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Abstract

Almost three decades of advances in theory and software together with the development of
large-scale mainframe computers have put the finite element method at the fingertips of the
structures design/analysis engineer. Ten of those years have included mechanization and
automation of the design process, a trend which continues today. The ability to rapidly
design complex structures is the positive result of this trend. However, there is also a
negative aspect, viz: structures engineers can lose sight of the facts that the finite
element model is only a model and that it may exclude the most significant mechanical
characteristics of the real structure.

This paper is based on the authors' experience with both theory and applications.
Numerous examples are drawn upon to illustrate both the utility of the finite element method
and its propensity, when abused, to produce numbers which look plausible but are actually
wrong. The paper concludes with some guidelines for finite element modelling of structural
systems and details.

Introduction

The finite element method predates the modern digital computer by a decade. Courant used
elements based on a stress function to calculate approximate solutions of the St. Venant
torsion problem in the early 194@'5.1

In the mid-1950's the aircraft industry began to apply matrix structural analysis to the
computation of airframe flight stresses. Second-generation digital computers (one hundred
thousand data words in core RAM, one million floating-point arithmetic operations per
second) and sparse-matrix equation-solving techniques were the key factors which made the
application practical.

The early airframe analyses were based on panel-and-stringer models in which the panel
elements were simple constant-shear skins, while the stringers were one-dimensional
tension/compression members, possibly with shear-lag effects included. Finite element
programs of this type are still in wide use because they provide a reasonable
engineering representation of the thin stressed-skin construction of typical airframes.

The aircraft work in the 195¢'s also stimulated the development of more sophisticated
elements to deal with variable skin thickness, beam and plate bending effects, and continua
in either plane elasticity or three dimensions. Energy theorems based on the variational
calculus approach to mechanics began to be used to develop the new elements. By the early
1960's many different elements were available based on assumed displacement fields and the
Principle of Minimum Potential Energy. Engineers outside the field of aeronautics were
beginning to express interest in finite element analysis, but the ad hoc nature of most of
the programs then available made application difficult.

From the late 1968's to the mid-1978's the demand for software stimulated the development
of general-purpose programs in FORTRAN with batch-mode input, in "user-oriented" languages,
and ultimately in terminal/interactive mode with CRT display of the model grid. 1In the same
period advanced variational mechanics was used to extend the finite element method to models
based on the Principle of Minimum Complementary Energy, Reissner's Principle, etc., and
elements based on assumed stress fields or combination of assumed stresses and assumed
displacements appeared.

Today there exists a wide variety of elements and general-purpose programs to choose
from, including many programs with CRT-interactive input. Using the finite element method
is now so easy that junior engineers can be trained as model-makers/analyzers with little
more effort than imparting the rules about how to run a specific program. This situation
may appeal to the engineering supervisor faced with a need to rapidly analyze a complex
structural part, and it is of genuine benefit in today's environment of limited budgets.

However, such computational plenty has a high price if junior engineers analyze complex



parts without understanding the basic theory and limitations of the method. Beyond some
conventional notions about convergence (more elements improve accuracy), the analyst must
understand the rules for good model-making, how to interpret results from a crude model, how
different kinds of elements perform (including nonconvergent behavior), and how complex
structural systems and/or finite-digit floating-point arithmetic can create subtle traps
when everything else appears to be right.

Textbooks are the starting point for such understanding. Many books are available today
on the fundamentals of the assumed-displacement approach with a few basic element52—4 on

I
advanced assumed-displacement elements with extensive detail on numerical integration and

stiffness matrix formations'ﬁ, on the mathematics of the finite element method7,and on

advanced elements based on different variational principles.e’9 For the most part, however,
these books concentrate on the derivation of stiffness matrices and the performance of
elements in idealized test conditions. Papers on the practical aspects of model/computer
behavior are scattered in the literature, making it difficult for the analyst to grasp the
important limitations and traps which exist.

This paper is intended to provide a reference on practical aspects of the finite element
method. Only elastic behavior is covered because the practicing engineer's main concern is
to design structures that do not yield or fail in service. The body of the paper includes a
collection of cases with which the authors were directly or indirectly involved over a
decade of research and application experience. The cases have been selected to illustrate
both abuse and effective use of the finite element method. We hope that future analysts
will benefit by not having to learn these lessons by trial and error. The paper concludes
with some guidelines for good practice, It is worthwhile, however, to state one guideline

immediately. Every analyst should have a good stress analysis handbook10 in his library and
should be ready to use it in lieu of or as a supplement to computer analysis.

