes that the second method is preferred if at all possible.
The author does note that the use of computers using symbolic algebra greatly
facilitates the process of direct di¤erentiation.

4 Conclusions

The reviewed paper presented some very interesting results and practical tools
for dealing with line-of-sight stabilization of optical systems. The basic sta-
bilization equations are still applicable today and give great insight into the
physical processes of more complex stabilization problems.
Recent advances in computers and real time software make manipulation of

large matrices and complex trigonometric functions much easier to deal with.
Most systems today would have no problem in implementing the method of
direct di¤erentiation for solving the stabilization equations, which provides a
general solution applicable to any gimbaled system. Advances in MEMS tech-
nology have made accelerometers more preferable than gyroscopes as sensing
devices for many applications.
With the dramatic increase in computing power, the development of excellent

real-time software systems, and the decrease in cost and size of sensing and
actuating devices, the use of the line-of-sight stabilization equations are more
relevant now than ever. Once reserved for large and expensive optical systems,
line-of-sight stabilization is now used in a wide variety of application including
hand held cameras, video equipment, laser tracking and metrology, as well as
the occasional 6.4 meter telescope.
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