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224 Design of Components

8.1 Introduction

Elastomers have found use in a wide range of applications, including hoses, tires, gaskets,
seals, vibration isolators, bearings, and dock fenders. In most applications, the
performance of the product is determined by the elastomer modulus and by details of
the product’s geometry. Chapter 3 discusses the elastomer modulus and many factors that
may cause it to change. This chapter addresses some simple geometries common to
applications for elastomeric products. In particular, sample calculations are given for
products in which the elastomers are bonded to rigid components and are used for motion
accommodation, vibration isolation, or shock protection. Section 8.5 identifies potential
design resources for elastomeric products in general.

Depending on the application, many different characteristics of an elastomer may be of
interest to the designer. Some of these characteristics are:

Ultimate conditions; both force and deflection

Sensitivity to changes in temperature

Sensitivity to changes in strain

Resistance to fluids and other contaminants

Compatibility with mating material (adhesives, metals, etc.)
Resistance to ““set” and ““drift”” (dimensional stability under load)
Internal damping

In some cases, these properties are related. Examples include:

e Minimizing “drift” usually requires a material with very low damping. As damping
increases, the amount of drift typically increases.

e Selecting a properly compounded silicone material minimizes sensitivity to tempera-
ture and strain, for example, but because of the lower strength of silicone rubber, it
results in lower allowable values of stress and strain in the design.

e Fatigue performance depends on both the material properties and the detailed product
design. The fatigue performance of any given design can be seriously compromised by
environmental factors such as fluid contamination and heat.

The first step in most product design is selecting the material to be used, based on the
above characteristics. The material selected in turn defines the design allowables. This
chapter uses conservative, generic design allowables. Although most manufacturers
consider their design criteria proprietary, the information sources noted in Section 8.5
provide some general guidelines.

For most designs, the spring rate (sometimes called stiffness) is a key design parameter.
The units for stiffness or spring rate are Newtons per meter (N/m). In terms of function,
the spring rate of a part is defined by Eq. (8.1) as the amount of force required to cause a
unit deflection:

F
K==
d

(8.1)
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where F is the applied force (N) and d is the deflection (m). The spring rate K can be for
shear, compression, tension, or some combination of these, depending on the direction of
the applied force with respect to the principal axes of the part.

The spring rate K of a part is defined by Eq. (8.2) in terms of geometry and modulus:

Shear : K = 46 (8.2a)

Compression : K. = —— (8.2b)

AE (8.2¢)

Tension : K; =
where A is effective load area (m?), 7 is thickness (m) of the undeformed elastomer, and G,
E., and E, represent the shear, compression, and tension moduli (kPa or kN/m?) of the
elastomer. Figure 8.1 (Section 8.2.1) defines area and thickness.

Using Eq. (8.1) and (8.2), the product designer can relate forces and deflections to the
design parameters of area, thickness, and material modulus. It is important to use the
correct modulus to calculate the appropriate spring rate.

Usually design allowables, such as maximum material strength, are given in terms of
stress ¢ and strain €. Stress is applied force divided by the effective elastomer load area,
and strain is deflection divided by the undeflected elastomer thickness.

F
o=~ (8.3)
€ :il (8.4)

For the applications considered in this chapter, the usual design aims include the
abilities to maximize fatigue life, provide specific spring rates, minimize set and drift, and
minimize size and weight. Maximizing fatigue life means minimizing stress and strain,
which translates to large load areas and thicknesses. The load area and thickness are also
limited by the available range of elastomer modulus. Therefore, the final design represents
a tradeoff among size, fatigue life, and spring rate.

The design examples in this chapter assume that operation remains in the linear range
of the elastomer modulus. Typically this is less than 75 to 100% strain for shear and less
than 30% strain for tension and compression.

Also, the design examples are limited to fairly simple geometries. Typically the shear
modulus G is not a function of geometry. However, compression modulus (E,) is strongly
affected by the geometry of a design. If the two designs in Fig. 8.1 have the same modulus
elastomer, load area, and thickness, the shear spring rate Kj is equivalent for both designs,
while the different shapes have different compression spring rates. The equations used
here are good for close approximations of performance and are generally adequate for
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design purposes. The basic equations must be modified to account for more complex
geometry effects and/or nonlinear elastomer properties.

For all the sample problems in the sections that follow, the international system (SI) of
units is used. The equations presented are independent of the unit system. Section 8.5
includes some common conversion factors from SI to English units.

8.2 Shear and Compression Bearings

The ability to mold rubber into a wide variety of shapes gives the design engineer great
flexibility in the selection of stress and strain conditions in a finished part. This section
outlines some fundamental equations for static stress-strain relationships in bonded
rubber components of various geometrical configurations. The sample problems are
intended to show how these basic equations can be applied to component design.

