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1 Introduction

The goal of the engineer is to design a system that meets a set of requirements

while minimizing cost and complexity, knowing full well that once the thing is

built everything will be wrong. Take, for instance, the lens shown in Fig. 1. In

optical design software, each of the lens elements are chosen to have particular

focal lengths and refractive indices, with very particular positions all set to some

arbitrary level of precision. However, the actual lenses cannot be placed with

absolute precision and accuracy, and so the real-world lens will not be as designed.

Each lens will be shifted by some small amount from the optimal position and will

be tilted with respect to the optical axis which will compromise the performance.

To make matters worse, the focal length, diameter, and thickness of each lens

1



Figure 1: Cutaway of a Canon EF600mm F4L IS II USM lens. Photo by Morio[1].

will not be as designed, and the index of refraction will be wrong as well. The

key, then, to designing a system is to carefully control how ‘wrong’ each of these

parameters may be. The naive engineer may simply constrain tolerances to be

very tight, but this can be difficult for the machinist, and generally results in a very

expensive system. He or she may include in the assembly procedures a tedious

and intricate alignment process where the position of each element is carefully

measured and aligned by hand, but again the added complexity will increase the

required labor, and increase the cost.

In general, a well-designed system has balanced cost with performance, utiliz-

ing the simplest design that still meets the requirements, and finding this optimum

requires tolerance analysis. In this paper, I outline the very basics of the toler-

ancing process. First, a quantitative figure of merit (FOM) is chosen the reflects

the performance requirements of the system. Then, a list is made of each param-

eter that could impact the performance. The effect of each of these parameters is

calculated or simulated, and the system performance is modeled assuming loose
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tolerances. The tolerances on each parameter are tightened or loosened as re-

quired, and if necessary the design or requirements are modified. The process is

iterated until the optimum design is found.

While the examples here will be optomechanical in nature, the principles may

be applied to any system where uncertainties in components affect overall perfor-

mance of an assembled system. An amplifying circuit for a photodiode is a good

example. Such a system will have uncertainties associated with the values of resis-

tors and capacitors and other components that will make the overall performance

of the circuit uncertain. The concepts are the same.

2 Figure of Merit

The first step in the tolerancing process is to define the FOM, Φ, a number that re-

flects the performance of a system. For an imaging system, this could be the RMS

spot size or MTF. In a fiber optic system, this could be the coupling efficiency

between two fibers. In mechanics it may be the drift in position of a part, and in

electronics it could be the gain or bandwidth of a circuit. The choice is limited

by imagination, but should be simple, and should reflect the requirements of the

system.
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3 Parameters

Next, a list is made of all the things in the system that could go wrong. In an

imaging system, this could be the focal length, diameter, thickness, or index of

refraction of each lens element, or the positioning and tilt. In electronics, this

could be the values of each capacitor and resistor. Other parameters could be

related to the environment, like temperature, which can change the focal length of

lenses, dimensions of mechanics, and values of electronic components. The FOM

will be a function of this set of parameters {xi},

Φ(~x) = f (~x) . (1)

4 Statistics

Since the values of the parameters cannot be known exactly, each one will have

some uncertainty, ∆xi, and this will propagate to an uncertainty in the FOM, ∆Φi.

Then as long as the set of parameters are independent from one another, the overall

uncertainty in the FOM can be calculated by taking the root-sum-square (RSS) of

the set of {∆Φi},

∆Φ =
√

Φ2
0 +(∆Φ1)2 +(∆Φ2)2 + · · · , (2)

where Φ0 is the residual uncertainty in the FOM, the value when there is no un-

certainty in the parameters {xi} (due to diffraction, for instance, the RMS spot
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size of an imaging system will never be zero). The central limit theorem states

that under certain conditions, the sum of many random variables follows a Gaus-

sian distribution – the bell curve – regardless of how the individual parameters are

distributed. This is not always strictly true, but it is usually a very good approxi-

mation for the purposes of tolerancing. If we assume that the ∆Φi values are 2σ

values – a sometimes pessimistic assumption – then the ∆Φ in Eq. 2 will be the

2σ uncertainty in the overall system performance. This means that we can expect

that 95% of systems built will fall within ±∆Φ of our designed FOM. Similarly

we could ±1σ values which would would include 68% of builds, or ±3σ values

which would include 99.7% of the builds. Typically 2σ values are used.

As an example, consider 3 3 mm spacers, each with a thickness tolerance of

±0.1mm. We would like to put these together to get a 9 mm spacer. Clearly, an

uncertainty of ∆x in one of the spacers will result in an uncertainty in the total

thickness ∆Φi of the same amount. Using equation 2,

∆Φ =
√

∆x2 +∆x2 +∆x2 =
√

3∆x . (3)

Thus, the total uncertainty in the thickness of the combined spacers is about 1.7

times the tolerance on each spacer. In general, when N uncertainties of about the

same value ∆x are added in RSS, the resulting uncertainty is
√

N∆x.

