Modeling optical deformations due to laser heat flux on a flat mirror

Eduardo Marin December 13, 2016 Given as part of OPTI 521

Laser Heat flux

- As a laser beam contacts a mirror it will heat up the surface.
- This heat flux will cause a thermal expansion on the mirror based on its material

Thermal Expansion

- As a material undergoes a change in temperature it deforms.
- Every material has a coefficient of thermal expansion that defines this deformation α .
- Typical units are in ppm/K
- The higher the coefficient the larger the deformation
- The equation for linear thermal expansion is given as $\Delta L = L \alpha \Delta T$

Expected Deformation due to a liner temperature gradient

 In a liner case you expect a temperature gradient to cause a bending of the surface causing focus and spherical aberrations.

- The Radius of the sag is $R=(D \cdot t/\Delta)$
- Sag = $R \sqrt{(R^2 (D/2)^2)}$

How to Model deformation

- Create a solid model
- Introduce the thermal gradient and use FEA to model the temperature
- Constrain your solid model
- Model deformation due to thermal load
- Process data into Zernike polynomials

Making the solid model

- Use Solidworks or similar program.
- For this presentation a 100 mm diameter 15 mm thick Fused Silica mirror is made
- Transmission: 0.18 2.5 microns
- Young Modulus = 75.8 GPa
- $\alpha = 3.25 \text{ ppm}$
- Thermal conductivity = 1.2 W/m/K

Brief overview of FEA

- FEA = Finite Element Analysis
- Turns one large problem into a series of smaller ones.
- Divide the solid body in elements connected by nodes.
- Solve in the form of a matrix
- $[K]\{u\} = \{F\}$
- => $\{u\}=[K]^{-1}$ • $\{F\}$

SolidWorks Simulation

Solid Mesh

 TETRA4 and TETRA10 (4 &10 node tetrahedron solid elements)

Shell Mesh

SHELL3 and SHELL6 (3 & 6 node thin

Prepare FEA

- Now we need to run a FEA to find a temperature solution.
- First we add loads to the solid model. In this case we add 1W of heat power in a 3mm diameter beam at the front surface. We set the back of the mirror to ambient temperature of 295K
- We create the mesh of elements and nodes

Run the thermal analysis

- Now we run the thermal analysis to get a temperature solution
- Temperature goes up to ~407 K at beam center

Mirror mounting

With the thermal information in hand we move on the modeling the displacement caused by the thermal load. First we have to mount the mirror. We will use a standard 3 point mount on the back and set up the needed constraints in soildworks.

Create new mesh and run FEA to find displacement

- We make a new mesh considering the mounting.
- Using the thermal study as our load we can find the displacement, the center is displace almost 2 microns

Zernike Polynomials

 A series of polynomials that are orthogonal to the unit disk. Used to describe optical aberration.

$$Z_n^m(
ho,arphi)=R_n^m(
ho)\,\cos(m\,arphi)$$

$$Z_n^{-m}(
ho,arphi)=R_n^m(
ho)\,\sin(m\,arphi)$$

$$R_n^m(
ho) = \sum_{k=0}^{rac{n-m}{2}} rac{(-1)^k \, (n-k)!}{k! \, \Big(rac{n+m}{2}-k\Big)! \, \Big(rac{n-m}{2}-k\Big)!} \,
ho^{n-2 \, k}$$

Use data processing software

- I used the SAGUARO data processing package and was able to reconstruct the mirror surface shape.
- 0.7 microns RMS

Conclusions

- Thermal effects due to laser beams can be large
- Need to be careful when selecting materials and coatings
- Not only must the material survive the power of the laser it can not deform too much due to the heat induced by the laser.