8.2.1 Planar Sandwich Forms

Simple flat rubber and metal sandwich forms are the basic geometric shapes for a large
number of rubber mounts and bearings. Typical shapes are shown in Fig. 8.1. Equations
are presented for the two principal modes of loading, simple shear and compression.

radius

Figure 8.1 Rectangular and circu-
lar shear pads.

width

Combining Eq. (8.1) and (8.2a) yields a basic equation relating shear spring rate and

product design variables.
F; AG

where K is shear spring rate, F; is applied force in the shear direction, ds is shear
displacement, 4 is load area, G is shear modulus, and ¢ is rubber thickness.

Equation (8.5) can be applied to the majority of simple shear calculations for flat
“sandwich” parts. The equations are valid only when shear deformation due to bending is
negligible. When the ratio of thickness to length exceeds approximately 0.25, the shear
deformation due to bending should be considered. The effect of bending is shown in
Fig. 8.2 and can be quantified by the following equation:

k=7 (7) (reme2) 50

where r, = (I,]A)"? is the radius of gyration of the cross-sectional area about the neutral
axis of bending and [, is the moment of inertia of the cross-sectional area 4 about the
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neutral axis of bending. Chapter 3 includes other methods for estimating bending.

Two other factors that can affect shear spring rate are mentioned here; because of the
limited scope of this chapter, however, no detailed derivation is given. When the shear
strain dg/t exceeds approximately 75%, or when the part has an effective shape factor of
less than 0.1, the effect of rubber acting in tension may also need to be considered. At this
point, the rubber is no longer acting in simple shear only; there is now a component of
tensile force in the rubber between the two end plates. Another important consideration
for some components may be a change in shear spring rate due to an applied compressive
stress on such components [1]. With components of high shape factor, the shear spring
rate increases as a compressive load is applied. This effect increases with increasing shape
factor and increased compressive strain, as is shown graphically in Fig. 8.3. The shape
factor is defined in Eq. (8.9).

Combining Eq. (8.1) and (8.2b) yields a basic equation relating compression spring rate
and product design variables:

F. AE,
K =-"= .
i (8.6)

t

where K. is compression spring rate, F, is applied force in compression direction, d, is
compression displacement, A4 is load area, E. is effective compression modulus, and ¢
is thickness.

Successful use of this equation depends on knowing the effective compression modulus E..
The value of E. is a function of both material properties and component geometry, as discussed
in Chapter 3. Many different analytical techniques can be used to calculate E., and the method
described here yields reasonable approximations for compression spring rates of many simple
components. More advanced analytical solutions as well as finite element analyses are available
for more accurate spring rate calculations. For a more rigorous analytical solution of
compression, bending and shear in bonded rubber blocks, see Gent and Meinecke [2].
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U Figure 8.2 Shear pad with shear

F bending deflection [3].
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Approximation of Change in Shear Modulus as a Function of Shape Factor and
Percent Compressive Strain.
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Figure 8.3 Influence of compressive strain and shape factor (SF) on shear modulus [3].
The effective compression modulus for a flat sandwich block is given by the equation
E. = Ey (1+2$S?) for bidirectional strain (blocks) (8.7)

or

E.= 133 Ey (1 +¢S?) for one-dimensional strain (8.8)
(long, thin compression strips)

where E, is Young's modulus (see Table 8.1), ¢ is elastomer compression coefficient (see
Table 8.1), S is shape factor (defined below) [4].

The coefficient ¢ is an empirically determined material property, which is included here
to correct for experimental deviation from theoretical equations. Table 8.1 gives values
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Table 8.1 Material Properties [3]

Shear modulus, Young's modulus, Bulk modulus, Material compressibility

G (kPa) Ey (kPa) Ey, (MPa) coefficient, ¢

296 896 979 0.93

365 1158 979 0.89

441 1469 979 0.85

524 1765 979 0.80

621 2137 1,007 0.73

793 3172 1,062 0.64
1034 4344 1,124 0.57
1344 5723 1,179 0.54
1689 7170 1,241 0.53
2186 9239 1,303 0.52

for ¢ for varying elastomer moduli. The modulus and material compressibility values in
Table 8.1 are used to solve Problem 8.2.1.1 (below) as well as other numbered problems in
this chapter.

The shape factor S is a component geometry function that describes geometric effects
on the compression modulus. It is defined as the ratio of the area of one loaded surface to
the total surface area that is free to bulge:

load area  Ap

shape factor S = 8.9)

bulge area a Ap

For example, the shape factor for the rectangular block of Fig. 8.1 would be:

_Ar _ (length) (width)
~ Ap  2t(length) + 2¢(width)

S

_ (length) (width)
- 2¢(length + width)

Results from this method of calculating compression modulus are summarized
graphically in Fig. 8.4. Given shape factor and shear modulus, this graph can be used
to find effective compression modulus for a component.

Generally, rubber can be regarded as incompressible. In some cases, bulk
compressibility makes an appreciable contribution to the deformation of a thin rubber
pad in compression [3, 4]. The reason is that a thin pad offers great resistance to
compression, and the apparent compression modulus approaches the bulk modulus in
magnitude. To account for this decrease in spring rate, the calculated compression
modulus should be multiplied by the following factor:

1

1+ E,/E (8.10)
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Figure 8.4 Compression modulus E, versus shape factor S for various shear moduli [3].

where E;, is the modulus of bulk compression, about 1.1 GPa (approximation from
Table 8.1).