Aspect ratio

The aspect ratio of a rectangular element of sides AxB (A > B) is defined as (X = A/B.
Analogous definitions exist for triangles, quadrilaterals, and the corresponding solid
elements. It is desirable to keep element aspect ratios as close to unity as possible, but
some elements usually have to be stretched to fit a grid onto a complex-shaped part.
However, there are two limits on the amount of stretch that can be tolerated.

The upper limit is associated with kinematic instability, as shown by considering the
rectangular plane-stress element. The element stiffness matrix in this case is:
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where E is Young's modulus, ) is Poisson's ratio, and t is the element thickness. For large
aspect ratios the (X~-terms in Eq. 1 dominate Kk:
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i.e. the effect of the xy cross-coupling terms 3(1+))/2 is lost, and the element becomes
unstable in shear. Attempts to solve a uniformly stretched grid will fail by kinematic
singularity in the assembled stiffness matrix if the aspect ratio is large enough.

Below the kinematic limit there exists a performance limit which depends on the order of
the element's assumed displacement field and the expected displacement gradients, as well as



the aspect ratio. Extensive study of the plane-stress bilinear rectangle element has shown,
for example, that the element's assumed displacement field cannot accurately follow the
quadratic transverse displacement gradient along the axis of a cantilever beam loaded by a

concentrated end moment when the element aspect ratio exceeds three.2 We have performed
similar tests to show that 8-node biquadratic rectangles are able to solve the moment-loaded
cantilever beam at any aspect ratio below the kinematic limit, but cannot follow the cubic
gradient caused by a transverse end load when the aspect ratio exceeds about seven.

We have also tested 8-node trilinear, 2@-node triquadratic, and 32-node tricubic iso-
parametric hexahedra in the course of developing software for three-dimensional analysis of

gear teeth.11 These studies showed that the 8-node hexahedron cannot be trusted above an
aspect ratio of two. Also, the 2@-node hexahedron was found to be the best compromise for
analyzing complex three-dimensional shapes when model size (total degrees of freedom),
geometric matching requirements at boundaries, and relative computing burden were
considered. The higher-order elements decrease model size because of better aspect ratio
performance and are easier to fit into fillet or radius details, but they increase the
computing time required to form the element stiffness matrices. On one hand, models with
g-node hexahedra required excessively large size and global computing time to keep the
element aspect ratios within acceptable limits. On the other hand, the sizes of models with
32-node hexahedra tended to be bounded from below by the number and location of details in
the part, and the extra computing time required to form the element stiffnesses exceeded the
savings in global computing time.

Element shape
The option of distorting higher-order isoparametric element shapes provides a convenient
way to fit curved boundaries with a few elements. Excessive distortion can ill-condition
the element stiffness matrix, however, leading to inaccurate results.

The nodal coordinates of an isoparametric element are interpolated in the same way as the

nodal displacements.6 Por example, a generalized quadrilateral plane-stress element is
described by:

BEMX y = BUEMY
BEMg, ;v -BEM,

where (x,y) and (u,v) are the internal coordinates and displacement fields, respectively,
and Y are the nodal coordinates, 9y and qy are the nodal displacements, and B contains the
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interpolations given in terms of "parent" coordinates (E‘U) in which the element edges lie
along (%'U) = +1. The values of X,Y and the order of the polynomials in B determine the
shapes 0f the element edges in the physxcal (x,y) plane.

The element stiffness matrix is computed by expressing the strain energy density in terms
of du/dx, du/dy, dv/Ix, dv/dy and nuperically integrating over the element area. Since
(u,v) are interpolated in terms of ({,7)), however, the strains must be computed indirectly
and the Jacobian transformation must be used:
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Also, the area iwtegration is carried out in accordance with:
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Moderate shape distortions cause no problem, but excessive distortions can ill-condition
the Jacobian matrix oy 1ntroduc1ﬂg spurious behavior in the strain fields. For example, J
is singular if the quadrllateral is degenerated to a triangle by allowing the locations of
two nodes two coincide. The transformation of distortions causes so much error that it is
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not worthwhile to model sharply curved boundaries with too few higher-order elements.8 It
is generally advisable to keep the lengths of an element's edges within a ratio of 4:1 and
to avoid curvatures which offset the mid-edge node further than 39 percent of the edge
chord.

