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Abstract

This paper presents dimensionless design graphs for three types of flexure elements, based on finite element analysis. Using these graphs
as a design tool, a designer can determine the optimal geometry, based on the stiffness and rotation demands of a flexure element. An
example is given using the beam flexure hinge.

Between the analyzed flexure hinges, a comparison is made on basis of equal hinge functionality: rotation. The result describes the
maximum stiffness properties from different hinges in identical situations. A beam flexure element is preferred over a circular flexure hinge
for stiffness demands in a single direction, while a cross flexure element enables medium stiffness in two perpendicular directions.
© 2004 Published by Elsevier Inc.
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1. Introduction

As miniaturization continues in many fields of modern
technology, the demand for precision mechanisms increases
with it. One specific kind of precision mechanisms is called
‘compliant mechanisms’, as discussed by Howell[1] and
Smith [2]. These mechanisms are widely used where high
accuracy is demanded over a short range of motion.

The compliant mechanism uses ‘flexure hinges’ in order to
introduce local rotational degrees of freedom into the mech-
anism. A flexure element rotates as a result of local elastical
deformation, as shown inFig. 1. The describing parameters
and coordinate system are also presented in the figure.

Although flexure hinges provide only a limited rotation
angle, there are definite benefits above sliding or rolling
hinges: rotation without friction losses, lubrication, hystere-
sis or maintenance. Being monolithic with the rest of the
mechanism for the vast majority of applications, this results
in low production costs and virtually no assembly, according
to Howell [1].

For this paper, only monolithic flexure elements are taken
into account, for use in two-dimensional mechanisms. These
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mechanisms, including the hinge points, can be manufactured
by wire electro-discharge machining. The three types which
are handled in this paper are shown inFig. 2.

In Fig. 1, the relevant coordinate system and parameters of
a circular hinge are shown. Important design properties for
any type of flexure hinge are stiffness in rotation directionψ,
stiffness inx- andz-direction and the stress build up due to
bending (elastic deformation) over an angleψ. Also stresses
which result from normal forcesN, including the stress con-
centration factor as a result of the shape of the hinge, have
to be taken into account. For a circular hinge, a dimension-
less design graph has been constructed several decades ago
and presented by Koster[3]. This graph is reproduced in this
paper to ensure consistency.

These graphs are constructed using finite element calcula-
tions. Smith states[4] that this data can be assumed to be the
‘true’ stiffness behaviour.

Beside the choice of thetype of flexure element, thegeom-
etry itself determines the important properties of the flexure
hinge like stiffness and allowed rotation angle.

In this paper, the relationship between geometry and hinge
behaviour are presented both numerically and graphically, to
assist the designer in the process of choosing both the type of
hinge and the geometry during the first stages of the design
process.

0141-6359/$ – see front matter © 2004 Published by Elsevier Inc.
doi:10.1016/j.precisioneng.2004.04.003



42 W.O. Schotborgh et al. / Precision Engineering 29 (2005) 41–47

Nomenclature

C stiffness
D circular shape diameter
E Young’s modulus
F force
h flexure hinge thickness parameter
k rotation stiffness
L flexure hinge beam length parameter
N normal force
t plate thickness
T bending moment
x,y,z reference axes
ν Poisson ratio
γ form factor for shear

deformation= 6/5 [5]

Greek symbols
σ stress
ϕ,ψ,θ reference rotations

Subscripts
x,y,z reference axes
ϕ,ψ,θ reference rotations

Fig. 1. Flexure element.

2. The circular hinge

The dimensionless design graph for the circular flexure
hinge is reproduced using the finite element calculations pro-
gram ANSYS. For these calculations, the geometry of the 3D
hinge is modelled using a 2D quarter of the model, shown in
Fig. 3.

Fig. 2. Flexure elements.

Fig. 3. Circular hinge model.

In this model, thickness is not taken into account sepa-
rately, but included by using the element type plane stress
(small thickness relative to the radius) or plane strain (large
thickness). In this case, plane stress elements are used be-
cause this results in the safe situation of 5–10% under esti-
mation of the stiffness inx-, z- andψ-direction, rather than a
possible over estimation.