Problem 8.2.1.1

Calculate compression and shear spring rates and their ratio K /K for a rectangular block
measuring 50 mm x 75 mm x 10 mm thick, made with rubber of shear modulus G = 793 kPa.
Assume bulk compressibility effects to be negligible.

The solution is as follows:

(0.050 m x 0.075 m) x (793 kN/m?)
s 0.0l m (per Eq. 8.2a)

e
I

297 x 10° N/m

50 mm x 75 mm
S=7 x 10mm) x (50 mm + 75 mm)
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S=15
E.=3172kPa[l + 2(0.64)(1.5)*] (per Eq. 8.7 and Table 8.1)

E. = 12,300 kPa

K - (0.050 m x 0.075m)(12.3 MPa) (per Eq. 8.2b)
< 0.01 m

K. =4.61 x 10° N/m

8.2.2 Laminate Bearings

The introduction of rigid shims into the elastomeric section of a bearing is often used to
increase compression spring rate while maintaining the same shear spring rate. In the case
of a laminate bearing, the compression spring rate equation becomes
F. AE,

K. —2¢_
‘" d. N

(8.11)

where N is the number of identical elastomer layers, ¢ is individual layer thickness, and E,
is the individual layer compression modulus. The shear spring rate remains unchanged,
assuming the total elastomer thickness is unchanged.

Problem 8.2.2.1

Calculate the shear and compression spring rates and their ratio K./K; for the bearing in
Problem 8.2.1.1 if the elastomer is divided into five equal thickness sections by rigid shims
(Fig. 8.5). The load area and total elastomer thickness are the same, so the shear spring
rate remains unchanged.

Ky =297 x 10° N/m
The compression spring rate becomes

_AE,

where
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50 mm x 75 mm
S= 27X 2mm x (50 mm + 75 mm)
S=175

E.= 3172 kPa [1 +2(0.64)(7.5)]
E. =232 MPa

Including the bulk correction factor, we write

1

Ee = M Pa/ 1062MPa

E. =231 MPa

~ (0.050 m x 0.075 m)(231 MPa)
© (0.002 m)(5)

K. =87 x 10° N/m

K. /K =

297 x 103

(per Eq. 8.7)

(per Eq. 8.11)

Problem 8.2.2.1 illustrates the ability to increase the ratio of compressive to shear
spring rate significantly, while keeping the overall volume of the part essentially
unchanged; ignoring the thickness of the rigid shims.

If the part is simultaneously subjected to both compression and shear loading, the shear
spring rate may increase with increasing compression load, as shown in Fig. 8.3.

| 70 mm ’

Figure 8.5 Laminate bearing (5 layers).

5 uniform elastomer
layers each 2.0mm thick

Each layer separated by
a thin rigid shim
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8.2.3 Tube Form Bearings and Mountings

Tube form mountings and rubber bushings are widely used as they offer flexibility in
torsion, tilt (cocking), axial and radial directions. They provide high load carrying
capacity in a compact shear isolator. In the torsion and axial directions, the rubber is used
in shear and provides relatively soft spring rates. In the radial direction, the rubber is used
in compression and tension, which provides much stiffer spring rates and hence, greater
stability. When used as spring elements, the torsion and/or axial shear spring rates are
generally the key design parameters. However, the radial and cocking spring rates also
affect the behavior of the design. Determination of these spring rates is often necessary to
ensure that excessive forces or deflections not occur, or that resonant frequencies will not
fall within the operating range of a machine.

A general equation for torsional stiffness of a tube form elastomeric bearing with plane
ends given in slightly different form in Chapter 3, Eq. (3.9) is:

T nGL

Ko = = @y 1@y

(8.12)

where K., = torsional spring rate
G = shear modulus
L = bearing length
d; = bearing inner diameter
d, = bearing outer diameter
T = applied torque
6 = angular deflection

Problem 8.2.3.1

A spring-loaded arm is used to maintain wire tension on a wire winding machine. The
wire passes over several pulleys, two of which are on the hinged arm, which allows for
wire slack take-up by arm rotation (see Fig. 8.6). The arm should move + 5° with + 3 N
tension variation in the wire. Assume the effect of the weight of the arm on wire tension to
be negligible.

1. What size of elastomeric bearing is required at the arm pivot point? Assume an
elastomer modulus of G = 1034 kPa, a bearing inside diameter of 10 mm, and an
axial length of 20 mm.

To find the bearing size, begin by summing torques on the arm about the pivot point due
to 3 N of wire tension.

Toearing = 3 N (0.030 m) + 3 N (0.050 m) + 3 N (0.060 m) + 3 N (0.080 m)
T=0.66N-m
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10mm
PPV

|————— 30mm——>1% 20mm*] [<— 20 mm*]

di=10
: m J 20mm
Pulley

Rubber Torsion Spring

Figure 8.6 Wire tension arm.