One should exercise similar caution when using distortable hybrid elements. Although in
this case the direct assumption of internal stress fields eliminates the need for a Jacobian
transformation of derivatives, the volume integration still follows Eg. 6 and may be
affected by errors in Det(J) .

The patch test

Since the equations governing plates and shells involve fourth order differentiations,
interpolation functions and their normal slopes are generally required to be continuous at
the element boundaries to maintain interelement compatibility. However, it is sometimes
difficult to find simple interpolation functions which satisfy all the compatibility
conditions. Hence, many incompatible (nonconformal) elements have been developed, usually
by ignoring the normal slope continuity requirement. These elements often produce
reasonable results when they are tested in a coarse grid on a simple problem with a known
solution. However, there are casés in which the finite element solutions actually converge
to wrong answers.

A famous example is the nine-degree-of-freedom triangular element employing a complete
cubic polynomial as the interpolation function (see Figure 1). Since a complete cubic
polynomial has ten terms, either a judiciously selected term is dropped or static
condensation is used to reduce the ten freedoms to nine. The reduced interpolation assures
displacement continuity along the interelement boundary, but the normal slopes are
continuous only at the nodes.

Bazeley et a1.12 tested this element in two grid patterns to solve the problem of a
centrally loaded square plate (Figure 2) and found that pattern B gave a wrong answer. This
led to the patch test for nonconformal elements, i.e. when a number of such elements are
assembled in a patch, the patch must be able to represent all the constant-strain
deformations over its domain. Pattern B in Figure 2 does in fact fail the patch test.

Strang and Fix7 later proved that passage of the patch test assures the convergence of
nonconformal elements.

FINITE ELEMENT MODEL

-

SIMPLY SUPPORTED
ON ALL EDGES

T TRANSVERSE DISPLACEMENTS

M NORMAL SLOPES

PATTERN A PATTERN B
Figure 1. Triangular plate bending element Figure 2. Element performance test

Nonconformal elements are generally simpler than conformal elements and, as mentioned
earlier, give reasonable results. Nonconformal elements also impose fewer constraints on
the interpolation functions and, therefore, are generally more flexible than comparable
conformal elements, i.e. the nonconformal elements may produce more accurate solutions if
properly converged. However, the proposed grid pattern should always be patch-tested to
assure proper convergence before nonconformal elements are used in a practical application.



Problems with singularity

Polynomial interpolation functions have been successfully and widely used for practical
finite element applications. Polynomials are simple to manipulate on the computer, they can
easily be chosen to assure the satisfaction of interelement compatibility conditions, and
one can either refine the grid by reducing the element sizes or use higher-order polynomials
to improve the solution accuracy. The basic premise of such finite element methods is that
all smooth functions look like polynomials in a sufficiently small region, i.e. the
polynomial representation of a function can be improved if the region is made smaller or the
order of the polynomial is increased. This situation may not be true if the solution to be
approximated has a singularity or if the domain of the problem is infinite. 1In the first
case, it is clear that a polynomial cannot represent the function near its singular point.
In the second case, at least one of the elements must have an infinite size. The
infinite-domain situation will be discussed in a later section in conjunction with a wave
propagation problem.

One of the most commonly encountered singularities in solid mechanics is of the type rx .
For example, the displacement u near the tip of a re-entrant corner (notch) in a plane
elasticity problem is:

A

ue~r (7)

where r is the distance from the notch tip and )- is in general a _complex number. For the
special case that the notch is a crack, i = 1/2, while 1/2 < Re(\) < 1 for a finite-angle

notch when the included angle lies between § and 180 degrees.l3'14

polynomials cannot represent u at or near r = 0.

