

LOCKHEED MARTIN Advanced Technology Center

Vacuum Optics

Mark Sullivan December 2, 2006

Outline

- System design approach
- Specific steps to build successful vacuum optics
- ASTM E 1559 outgassing test
- Resources & references

How to design for Vacuum Compatibility

- Obtain system outgassing requirements from System Engineering
 - Allowable Partial Pressures for water and hydrocarbons
 - P_{H20}, mbar
 - P_{C_xH_y}, mbar (AMU > 44)
 - Effective Pumping Speeds for the system
 - S_{eff}, liters/sec
- Calculate allowable outgassing rates, Q, for the system
 - $Q = P \times S$, mbar-l/s or pg/s (via PV = nRT)

$$- Q_{H_{2}0} = P_{H_{2}0} \times S_{eff}$$

 $- \mathbf{Q}_{\mathbf{C}_{\mathbf{X}}\mathbf{H}_{\mathbf{y}}} = \mathbf{P}_{\mathbf{C}_{\mathbf{X}}\mathbf{H}_{\mathbf{y}}} \mathbf{X} \mathbf{S}_{\mathrm{eff}}$

How to design for Vacuum Compatibility 2

 Use outgassing database to construct spreadsheet that estimates outgassing rates (q, pg/cm²-s) for the system based on material and surface area

$$- \mathbf{Q}_{\mathbf{H}_{2}\mathbf{O}} = \mathbf{q}_{\mathbf{H}_{2}\mathbf{O}} \mathbf{X} \mathbf{A}$$

 $- \mathbf{Q}_{\mathbf{C}_{\mathbf{X}}\mathbf{H}_{\mathbf{y}}} = \mathbf{q}_{\mathbf{C}_{\mathbf{X}}\mathbf{H}_{\mathbf{y}}} \mathbf{X} \mathbf{A}$

Verify with component and sub-assy outgassing tests

- Place components/sub-assys in effusion cell
- Measure q or Q per ASTM E 1995

So how should we prepare our optomechanical systems for high vacuum applications?

- Material Review
- Design Review
- Outgassing Tests

Missing any <u>one</u> of these can ruin all other beautiful, meticulous work!

- High Vacuum Fabrication Procedures
- High Vacuum Cleaning Procedures
- Clean Assembly Procedures
- Conditioning & Verification of Systems
- Clean Packaging

Material Review

- Detailed review of Bills of Materials (BOMs) for all high vacuum (HV) opto-mechanical assemblies
 - Not allowed
 - Many plastics
 - Unverified adhesives
 - Conventional labels
 - Anodization
 - Carbon steel
 - Brass, Zinc, Cadmium

Design Review

- Compare specified materials with those evaluated by NASA Goddard Space Flight Center (GSFC) per ASTM E 595, Standard Test Method for Total Mass Loss and Collected Volatile Condensable Materials from Outgassing in a Vacuum Environment (http://outgassing.nasa.gov)
- Assure all part & assembly volumes have leak paths (no trapped volumes)
- Specify approved, dry-film lubricants (e.g., MoS₂, WS₂, WC/C) where galling is a concern

Outgassing Tests

 Perform outgassing tests on candidate materials and components per ASTM E 1559, Standard Test Method for Contamination Outgassing Characteristics of Spacecraft Materials

- 10⁻⁷ to 10⁻¹⁰ torr, 30°C, 24 hr

Results provide <u>quantitative</u> & qualitative data

- Quantitative: amounts outgassed normalized with respect to sample size
- Qualitative: identification of outgassed species
- Outgassing test apparatus
 - Ultra-High Vacuum (UHV) Pumps (cryogenic, turbo, dry mechanical)
 - Quartz Crystal Microbalances (QCMs)
 - Mass Spectrometer

Outgassing Test Apparatus

Outgassing Chamber

Outgassing Terms & Definitions

- Outgassing the evolution of gas from a material, usually in a vacuum
- Total Mass Loss (TML) total material outgassed from a test specimen, g/g, g/cm², or g/assembly
- Volatile Condensable Material (VCM) the material that outgasses from a test specimen and condenses on a collector surface at a specified temperature, g/g, g/cm², or g/assembly
- Effusion Cell a container, placed in a vacuum, in which a sample of material can be placed and heated to some specified temperature
- Quartz Crystal Microbalance (QCM) a device for measuring small quantities of mass using the properties of a quartz crystal oscillator
 - QCM resolution: <1 ng/cm² (n.b., 1 ng/cm² of $H_20 = 0.01$ nm thickness)
- Outgassing Rate the net rate of mass loss from a material sample due to outgassing per unit mass or surface area, g/g-s or g/cm²-s