Now calculate the desired torsion spring rate for the + 5° motion desired.

T 0.66
Kior =4 = =0.13N - m/deg = 7.6N - m/rad

5°

Knowing the desired spring rate, solve Eq. (8.12) for d,.

1(1034kPa)(0.02m)
6 =
1/(0.01)* — 1/(d,)’

1 1
d, = 27 mm

2. How much does the arm translate in the radial direction (vertical in Fig. 8.6) as a
result of the imposed radial force caused by the wire tension?

A free body diagram on the arm shows a radial force F; of 12 N at the bearing. The
effective shape factor can be calculated as follows (see Section 8.2.4):
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Ap  load area _ (d, —d;)L

§= Ap bulge area 2n[(d,)? /4 — (d)* /4]

S =034
The radial direction in a tube form acts in the compression/tension direction on the
rubber. Radial deflection can be calculated using the basic equation

_AE._F,

K
! 1 d,

or

_ Fi

where ¢ = (d,—d;)/2 = 8.5 mm
A=~ (dyd) L = 340 mm?>
Knowing the elastomer modulus and shape factor, we can find E, from Fig. 8.4.

E. = 5000 kPa

B 12 N(0.0085 m)
" (340 x 10° m?)(5.0 x 10° Pa)

d.= 0.06 mm for 3N of wire tension

Another method of finding tube form mount or bearing shape factors accepted in the
rubber industry is to convert the tube form to an equivalent block bonded with equivalent
size parallel plates (see Fig. 8.7). For the present problem, the length is 20 mm and the
width can be approximated by the following expression [5].

P WLy NS, Y
Cewy tesN Y

Radial load Tilting load

— N
_Il |

5 i
. L= B=1.12Dd
Typical bush Equivalent block-type mounting

Figure 8.7 Bush and equivalent block.



236  Design of Components

B = 1.12\/d,d; = 0.018m (8.13)

Now, shape factor S = Ay /B,

. 0.020(0.018)
2(0.020 + 0.018)[(0.027-0.010)/2]

S =0.56

The compression modulus E. is now 5900 kPa (Fig. 8.4 or Eq. 8.7), and the radial
deflection is:

12 N(0.0085 m)

d, =
(340 x 10~ ° m?)(5.9 x 10° Pa)

d. = 0.051 mm for 3 N of wire tension

This alternative method of equivalent block-tube form calculation can be used for more
complicated combined radial and cocking loading conditions.

Problem 8.2.3.2

A wind tunnel diverter door (Fig. 8.8) needs to open 10° when an equivalent force of
300N aerodynamic force is exerted as shown. How large in diameter does a full-length
door hinge need to be if the hinge post is 20 mm in diameter? Assume using an elastomer
with G = 621 kPa.

From the known force and deflection, start by calculating the required spring rate.

y— K

0.7m

300 N EQUIVALENT

Figure 8.8 Wind tunnel hinged diverter door.
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Kmr = =———~"=30N- m/deg

T _ (300N)(1m)
0 10
= 1719 N - m/rad
Now, go back and determine the unknown geometry.

nGL

K=" 772
1/(di)” = 1/(d,)

Solve for d,:

n(621kPa)(0.7m)

ITION -m/rad = P — 1/(d,)

I 1 m(621kPa)(0.7 m)

(d0)2 (0.02 m)2 1719N - M/rad

d, = 24 mm

8.2.4 Effective Shape Factors

The effective loaded area of tube form mountings described in Section 8.2.3 is dependent
on the load or deflection of interest. Loaded areas in torsion or axial deflection are
obvious, but the values used for effective loaded areas in radial or cocking deflections
are only estimated approximately. In Problem 8.2.3.1, the radial load areas were taken as
(dy—d;) L and 1.12 L+/d,d;. It is not clear which of the various projected areas or effective
areas should be used in radial and cocking stiffness calculations (see Fig. 8.9). To further
complicate the calculation of stiffness for tube form mountings, secondary processes are
often used to induce pre-compression to enhance performance and fatigue life. These

secondary processes include

(a) Typical
Tubeform

Elastﬁiﬂiy

(b) Effective
Area

(c) Projected
Area

~— Inside Diameter

Outside Diameter

Figure 8.9 Radial and cocking load
areas for a tube form.
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e Spudding or enlarging the diameter of the inner member after bonding
e Swaging or reducing the outer member diameter after bonding
e Molding at pressures high enough to cause residual pre-compression in the elastomer

Figure 8.10 shows how swaging, spudding, and high pressure molding affect elastomer
behavior. In a tube form mounting without pre-compression, one side of the elastomer works
in tension and the other works in compression. Elastomers in tension have low modulus and
can be damaged at relatively low loads due to internal cavitation. Elastomers in compression,
on the other hand, particularly in high shape factor designs, have an effective modulus that
can approach the modulus of bulk compression. Pre-compressing a tube form mounting
effectively makes the “tension side” work in compression. This means that the radial and
cocking stiffness can be nearly twice as high. This effect holds until the deflection reaches a
point where the initial pre-compression is relieved. When pre-compression is used, the effective
shape factor increases as a result of an apparent increase in loaded area. It also could be said
that the shape factor does not change, but the loaded area increases. In either case, some
compensation is made to the numerator of the expression: K, = AE, /¢ in calculating radial or
cocking stiffness. For most engineering designs, the radial stiffness of a tube form mounting is
calculated both with and without pre-compression to bound the expected performance.