It is obvious that

Comparison of the computed and exact strain energies for a problem is a convenient way to
measure the rate of convergence of the approximate solution because the finite15 element
method is often based on strain energy. It has been shown for singular problems that the

convergence rate is proportional to the( ), where h measures the element size. This is

contrary to the conventional wisdom7’16 that the convergence rate follows hzn, where n is
the order of the interpolation polynomial. In other words, the singularity controls the
convergence rate. In the case of a crack the convergencezrate is thus only proportional to
h. Conversely, the convergence rate is proportional to h® when the simplest linear-
interpolation elements are used to model unnotched domains.

Since polynomials cannot approximate a singularity, it is crucial to understand that
conventional elements will produce ever-increasing stresses near the singular point as the
element size is reduced. Such results are difficult to interpret unless the order of the
singularity is known a priori. Even then the slow convergence rate can still impose limits
on the attainable computational accuracy because computer capacity and/or roundoff error may
limit the extent to which the grid can be refined.

These limitations can be removed by selecting an interpolation function which accounts
for the singular behavior. The successful techniques based on this approach include: iso-

parametric elements with quarter-point nodes on the element boundaries at the crack tipl7;
using the J-integral theorem to compute stress intensity factors from the finite element

solutionls; including functions with proper singularity but otherwise smooth over the entire
domainlg; and the hybrid finite element technique.zg

Tests of conventional elements have been compared with tests of hybrid singularity
elements on the symmetrical edge-crack problem to demonstrate the drastic accuracy
improvement the hybrid approach provides. Figure 3 compares the rate of convergence of
strain energy for the two methods applied to grids of identical element size. Although the
hybrid singular elements surrounding the crack tips require more time to form the element
stiffness matrices, overall computational efficiency is greatly improved.

The hybrid technique has been extensively applied to compute the stress intensity factors

at airframe construction details.21_24 Figure 4 illustrates a representative case involving
side-bearing loads applied to the aft engine attachment lug of the C-5A airframe. Each
result is a polar plot of the Mode I and Mode II stress intensity factors which correspond
to 32 different angular locations of the crack. Each data point required about 2 CPU
seconds on an IBM S-374/168.
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Theoretical overkill

The "solution looking for a problem" is sometimes a byproduct of theoretical mechanics,
especially in today's environment where basic research budgets have to be justified in terms
of immediate applications. Unfortunately, it is often all too easy for such byproducts to
be disguised in computer programs that are advertised as means to analyze stresses in
structures which do not conform to the assumptions of the theory.

The following singularity problem illustrates how easy it is to lose sight of theoretical
quirks in the rush to apply a solution. A manufacturer of printing press rollers, having
found the rubber cover debonding from the metal structure in a new design, requested that a
laboratory test be developed to measure debonding rates under fatigue loads and chemical
environments simulating roller service. One approach involved a variation on the compact
tension specimen to induce a debond crack to grow under alternating shear stress (Figure 5),

and required a stress singularity in the analysis of the test specimen.25 The finite
element model included a hybrid element (SKBP17) which specifically accounted for the
singularity at a crack along the interface of two dissimilar elastic materials (Figure 6)
and produced apparently reasonable solutions for the corresponding stress intensity factors
(Figure 7).

Given the facility of the finite element method, it is tempting to leap from the fore-
going results to a program of laboratory crack growth rate tests correlated with the debond
stress intensity factor and finite element calculations of stress intensity factors for
debonds at production details in the roller. However, the singularity associated with the
debond crack involves Bessel functions in both the stress displacement fields. 1In
particular, the displacement across the bond line oscillates, and the crack surfaces can
overlap in the model even when the computed stress intensity factor is positive. Such
solutions are obviously irrelevant to the physical problem, which was ultimately solved by
means of engineering analyses and simpler experiments.

The analysis of stresses in laminated fiber composites presents a more subtle case.
Although the interior stresses are well described by the theory of orthotropic laminated
plates and the corresponding finite elements26, the stress field includes interlaminar

components in zones of the order of the laminate thickness near free edges,27’28 and
experiments have shown that composite plates can fail by means of combined interlaminar

shear and tension in the edge zone .22 Much effort has consequently been spent on
theoretical analysis and development of special elements to deal with laminate edge-zone
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Infinite domains

One is naturally inclined to treat an infinite-domain problem by means of a model
posessing a finite but sufficiently large domain, i.e. one implicitly assumes that the
influence of distant boundaries is negligible., The intuition that whatever happens locally
cannot affect distant points and vice versa is usually satisfactory if the problem is
governed by elliptic equations, such as the equations of solid mechanics. Erroneous answers
will result, however, when hyperbolic problems such as wave propagation are addressed.