ASTM E 1559 Outgassing Test

- TML & VCMs are measured
- Outgassing rates are measured
- Sample temperature range 25– 150°C
- Mass Spectrometer scans mass flux spectrum 2–1000 amu
- QCMs are heated to analyze the collected deposit
- Measurements are independent of specific chamber
- Pass criteria independent of sample size (i.e., data is <u>normalized</u>)
 - <u>Material samples</u>, <u>parts</u>, & <u>assemblies</u> can be equivalently tested

Outgassing Rate vs. Time

Mass Spectra for Outgassing Flux

File Operator Acquired Instrument Sample Nam Misc Info Vial Numbe	: D:\DEC0198.D : 2 DEC 1998 : : :: :: :: :: :: :: :: :: : : : : :	9:37	using AcqMethod EPDXY 3		
Abundance			Average of 6.017 to 47.083 min.	.: DEC0198.D (-)	
2500					
2400					
2300				325	
2200					
				5. S.	
2100					
2000					
1900					

Vacuum Optics Pop Quiz #1

 Which of the following has the largest effect of outgassing rate, q?

- A) Vacuum Level
- B) Surface Area
- C) Temperature
- D) The system Lead saying, "This thing's gotta be real clean!"

C) Temperature

Outgassing rates increase 2 – 3x for a 10 °C temperature increase (see the Arrhenius Equation)

High Vacuum Fabrication Procedures

- Use only approved cutting fluids & lubricants
 - No cutting fluids or lubricants with silicones or sulfur
- High-quality surface finish (R_a<0.4 μm)
- Threads are cut (no rolled threads)
- All parts deburred
 - Edges chamfered, radiused, or manually deburred
 - No bead blasting, buffing, sanding, vibratory deburring, or tumble deburring
- Provide less adsorption sites for molecular contamination

High Vacuum Cleaning Procedures

- Multi-step operations suited to specific part materials & geometries
- Complete process documentation ("Traveler")
- Clean bagging
 - Individually wrapped in clean, UHV aluminum foil
 - Parts & assemblies double-bagged in low-outgassing polyethylene bags
- All parts tagged with part numbers
 - Scribed, laser engraved, etched
- At least two local vendors available (Pentagon Technologies, TMPI; both in Hayward)

Clean Assembly Procedures

- Use clean room facilities
 - Laminar flow benches generally improve cleanliness by 10x
- Use only HV-clean parts
 - Don't mix & match (e.g., fasteners)
- Use clean assembly procedures for all HV assemblies
- Use clean alignment fixtures and tools
- Make use of CO₂ cleaning for parts and finished assemblies

Thermal/Vacuum Conditioning

• Thermal/Vac Conditioning

- Large (clean) vacuum chamber capable of pumping on assemblies at <10⁻⁵ torr for days at various temperatures
 - Reduces remaining amounts of superficial contaminants

• High Vacuum Verification

- QCMs measure quantities of any remaining volatiles
- Mass spectrometer identifies volatiles
 - Typically expect only low levels of H₂, H₂O, N₂, CO, O₂, & CO₂

Clean Packaging

- Assemblies double-wrapped in clean, UHV aluminum foil
- Assemblies double-bagged in low-outgassing polyethylene bags
- Packaged assemblies tagged with part numbers
- Clean-bagged assemblies packed in standard, foamlined containers for shipping

Outgassing & Contamination Resources

• NASA Outgassing Data for Selecting Spacecraft Materials

- ASTM E 595 database
- <u>http://outgassing.nasa.gov/</u>
- NASA Space Environment and Effects (SEE) Program
 - ASTM E 1559 database
 - <u>http://see.msfc.nasa.gov/nec/db_contam.htm</u>
- American Vacuum Society (AVS)
 - <u>http://www.avs.org/</u>
- Arrhenius Equation relates the effect of temperature on reaction rates: K = A*exp^(-Ea/R*T)
 - <u>http://www.cogs.susx.ac.uk/users/adrianth/ecal97/node3.html</u>

References

- H. G. Tompkins, *The Fundamentals of Vacuum Technology*, AVS, 1997.
- M. H. Hablanian, *High-Vacuum Technology, A Practical Guide*, 2nd Edition, Marcel Dekker, 1997.
- A. C. Tribble, Fundamentals of Contamination Control, SPIE, 2000.
- "Product and Vacuum Technology Reference Book," Leybold Inficon, Inc., 1991.
- M. J. Drinkwine, D. Lichtman, Partial Pressure Analyzers and Analysis, AVS, 2000.