ch]mpression Compression Compression

Unprecompressed Precompressed
elastomer elastomer
 Precompressed -
\ -
.~ Precompression
/ o relieved
Load /‘ ‘‘‘‘‘‘‘‘‘‘‘
Ve
A "\ ) Figure 8.10 Tubeform models for
L — Unprecompressed pre-compressed and unpre-com-
pressed elastomer.
Deflection

8.3 Vibration and Noise Control

The examples in this section show how to establish design requirements from a basic
problem statement and then relate these requirements to the design of an appropriate
elastomeric product.
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8.3.1 Vibration Background Information

Solving vibration and noise control problems with elastomeric products requires
understanding basic product design concepts and vibration theory. Developing the basic
equations from vibration theory is outside the scope of this chapter. There are a number
of excellent references that deal with this subject.

For the purposes of this section, all systems are assumed to be represented by a
damped, linear, single degree of freedom system as shown in Fig. 8.11. The functions of
the spring and damper in the mechanical system of Fig. 8.11a are replaced by a single
elastomeric part in Fig. 8.11b, which works as both spring and damper.

Two basic formulas are needed to work vibration isolation problems. The first defines
the natural frequency of vibration for the isolation system and the second defines the
transmissibility of the system as a function of frequency.

1
b= [(K'g)/W]'/? (8.14)
which reduces to
fo=15.76(K /W) (8.15)

where f, = system natural frequency of vibration (Hz)
K = dynamic spring rate (N/mm)
g = gravitational constant = 9800 mm/s*
W = weight of the system (N)

c'ogvogﬂongl singlg degree Elnstom_oric _cquivllom of the
o ped sy al sy
Figure 8.11 Damped linear single
degree of freedom model. (a) (b)
The second formula is
14 (nr)? 1/2
Taps = % (8.16)
(1 =77+ (nr)
which reduces to
Taps = for r > v2and n =0 (8.17)

r2—1
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where Taps = transmissibility of input vibration at f'
r = frequency ratio = f/f, (dimensionless)
f = vibration input frequency (Hz)
n = dimensionless loss factor, defined in Eq. (8.19)

Equation (8.16) for transmissibility is shown in graphical form in Fig. 8.12. Note that
isolation of input vibrations begins at a frequency of roughly f/f, = v/2, above which
Taps 18 less than 1.0. Also note that isolation at high frequencies decreases as the damping
in the system increases. Finally, for elastomeric products the actual isolation at high
frequencies is slightly less than predicted by the classical spring damper analysis used to
create Fig. 8.12; this is a result of deviation from a single degree of freedom model. The
actual isolation depends on the type of elastomer, the type and magnitude of input, the
temperature, and the amount of damping present.

It is appropriate to note here that the elastomer shear modulus is actually a complex
number G * consisting of a real and complex part (see Chapter 4):

G* =G + iG" (8.18)
or
G*=G (1 + in) (8.19)

where 1 is called the loss factor (tan 3), given by 1 = G”/G’, G" is the damping modulus
(MPa), and G’ is the dynamic elastic modulus (MPa).

10 T
T
[ n=0.0 il |
|
],
/ 1\
A\
1 va
> ya
- V4
o V4
= VA —
@ 7 ——
2 n=1.0 \\\\\\
5 \ \'\\\n-l,c
z —— ] ..0s
é \ \n
- \ n=0.6
A &\%mo“a
— e ———
~————{n"0.2
n=0
.01
0 1 2 3 4 5

Frequency Ratio = f{/fn

Figure 8.12 Transmissibility function.
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8.3.2 Design Requirements

The basic equations from Section 8.1 and equations for vibration performance given
above can be combined to solve product design problems. The starting point for any
design is understanding the basic requirements. The most important factors include:

e Specifications for the equipment to be isolated (typically: weight, size, center of
gravity, and inertias)

e Types of dynamic disturbance to be isolated (sinusoidal and random vibration,
frequency and magnitude of inputs, shock inputs, etc.)
Static loadings other than weight (e.g., a steady acceleration in many aircraft applications)

e Ambient environmental conditions (temperature ranges, humidity, ozone, exposure to
oils and other fluids, etc.)

e Allowable system responses (What are the maximum forces the isolated equipment can
withstand? What is the maximum system deflection allowed?)

e Desired service life

8.3.3 Sample Problems
Problem 8.3.3.1

A sensitive piece of electronic equipment is to be mounted on a platform that is subjected
to a 0.4 mm SA sinusoidal vibration at 50 Hz. SA means single amplitude, so the peak-to-
peak motion is 0.8 mm. The input vibration (disturbance) is primarily in the vertical
direction. The task is to design a vibration isolator that provides 80% isolation while
minimizing the clearances necessary to allow this level of isolation. The equipment has a
mass of 5.5 kg and a weight of 53.9 N. Assume use of a very low damped elastomer with a
loss factor n = 0.02 for this design.