The stress data itself is not affected by the choice for plane
stress elements, because a constant torque has been applied
to study stress due to rotation.

The most important aspects of the finite element program-
ming can be summarized:

- ANSYS version: 6.1.
- Element type: Plane2, a 6-node triangular element with

quadratic displacement behaviour. This type is well suited
for meshing of irregular shapes. The element is used in this
application as plane stress element.

- Material properties: The Young’s modulus used is that of
steel: 210× 109 Pa. The Poisson’s ratio used is 0.28.

In order to characterize the flexure hinge more mathemat-
ically, the large number of data points (25 per graph line) are
fitted with a function. In this case, the equations of the lines
are formed by second order polynomial fitting, using the least
square method.

The order of the polynomial function is chosen to be two
for the circular hinge, since fitting the data points with higher
order polynomials results in a marginal improvement of the
norm of residuals, compared to the 5–10% under estimation
of the values themselves.
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For a circular hinge, as shown inFig. 1, the equations for
the dimensionless numbers are given below.

Dimensionless stiffness inx-directionCxx (1):

Cxx

E× t
= 0.0010+ 0.4256

√
h

D
+ 0.0824

(√
h

D

)2

(1)

Dimensionless stiffness inz-directionCzz (2):

Czz

E× t
= 0.0040− 0.0727

√
h

D
+ 0.3417

(√
h

D

)2

(2)

Dimensionless rotation stiffnesskψψ (3):

12× kψψ

E× t × h2
= −0.0089+ 1.3556

√
h

D
− 0.5227

(√
h

D

)2

(3)

Dimensionless rotation stressσψψ (4):

σψψ

ψ × E
= −0.0028+ 0.6397

√
h

D
− 0.0856

(√
h

D

)2

(4)

Dimensionless stress concentrationσx due to normal force
N (5):

σx × h× t

N
= 0.9951+ 0.0542

√
h

D
+ 0.5171

(√
h

D

)2

(5)

The equations describe the stiffness for a circular hinge
directly as a function of the geometry, as represented graphi-
cally in Fig. 4. The use of the square root is merely to enlarge

Fig. 4. Dimensionless design graph for circular hinge.

Fig. 5. Cross hinge model.

the clarity of the graph for the smallerh/D ratios, which are
most realistic for practical use.

3. The cross hinge

Similar to the circular hinge graph, a design graph is
constructed for the cross hinge using finite element calcula-
tions. Modeling again one 2D quarter of the actual geometry,
identical load cases have been subjected to this model. The
geometry and model used is shown inFig. 5. In order to
have reliable information concerning the stress behaviour,
the mesh is refined at the locations where the stress concen-
trations are expected: around the fillets.
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Fig. 6. Dimensionless design graph for cross hinge.

The fillet radius is taken 70% of the beam thickness, since
this is the optimal value for bending beams, as explained later
in this paper.

As with the circular hinge graph, a dimensionless design
graph is constructed for the cross hinge, shown inFig. 6.

The equations of these lines are formed by third order poly-
nomial functions, using the same motivation as the circular
hinge fitting, where an increase in polynomial order does not
lead to a significantly higher accuracy.

The equations for the dimensionless numbers are:
Dimensionless stiffness inx-directionCxx (6):

Cxx

E× t
= −0.0033+ 0.1333

√
h

L
− 0.3984

(√
h

L

)2

+ 1.1962

(√
h

L

)3

(6)

Dimensionless stiffness inz-directionCzz (7):

Czz

E× t
= −0.0012+ 0.0590

√
h

L
+ 0.0434

(√
h

L

)2

+ 0.7850

(√
h

L

)3

(7)

Dimensionless rotation stiffnesskψψ (8):

3 × kψψ

E× t × h2
= 0.0048− 0.1289

√
h

L

+ 1.5663

(√
h

L

)2

+ 0.2704

(√
h

L

)3

(8)

Dimensionless rotation stressσψψ (9):

σψψ

ψ × E
= 0.0009− 0.0418

√
h

L

+ 1.5426

(√
h

L

)2

− 0.4463

(√
h

L

)3

(9)

The stress concentration factor[5] for forces acting on the
hinge is not represented separately in the graph, since the fillet
radius is given a fixed value resulting in a constant factor of
about 1.4.

