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The purpose of this paper was to present a “unified analytical framework for plane-mirror optical kinematics”.  This “framework” consists of three key elements:

· Line-of-sight (LOS) reference frames (3 X 3 matrices) to define the LOS vector and image orientation and parity

· Optical transformations (operator is 3 X 3 matrix: O) and 
· Basis transformations (operator is 3 X 3 matrix: iTj) to analytically vs. geometrically determine the relative orientation and parity of the LOS and image vectors after passing through a series of plane mirrors.
The paper begins by citing examples of optical transformations, and basis transformation.  For example, to find the LOS vector of a system as being the reflection of the optical axis of a camera reflected off a fold mirror, one could multiply the vector transpose of the optical axis by the mirror transformation matrix.  This is an optical transformation because the vector is being re-oriented in space by the mirror reflection.  An example given of a basis transformation is transforming the unit vector sets defining kinematic reference frames attached to gimbals from one coordinate frame to another (orientation of elevation gimbal in azimuth gimbal coordinates vs. base/global coordinates).  A basis transformation is therefore simply changing the coordinate frame used to describe a vector or set of vectors, where the vectors being described haven’t actually moved (unlike optical transformation). 
The next section titled “historical perspective” presents the history of different matrix methods used for transforming rays through optical systems.  The authors point out that previous works usually addressed matrix methods to find the output rays of an optical system, but not directly finding the image vectors (projection of two vectors in the image plane) at the output of the system.  Although, they do point out a couple references (Hopkins and Sitsov) who transformed “rotated coordinate axes” or vector triads through optical systems.  Also, the previous works generally addressed specific configurations of plane mirrors or other systems, but did not provide a general method for finding the LOS vector and image vectors at the output of a system of plane mirrors.
LOS Vectors, Image Vectors, and LOS Reference Frames

Sections 3 – 5 of the paper define the LOS vectors and image vectors which make up a vector triad called the LOS reference frame.  These are defined in the paper as follows:
· LOS vector:  Unit vector that originates as normal to the system focal plane pointing out of the system (away from the film or detector).  

· Image vectors:  Two unit vectors, originating in the focal plane, which together with the LOS vector form an orthonormal right-handed (at the focal plane) vector triad.

· LOS reference frame (LOS vector set):  Orthonormal vector triad which is either the focal plane vector triad mentioned above comprised of a LOS vector and two image vectors at the focal plane, or a transformation of that reference frame by optical and/or basis transformations.  If transformed by an odd number of mirror reflections, this will be a left-handed vector triad, indicating reversed parity of the image.

LOS Reference Frame:    
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Note: The authors assume the image focal surface is flat, the focal plane is normal to the optical axis, and the LOS is along the optical axis.  None of these are necessarily true, and in general aren’t true for off-axis (non axi-symmetric) optical systems, but this paper does not intend to work through the details of powered optics, but rather to deal primarily with the plane mirror systems that might appear on either end of a system of powered optics.  Whether on-axis or off-axis every optical system has a ray that defines its LOS, and as long as image vectors are defined such that they form an orthonormal triad with the LOS vector, the methods presented in this paper are valid.
Mirror and Optical Transformations

Next presented and defined is the mirror transformation matrix, M (3 X 3 matrix) which operates on a LOS reference frame to create the reflected LOS reference frame.  
Mirror Transformation Matrix:    
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Some key properties of the mirror matrix are mentioned:

· M is orthogonal:  Transformed vector triad maintains orthogonality

· M is symmetric (M = MT = M-1):  This is associated with the fact that reflecting off two parallel mirrors in series results in no transformation because MM = MM-1= I (identity matrix)
· M is “double-sided”:  M is a function of the components of the mirror normal vector n. And, M(n) = M(-n) so M is unchanged if the direction of n is reversed.