To begin the design, solve Eq. (8.17) to find the system natural frequency that will
provide Taps = 0.2, which is equivalent to 80% isolation. Equation (8.17) is acceptable
because the material has a low loss factor and r exceeds v/2 for isolation:

TABs _f2/(/"1)2—1 (solve for f,)
) = f*Tags
! 1 + Tags

where /= 50 Hz and Tags = 0.2

(fo)? = (50)* (0.2)/1.2
fo=20.4 Hz

Therefore, the isolation system must be designed to have a natural frequency of 20.4 Hz
to isolate 80% of an input vibration at 50 Hz.
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The isolation system dynamic spring rate can now be found using Eq. (8.15) and
solving for K":

_ (W

!
K 248.4

where f;, = 20.4 Hz and W = 539 N
K = (20.4) (53.9)/248.4
K =90.3 N/mm

Now some assumptions and decisions about the isolation system need to be made to design
the individual isolators. A key assumption is that the structural components of the system are
infinitely rigid, so all deflections occur in the isolator. For stability, a four-isolator system is
used. Each isolator is located symmetrically about the equipment center of gravity as shown
in Fig. 8.13. Since the input is primarily in the vertical direction, the isolators are oriented such
that vertical deflections cause shear deflections. To provide the desired isolation, a system
dynamic spring rate of 90.3 N/mm is required. The dynamic spring rate for each isolator is
then 22.6 N/mm. The static load per isolator due to the equipment weight is 13.5 N.

To find the appropriate isolator size, some design limits need to be applied. For a
starting point, limit the static stress on the isolator to 0.069 N/mm?. Knowing the static

Isolated center of gravity
equipment
|

gravity

////

r clearance

[— equipment

|, T— Isolators
in four
places

Figure 8.13 Four-mount system.
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load of the equipment and applying a static stress limit, the minimum load area for the
isolator can be determined using Eq. (8.3):

F
c=—
A
where 6 = 0.069 N/mm”
F=135N
so
13.5 5
Am,'n = m =196 mm

From the specifications for the low damped elastomer selected for this isolator, we find an
available range of modulus from 0.345 to 1.38 N/mm?” From this range we select a
modulus and use Eq. (8.2a) to determine the thickness of the elastomer required to get the
desired dynamic spring rate:

AG'
K==

where 4 = 196 mm?, and we select G' = 0.69 N/mmz. Then

0.69

This completes the first iteration of the isolator design with the following results:

Load area 4 = 196 mm?

Thickness ¢t = 6 mm

Dynamic shear modulus G' = 0.69 N/mm?>
Dynamic shear spring rate K’ = 22.6 N/mm

The isolation system uses four isolators in shear with a total system dynamic spring rate
(4)(22.6) = 90.3 N/mm. This provides a system natural frequency of 20.4 Hz for the
specified weight of the isolated equipment. In turn, the equipment is isolated from 80% of
the 50 Hz vertical sinusoidal disturbing vibration. Before the design is finalized, the static
shear strain in the elastomer must be checked against design limits. This calls for the
determination of the static spring rate for the isolator.

In general, the elastomer shear modulus is affected by frequency and strain. Therefore,
the static spring rate K of an elastomeric isolator can be much softer than the dynamic
spring rate K'. This difference tends to increase as the amount of damping in the elastomer
increases. A dynamic-to-static ratio of 1.1 is reasonable for the low damped elastomer
(m= 0.02) selected for this isolator.

Using the 1.1 factor, the static shear spring rate is given by:



244 Design of Components

K, = K';/1.1 where K’y = 22.6 N/mm
K, =20.5 N/mm

The static deflection is then given by Eq. (8.1):

F
K, ==
d

where K = 20.5 N/mm and F (the static equipment weight) = 13.5 N. Thus,

13.5

The static shear strain is then given by Eq. (8.4):

where d = 0.66 mm and ¢t = 6 mm

z-::o’cgz().llzll%

A reasonable limit for static shear strain in this case is 20%, so the isolator design meets
both static stress and strain criteria. The dynamic input vibration was given as 0.4 mm SA.
The transmissibility of the isolation system at the disturbing frequency is 0.2 by design;
therefore the dynamic deflection transmitted to the equipment is

(0.2)(0.4) = 0.08 mm
resulting in a dynamic strain of

% = 0.013 = 1.3% at 50 Hz

The total clearance required to provide the desired isolation is
0.66 mm static + 0.08 dynamic = 0.74 mm

In actual practice, additional allowances need to be made for temperature, fatigue, and
long-term drift effects when establishing adequate clearance.