The stress wave in a semi-infinite rod (x }» @) subjected to a suddenly applied load at
one end (x = @) is a simple example. The governing equation is:

2. ,. .
D%u/ax? = ¢c2 J2y/0¢t2 (8)
and the exact solution is of the form:
u = f(x-ct) (9)

where ¢ is the wave propagation speed. However, if one attempts to solve such a problem by



a finite element model with a boundary condition at a finite distance, reflected waves will
appear in the numerical solution, which then has no resemblance to the exact solution of the
original problem.

Another example is the
two~dimensional channel.
number:

propagation of disturbances at the free surface of a flow in a

30 The flow behavior is controlled by the nondimensional Froude

F = v2/gH (10)

where V is the freestream flow speed, g is the acceleration of gravity, and H is the depth
of the fluid. All disturbances die down in a finite distance when F < 1, and the imposition
of approximate boundary conditions distant from the disturbances will produce adequate
results. If F > 1, however, there is no dissipation mechanism in the mathematical model to
damp out the disturbance, and one cannot expect to obtain a correct or nearly correct
solution without accounting for the finite amplitude of the disturbance at any finite
distance downstream. One can argue that some dissipation is always present in the flow of a
real fluid and, therefore, that a model with dissipation and a finite boundary at a
correspondingly suitable distance can always be employed. However, the physical

situation is often such that this boundary must lie far away from the region of interest
where waves propagate and reflect at nearby physical boundaries. 1In such cases it is
computationally more efficient to neglect the dissipation and to use an infinite-domain
model.

In order to assure that the infinite-domain approximation is correct, one must properly
account for the so-called radiation condition, which describes how the disturbance
propagates to the far field. One approach is to divide the domain into near and far field

regions.8’3ﬂ The near field region is sufficiently large to enclose all the locations of
interest, while the far field region encompasses the rest of the domain. The near field
region is subdivided into a finite number of conventional elements in the usual way.
However, the far field region is left as one element which includes the proper asymptotic
solution in its interpolation functions. The element interpolation functions are matched at

the inter-region boundary by a hybrid finite element technique.8 Some numerical examples
can be found in Reference 34.

Interpretation of nodal forces

There is usually no confusion about the representation of applied loads by nodal forces
on finite element models, but some ambiguities require careful interpretation. Nodal point
forces or distributions of nodal forces over a few elements do not always represent the
equivalent point or distributed applied loads.

For example, consider a typical edge of a linear-interpolation plane-stress element
assumed to be loaded by a distributed force p(x), which is to be represented by nodal forces
Q.,0, at the corner nodes (see Figure 8). The corresponding edge displacement field u(x) is
r%laged to the nodal displacements 9, .9, by:

ux) = g'Bx) = |a; a, | f1-x/R )

x/Q

The nodal forces are derived by substituting Eq. 11 into the
Principle of virtual wOrk9 for the edge,

4
il ng = IOU(X)p(X)dx = ng B(x)p(x)dx (12)

Q L 9 7Qz o
ot g EQQTTTﬁ 1 £ and "cancelling" qT because Eg. 12 must hold for any values of
the displacements™’
- x 0, 2((1-x/¢ yp(x)
. = dx (13)
I 0, o | (x/Z)p(x)
In particular, for a linear load distribution such that p(g) =
P, and p(7) = p,:
Figure 8. Typical edge of Ql 1/3 1/6 plﬂ

plane-stress = (14)
element Q, 1/6 1/3 pzf
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Now consider the special case (pl,pz) = (2p,-p), for which Eq. 14 leads to:

0, =pk/2 ;i o,=0 (15)

It is apparent from Eg. 15 that a point force Q at a node joining two linear~interpolation
elements can be interpreted as the triangular load distribution shown in Figure 9A. One
might be tempted to think of Q as representing a concentrated load p(x) =(25(x), where 6

is the Dirac function (Figure 9B), but the element interpolation cannot produce stress
gradients steeper than the linear result one would expect from the Figure 9A loading.