Another important consequence of Equation 2 is that big terms tend to dom-

inate the sum since they are first squared. For example, if two uncertainties of

value 1 and 10 are added, then the root sum square is 10.04. The uncertainty of 1
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has increased the total uncertainty by only half a percent.

5 Sensitivities

In order to efficiently tolerance a system, we need to calculate the relationship

between the tolerance on each parameter, ∆xi, and its effect on the merit func-

tion, ∆Φi. This is easiest when we make the assumption that figure of merit is

linear with respect to each parameter. This is typically a good approximation as

tolerances in the parameters are small, though it is good practice to verify that

the parameter is sufficiently linear over the expected tolerance range of each pa-

rameter. If that is the case, then the sensitivity for a parameter xi is given by the

partial derivative of the merit function with respect to the value of the parameter,

∂Φ/∂xi. Then the effect on the merit function can be calculated using

∆Φi ≈
∂Φ

∂xi
∆xi . (4)

If we know the equation, then it is straight forward to apply Eq. 4 to find the

sensitivity, but for more complex systems like a photographic lens, this can be

difficult. Instead, we can use a model from a simulation program such as Zemax

to do the calculation. Programs like these usually have a tolerance feature that can

be very useful, but it important to really understand what is going on, or it may

give wrong or misinterpreted results. The sensitivity for a given parameter may

be estimated by perturbing it by some small amount, and then recording the effect
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on the merit function. Then the sensitivity may be calculated using

∂Φ

∂xi
≈ ∆Φ

∆xi
(5)

When the residual merit function Φ0 is much smaller than the perturbed merit

function, then it may be ignored and ∆Φ ≈ Φ(xi +∆xi). If it not small, and it is

correlated with with the perturbed parameter, then ∆Φ = Φ(xi +∆xi)−Φ0. In the

more common case where Φ0 is independent of the perturbed parameter, then the

net effect on the merit function is the RSS, Φ(xi +∆xi) =
√

Φ2
0 +(∆Φi)2, which

can be inverted to find ∆Φ =
√

Φ(xi +∆xi)2−Φ2
0.

Fig. 3 shows how Excel can be used to calculate sensitivity of the doublet

shown in Fig. 2. The tilt of the first lens is changed in 1 mrad steps, and the figure

of merit is computed for each. The results may be plotted to verify linearity, and

the slope of the line is the sensitivity.

In some cases, a model may not be available and an experiment is required

to find the sensitivity. The procedure works the same way, except parameters are

perturbed in a real system.

6 The tolerance table

When the parameters and sensitivities have been calculated, the tolerance table,

Table 1 may be constructed in a spreadsheet such as Excel. Loose initial tolerances

should be chosen using rules of thumb and knowledge of the fabrication process.
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Figure 2: A simple doublet requiring tolerance analysis.

Figure 3: Excel is used to quickly calculate sensitivities and verify linearity.
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Table 1: The tolerance table
Parameter Tolerance Sensitivity Effect on

merit function
x1 ∆x1 ∂Φ/∂x1 = ∆x1 ·∂Φ/∂x1
x2 ∆x2 ∂Φ/∂x2 = ∆x2 ·∂Φ/∂x2
x3 ∆x3 ∂Φ/∂x3 = ∆x3 ·∂Φ/∂x3
...

...
...

...
RSS =sqrt(sumsq(·))

Sensitivies are loaded in the third column, and the effect on the merit function

is automatically computed in the fourth column, and finally the root-sum-square

is calclulated. The tolerances may now easily be adjusted until the RSS meets

the required specification. Tolerances whose effect on the merit function is high

compared to the others should be tightened, and those whose effect is small should

be loosened. A well tolerenced system will exhibit similar effects on the merit

function from each parameter.

An Excel assembly tolerance table for the doublet lens in Fig. 2 is shown in

Fig. 4. In this case a compensator was used–the position of the detector was al-

lowed to be adjusted to compensate for focusing errors. When compensators are

used, they must be accounted for when calculating the sensitivities. Therefore,

when each parameter was perturbed, the focus position was adjusted to simu-

late the focus adjustment. Then the resolution of the adjustment appears in the

tolerance table, in this case as ‘Detector Axial Position’. The RSS shows that

performance of the system is better than 1/20λrms which meets the requirement.

The tolerances are reasonable, and the values of the effect on merit function are

all close in value.
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Figure 4: Tolerance table for assembly of a simple doublet (Fig. 2.

7 Conclusion

Tolerancing is a complex, yet essential, skill in engineering that becomes easier

with practice. It allows us to predict how a system will perform when it is actually

built, and allows us to minimize the cost of the design. The principles listed herein

are very basic. Each field, and each application, will pose its own challenges.

Sources for further reading are listed below.
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