A system with a natural frequency lower than 20.4 Hz would have provided even better
isolation. However, the lower natural frequency means a lower spring rate, which results
in increased static deflections, requiring additional clearance in the installation. Since one
of the design goals was to minimize the required clearance, the 20.4 Hz system would be
considered to be the best choice.
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For the final step, assume that the isolator is circular. The diameter required to provide
196 mm? load area is

= 15.8 mm

{M}lﬁ

T

The resulting isolator design is shown in Fig. 8.14.

Elastomer

15.8 mm DIA / End Plate

Figure 8.14 Final isolator design. u— t=6 mm

SASSN

AN

Problem 8.3.3.2

Check the design of Problem 8.3.3.1 to see whether bending will impact the performance.
Section 8.2 demonstrates that bending may affect the shear spring rate if the elastomer

thickness-to-length ratio is greater than about 0.25. For the isolator of Problem 8.3.3.1,

the length ( = diameter) is 15.8 mm and the thickness is 6 mm. Therefore the ratio is

6/15.8 ~ 0.38

This means that bending may tend to reduce the actual spring rate of the isolator. From
Eq. (8.5), the bending factor is calculated to be 0.96. Applying the bending correction
factor has the following impact on the isolation system:

Isolator dynamic spring rate becomes (22.6)(0.96) = 21.7 N/mm
System dynamic spring rate becomes (4)(21.7) = 86.8 N/mm
Solving Eq. (8.15) for the new system natural frequency yields

1/2
f= 15.8(%) =20 Hz

The original design gave 20.4 Hz, so bending can be considered to have a negligible
impact on performance, although some additional clearance space should be allowed.
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Problem 8.3.3.3

For Problem 8.3.3.1, the only input was at 50 Hz. When the equipment and the isolation
system were installed, it was found that vibrations in the 10 to 50 Hz range were also
present and caused the equipment to malfunction. From additional measurements, it was
determined that the input vibration disturbance was 0.25 mm SA and that the equipment
could withstand a maximum vibration disturbance of 0.9 mm in the 10 to 50 Hz frequency
range. What design changes are needed to maintain 80% isolation of the 50 Hz
disturbance while meeting the new requirements?

The original design used a very low damped elastomer with a high transmissibility at
resonance. This was chosen to provide the desired isolation with the highest possible
system natural frequency to limit the necessary clearance in the installation. Note in
Fig. 8.12 that as the amount of damping increases (n increasing), the isolation at any
given r value decreases. In other words, additional damping tends to decrease the
isolation efficiency of the isolator. The trade-off is the transmissibility at resonance 7. At
resonance f = f,, and Eq. (8.16) can be reduced to

Gl

T~

(8.20)

For the material chosen in Problem 8.3.3.1, n = 0.02 = G"/G’, therefore

1
Tr7m750

The resulting vibration at the 20 Hz system natural frequency would be
(input SA)(7;) = (0.25 mm)(50) = 12.5 mm

which is clearly much greater than the 0.9 mm the equipment can withstand. In fact,
the 12.5 mm dynamic deflection produces 209% dynamic strain, which is much greater
than the isolator designed in Problem 8.3.3.1 could withstand for an extended time.
Typically isolators are limited to less than 30 to 40% dynamic strain to minimize heat
buildup and fatigue.

Given a 0.25 mm input and a 0.9 mm limit for transmitted vibration, the maximum
allowable T, becomes

From a catalog of available materials, an elastomer with m = 0.4 is chosen for the
redesigned isolator, because 1 = 0.4 is equivalent to 7, = 2.5.

The maximum transmitted vibration at resonance for this elastomer is then:

(input SA)(T}) = (0.25)(2.5) = 0.625 mm
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Having selected an elastomer with an appropriate loss factor to meet the requirement
for maximum transmitted vibration at resonance, Fig. 8.12 can be used to find the
frequency ratio required to provide 80% isolation of the 50 Hz disturbing vibration. The
N = 0.4 curve intersects with the Thgs = 0.2 line at r = 2.95:

f
r=295==
Jn
where /= 50 Hz
50
n=——=169H
=795 =169 Hz

Repeating the same procedure used in Problem 8.3.3.1, the system dynamic spring rate,
individual isolator spring rate, and isolator design parameters can be determined:

()W

K= 248 .4

where f, = 16.9 Hz and W = 53.9 N

K = (16.9)* (53.9)
248 4

K = 62 N/mm = system dynamic spring rate

64—2 = 15.5 N/mm = isolator dynamic spring rate

The static stress conditions are still the same, so
Amin = 196 mm>  (from Problem 8.3.3.1)

Assuming a dynamic modulus G’ of 0.69 N/mm?,

. (196)(0.69) _

155 8.7 mm

The dynamic strain at resonance is

(input SA)(T;)
t

_(0.25)(2.5)
Y 7%

which is acceptable.
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The area has not changed, so the diameter of the isolator is 15.8 and the thickness-to-

length ratio now becomes

8.7

—=10.55

15.8
This factor can be reduced by maintaining the original thickness of 6 mm to reduce any
additional bending effects. In this case the elastomer modulus must be changed to obtain
the desired dynamic shear spring rate:

_AG
Tt

Kl

where 7 = 6 mm, 4 = 196 mm?, and K =15.5 N/mm,

. (15.5)(6)
G = 196

G' = 0.47 N/mm?