4. The beam hinge

Since it is relatively straight forward to analyze the stiffness
and stress behaviour of a beam, no finite element calculations
are made to construct the design graph for this type of flexure
hinge. Instead, the graph is directly derived from the stress
and stiffness formulas of Bernoulli beams, as stated by Gere
and Timoshenko[5]. The coordinate system and dimensions
are shown inFig. 7.

The stiffnessCxx in length direction of a beam (10):

Cxx = E× t × h

L
(10)

The stiffnessCzz perpendicular to the length direction of
a beam (11):

Czz = E× t × h3

L3 + 2γ(1 + υ)L× h2
(11)
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Fig. 7. Dimensionless design graph for beam hinge.

whereγ is the compensation factor for shear deformation[5],
andυ is the Poisson ratio[5].

The theoretical rotation stiffnesskψψ of a beam (12):

kψψ = E× t × h3

12× L
(12)

The rotation stressσψψ due to bending of an ideal beam
(13):

σψψ = ψ × E× h

2 × L
(13)

Because the flexure element is attached to relatively stiff
elements, stress concentration due to a fillet radius is present.
In order to have the optimal fillet radius, the occurring stress
concentration factor should be as low as possible, however
still allowing for good rotation.

Consider a beam flexure attached to the fixed world, while
the free end is under constant torque: a too large fillet radius
introduces only little stress concentration, but also little rota-
tion because it stiffens the beam. A too small radius results in
higher rotation, but introduces a large stress concentration.

The optimal situation is that which results in lowest stress
concentration relative to the highest rotation.

After finite element analysis over a wide range of different
radii, the optimal fillet radius is found to be 70% of the beam
height. This results in a 16% increase of dimensionless rota-
tion stress, compared to an ideal beam without connection to
the fixed world. Thus, formula (13) can be compensated for
this, resulting in (14):

σψψ = ψ × E× h

2 × L
× 1.16 (14)

where 1.16 is the fillet radius influence, for a radius of 0.7 h.

For forces acting on the beam, this fillet radius results in a
stress concentration factor of about 1.4.

The effect it has on the stiffness inx- and z-direction is
neglected, since it is expected to have only a minor (positive)
effect.

With the above stated formulas, the dimensionless design
graph for beam flexures can be constructed as shown inFig. 7.
Thex-axis represents the

√
h/L value, to give visual compari-

son with the other design graphs. The dimensionless rotation
stress is compensated with the fillet radius influence, using
Eq. (14).

5. Use of the design graph

The dimensionless design graph combines the geometry
of the hinge with its functional characteristics. This is done
through dimensionless numbers at the vertical axis. For beam
flexures this can be seen inFig. 7.

An example calculation:
Consider a beam flexure which rotates from−0.035

to +0.035 rad (total angle 4.0◦). Using 42CrMo4 steel
[DIN17200], the allowed stress level is 600× 106 N/m2 and
the Young’s modulus is 210× 109 N/m2. The dimensionless
number for rotation stress now becomes (15):

σψψ

ψ × E
= 0.08 (15)

The corresponding geometrical constraint for the beam
flexure hinge is found from the graph, orEqs. (10)–(14), to be√

(h/L) = 0.38. The resulting stiffness inx- andz-direction,
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for a 10 mm material thickness, can be derived directly:
3.0× 108 and 6.3× 106 N/m, respectively.

These stiffness values can be compared to the desired
situation, as commonly derived from dynamic performance
specifications of the mechanism. For a higher stiffness, or
better dynamic performance, concessions have to be made
regarding the rotation angle, the allowed stress or the plate

Fig. 8. Comparison stiffness inx- andz-direction.