The optical transformation matrix O is defined as the product of the mirror matrices of the mirror series reflecting the base LOS reference frame:  O = MiM i-1…M2M1   where M1 is the first mirror in the series.
The following example is given:  The base LOS reference frame of a camera (Q) is transformed into a steered LOS reference frame (S) by a pair of steering mirrors in front of it by the following equation:  ST = M2M1QT = OQT
The intermediate LOS reference frame between the mirrors is:  RT = M1QT
Basis Transformations
Basis transformations of a vector or vector set from coordinate frame basis i to coordinate frame basis j are performed using the operator  jTi. The basis in which a vector or vector set is presented is denoted in the paper using a superscript such as GA, which is the vector set G expressed in basis A. An example is the transformation of vector n from basis A (nA) to B (nB).  n is the same vector regardless of the basis it’s expressed in, however, the components n1 … n3 will in general have different values depending on the basis of expression.
[nB]T = BTA[nA]T 
(superscript T is transpose)

The definition for the basis transformation operator is given by the following equation:  
B = BTAA  where B = BA the unit vector set defining basis B in basis A coordinates and A is the unit vector set defining basis A in basis A coordinates, which by definition is the identity matrix. Therefore, BTA = BA.  
Relation Between Optical and Basis Transformations
The objective in using these transformations is to determine the LOS of a system is pointing after reflecting off multiple mirrors and what the parity and image orientation will be.  But then the obvious question is, “relative to what?”  The paper walks through a simple series of equations that explain how to determine this. Going back the example, ST = OQT  where Q is the camera LOS reference frame and S is the object space LOS reference frame, and O is the optical transformation matrix, a basis transformation using the LOS reference frames as bases can then be used to convert any vector in object space basis to camera space basis or vice versa.

Optical Transformation:
ST = OQT ( S = QOT  (let’s specify all are defined in basis A)
Basis Transformation:  
S = STQQ  

Use above to find:  
STQ =  QOTQ-1 = QOTQT  
(Q is orthogonal so Q-1 = QT )   

As long as Q and O used in this equation are defined in the same basis, the equation is valid.

If the incoming (camera) LOS reference frame Q is used as the basis to express the optical transformation matrix, then:  STQ =  [OQ]T  (because QQ = I, identity matrix)
If the optical transformation matrix is symmetric, as it is for single mirrors, double-mirror pairs, and any prism used as an image rotator:  STQ =  OQ     
Application of LOS Reference Frames and Aerial Photography Example
The final sections of the paper discuss application of the LOS reference frame method to various LOS pointing problems.  An example of an aerial photography system mounted in the underside of an aircraft is worked through.  In this example a camera is mounted to the plane with a fixed fold mirror in front of it as well as a 2-axis gimbaled mirror used to steer the LOS in the pitch and roll directions of the aircraft.  The method was applied as follows:

Step 1:  Assign coordinate frame unit vector sets to each of the components of the system and to the camera LOS reference frame.

Step 2:  Find the basis transformations between the elements’ coordinate frames.  The basis transformation to define the coordinate frame for the gimbaled mirror in the aircraft basis (P) was a function of the pitch and roll gimbal angles.
Step 3:  Define the mirror normal vectors and hence the mirror transformation matrices in a common basis, in this case the P was chosen.
Step 4:  Find the outgoing LOS reference frame in the P basis by multiplying the camera LOS reference frame, transformed into the P basis, by the optical transformation matrix in the P basis.
Other Statements / Conclusions Regarding This Paper

I found that the LOS reference frame method presented in this paper does serve as a simple and effective way to analytically determine the orientation of the LOS vector and image vectors after reflecting off a series of flat mirrors.  Also, after reading other papers referenced by this paper, and looking in a couple books that address this topic, I believe the authors’ claims about this method not having been previously presented to be accurate.  The matrix method for transforming the LOS vector after a mirror reflection (using the mirror transformation matrix) was documented in the 1960’s if not earlier, but creating a LOS reference frame by also including the two image vectors to provide image orientation and parity information had not been previously presented, with only a couple exceptions in papers addressing specific mirror layouts.  This paper doesn’t so much present any new math as much as just summarize previously documented methods (presented only in specific contexts) and combine them into a user-friendly general method.

As suggested in the latter portion of the paper, this method could be used for determining LOS control equations for stabilizing the LOS, or for determining how much image roll will result from a steering mirror configuration and hence generate a command for an image de-rotation mechanism.  Even with “open-loop” LOS pointing systems, this could be used to determine, given a particular steering mirror position, not only the LOS vector relative to the system platform (stationary or vehicle-mounted), but also the image rotation.  This is important when viewing a scene and knowledge of the locations of objects in the scene is desired.
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