A quick check of the materials specifications for the chosen elastomer shows that this
modulus is available. The static shear deflection for the system now is found as follows.
Assume:

g =~ 1.4 for the elastomer chosen
N
K, ~ 15.5/1.4=11.1 N/mm

F 135

The resulting static shear strain on the elastomer is

€= % =0.204 = 20.3%

This is marginally acceptable for this application. Finally, the total deflection for the
new system is

1.22 mm static + 0.63 mm dynamic = 1.85 mm

Note that the dynamic deflection at 50 Hz (0.08 mm) is less than the dynamic deflection
at resonance (0.63 mm). The larger of the two was used to determine the maximum
clearance required.

In this case, the new design requirements were accommodated by changing the
elastomer without changing any of the isolator geometry parameters. However, the
installation had to be changed to allow for the increased clearance required by the softer
system. Had the system been softened any further, changes to the thickness and area
would have been required to stay within reasonable static strain limits while keeping the
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necessary spring rate. Many further iterations of this problem could be performed by
changing the input conditions or applying new temperature and/or environmental
constraints. In the problems above, the size of the isolator was determined by the static
design limits. In other cases, the size may be determined by the dynamic design limits on
stress and strain. This is usually the case for isolators experiencing relatively high inputs
and/or transmissibilities at resonance.

8.4 Practical Design Guidelines

e Shear stress-strain performance can be assumed to be fairly linear up to 75 to 100%
strain for rough sizing purposes.

e Tension and compression stress-strain performance can be assumed fairly linear up to
30% strain.

e Most product designs intentionally avoid using rubber in direct tension. Fatigue
resistance and design safety requirements are usually best met by using rubber in
compression and shear.

e A conservative starting point for isolator design is 0.069 N/mm? static stress. This
minimizes potential drift for most lightly to moderately damped elastomers.

e Typical vibration isolators limit dynamic strains to 30 to 40% maximum to minimize
fatigue wear and heat build-up.

e When designing within a range of available modulus for a given elastomer, it is best to
stay away from both the softest and the stiffest available. Approximations in the
calculations and tolerances in the elastomer manufacturing process need to be allowed
for. If a design uses the softest material available, and the part then turns out to be
slightly too stiff, a costly design change is required to produce a softer part. If some
room were allowed for changes in the original modulus selection, a softer part could be
produced simply by using a lower modulus compound.

e To complete a design project involving dynamic conditions, you need to know the
dependence of modulus on frequency, strain amplitude, and temperature. In general,
as damping in a material decreases, the dependence of modulus on frequency and
strain amplitude also decreases.

e The relationship of dynamic to static modulus depends on the specific conditions and
the specific material properties. Practically, static is assumed to mean a loading rate
slower than one cycle per minute.

e For compression designs, stability generally becomes a factor when the overall
elastomer thickness approaches the width or diameter of the design.

Tolerances:

In the calculations, assumptions and approximations are made about material properties,
geometric factors, and loading. Examples include the effective loaded area for a tube form
mounting, the effective compression modulus of the elastomer, and the assumption of
infinitely rigid metal parts.
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In manufacturing, tolerances in material properties and component geometry cause
variations in the actual performance of a design. Also, in testing a component, many
variables exist that can significantly affect test results. Loading speed, test fixture rigidity,
deflection measurement and operator/machine repeatability are some of the important
factors.

Given the above causes of variability, it is not unusual to have differences between
actual and calculated performance. However, as long as the assumptions in the
calculation are not changed, empirical relationships can be developed between calculated
performance and the results obtained using standardized tests. Most manufacturers
have developed their own proprietary relationships of this kind and are able to predict
actual product performance very closely using closed-form solutions like those presented
in this book.

8.5 Summary and Acknowledgments

This chapter presented a few specialized examples for designing elastomeric products.
Resources containing additional examples and information are readily available from
elastomeric product manufacturers. For example, Reference [6] contains numerous
examples and additional theory for vibration and shock isolation. For examples of seal
design, hose design, and so on, the reader is referred to product catalogs for the major
manufacturers in those industries.

For the problems presented here, the design limits, procedures, and assumptions were
based on the authors’ practical design experience. The various values for elastomer
modulus, assumed in the problems, were based on currently available materials.

Table 8.2 is presented to assist the reader in using both the SI and English systems
of units.

Thanks to three Lord Corporation colleagues, Jesse Depriest, Paul Bachmeyer and
Don Prindle for their critical review of this chapter.

Table 8.2 English to SI Conversion Factors

To convert from To Multiply by Use for
Psi kPa or kN/mm?> 6.895 Modulus
Ib force N 4.448 Force

in. mm 25.4 Deflection
1b force/in. N/mm 0.1751 Spring rate

g = 9.8 m/s* = 9800 mm/s*> = 386 in/s’