Fig. 9. Comparison rotation stiffness.

thickness. This relation is described in the following formula
(16) for stiffness inx-direction:

Cxx = σψψ × t × 1.72

ψ
(16)

If an acceptable stiffness is found, the only remaining para-
meter is height ‘h’. For this value, the minimum manufactu-
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ring height can be taken; 0.3 mm. The rotation stiffness can
now be derived:kψψ = 2.3 Nm/rad. This value can be used to
calculate the force which the actuator is required to deliver.

The designed flexure hinge has a height of 0.3 mm and a
length of 2.1 mm, with fillet radius 0.21 mm.

6. Comparison

Now that the three flexure types are analyzed, it is possible
to make a comparison and determine the most favorable.

Instead of comparing on the basis of equal geometry, as
done by Lobontiu et al.[6] and Xu and King[7], the hinges
are compared on the basis offunction: equal rotation angle.
The question then is; which type has the highest possible
stiffness inx- andz-direction, at equivalent stress levels.

Consider a flexure being rotated over a certain angleψ.
Regardless of the type of hinge, the material allows only a
certain stressσψψ to do so. From the rotation angle, material
property and allowed stress, a value for the dimensionless
rotation stress is found (15):
σψψ

ψ × E
= 0.08 (15)

As shown in the foregoing section, this leads to a specific
stiffness inx- and z-direction. For the three flexure types,
these values can be compared visually by plotting them
against the dimensionless rotation stress (hinge function), as
is done inFig. 8. The dimensionless stiffness is represented
on the vertical axis, and the dimensionless rotation stress
against the horizontal axis.

The same comparison is possible for therotation stiffness.
The three types are again compared on basis of equal rotation
function. Now, the dimensionless rotation stiffness is plot-
ted against the dimensionless rotation stress, thus leading to
Fig. 9. The exact value of the rotation stiffness remains de-
pendent on hinge parameter ‘h’. This is of course a different
parameter for the circular-, beam- and cross hinge.

7. Conclusion

For circular-, cross- and beam flexure hinges, dimension-
less design graphs are constructed which relate the stress-,
stiffness- and rotation properties directly to the geometry. Us-
ing these graphs, the designer can determine the geometry of
a flexure hinge based on the design demands.

In this paper, the attention is focused on the stress- and
stiffness behaviour of flexure elements.

Based on the design graphs, a comparison is drawn be-
tween the properties of the flexure elements, when compared
on basis of identical function: equal rotation angle and stress.
This is visualized inFig. 8. From this, several conclusions
are drawn:

- A beam flexure element with specific fillet radius (0.7×
beam height) has two times higher stiffness inx-direction

Fig. 10. Crossed leaf configuration.

compared to a circular flexure hinge. The stiffness in
z-direction is 10% higher for the majority of geometries.

- A cross flexure element is preferred above a beam flexure
when stiffness inz-direction is absolutely demanded, how-
ever significant lossx-direction stiffness is inevitable.

- A comparison based on equal rotation function is per-
formed with respect to the rotation stiffness: a beam hinge
is equally stiff in rotation as a circular hinge. A cross hinge
is twice as stiff in rotation as both circular- and beam
flexure hinge.

- Based on stress- and stiffness analysis, a beam hinge is
preferred over a circular hinge.

- A superior hinge can be constructed by a symmetrical ‘out
of plane’ cross configuration of two perpendicular beam-
or leaf elements, as shown inFig. 10. Although this hinge
is not easily manufactured by wire electro-discharge ma-
chining, it would result in maximum stiffness in bothx-
and z-direction. In the figure, solid bodies A and B can
rotate relative to each other with optimal stiffness in all
directions. This type can also be used in micro- and nano
mechanism, since it can be manufactured by lithography.
Using multiple layers, it is possible to produce a symmet-
rical cross configuration of beams which do not touch each
other.

With the above stated considerations and design aids, the
design process of compliant mechanisms will be reduced in
both time and complexity. The designer is able to determine
the optimal geometry of the flexure hinges, based on the de-
mands. This will speed up the design process significantly,
leading to better designs with higher specifications.
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