Hence, the stress solution near a plane-stress point nodal force on conventional elements
cannot be interpreted as the stress which a concentrated load would cause. Hybrid elements
with singular stress terms corresponding to the Boussinesq problem are required to correctly
compute stresses near concentrated loads on continuum finite element models.

A similar problem arises in dealing with the end-points of distributed loads. For
example, a uniform load p; = = p leads to nodal forces Q, = Q2 = pg/2 for the typical
element. Thus, a uniform dist?ibution is represented by Q,ﬁQ,ZQ,...,ZQ,Q (Figure 14A). No
ambiguity arises if the loading spans an entire boundary of the structure, but the finite
element model approximates a mid-boundary load discontinuity as a linear load reduction
(Figure 19B) , and the local stress solution again follows the approximation.
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Figure 9. Interpretations of a Figure 1@8. Nodal force approximation
point nodal force of sharply cut~off load

Roundoff error

Increasing the number of elements to refine a grid for better convergence is a well known
tactic. However, the floating-point rounding operation in a digital computer limits the
attainable accuracy. The limit is of no concern for modest-size grids, but it lurks in wait
for the unwary analyst who has access to a large computer and naive faith in the efficacy of
large numbers of small elements.

Roundoff error is part of the total error, which can be measured in a mean square sense
as follows. Let:

[&uj = uj(exact) - uj(computed) ;3= 1,2, ee. 43 (16)

be the individual errors in the nodal displacements of a J-degree-of-freedom model, and
define the RMS error:

\
& =\/( Y Au? /Y uPexact) = €+ Ey (17)

Convergence error é?c ordinarily dominates é?, but d;é decreases and the roundoff error(fk

begins to dominate as the grid 1is refined. The RMS roundoff error can be estimated
a priori from:31

e
log, g (E'p) = -p + Allog, ;(BN)] (18)
where p is the computer precision in decimal places, N is the maximum number of elements

along one edge of the model, 4 is the order of the field equations on which the elements are
based, and A,B are model-dependent constants. For plane-stress/plane-strain and solid



elements d = 2; for beam and plate-bending elements d = 4, For practical purposes ARS 1,
and:

B ~ AMAX//\MIN (19)

where A‘MAX is the largest eigenvalue of any individual element stiffness matrix in the
model and MIN is the smallest eigenvalue of the model's assembled stiffness matrix,

It is apparent from Egs. 18 and 19 that grid refinement accelerates the growth of R’
i.e., both N and B increase. (B increases because MAX increases as the element sizes

decrease, while AnaIN is constant for a given global model and boundary conditions.) No

general proof exists for the behavior of individual errors, but one must intuitively
conclude that they should follow the trend of the RMS error.

We have used the four-degree-of-freedom cubic-displacement beam element (Figure 11) to

demonstrate the roundoff effect on individual errors. It is easy to show from the element
stiffness matrix,

12 (Symmetric)

7 2
k= @gdh| o 4L (20)
-12 -6F 12

6/ 202 -6d 1X?

that a one-element model gives the exact beam-theory solution:
§ = pg3/3E1 (21)

for the tip deflection of a cantilever beam subjected to a tip load P. Similar proofs can
be given for any case of concentrated loading, and hence & = C?R for finite element models
of such beams.

Figure 12 summarizes the results of some numerical experiments with cantilever and simply
supported beams, showing the effect of roundoff on the computed tip and mid-span
deflections, respectively. The calculations were performed in single precision on an IBM
S-378/165 (p = 7.2 decimal places). The bounds & = 1 denote 1PP percent error. Changes
occur in the error details as variations in the element length change the values of A,B, and

MAX’ but each model has a more or less

constant value for the number of elements

v Uz at which the error bound is reached.
Typicol uz,i\ u4‘;t\ Figure 13 illustrates an example of an
Ommr—— error that really counts: the computed
Etement ~~__~ Section Property bending moment diagram. If the analyst's
= El theoretical knowledge were limited to the
V4 general idea that one should look near the

support to find the maximum bending
moment, he might accept a result which is
Figure 11. Beam element one fourth of the true value in this case.

The beam illustration is academic, but
there are real pitfalls in using continuum models to compute Stress (the continuum analog of
the beam bending moment), for example, at a radius detail in a complex part for which no
analytical solution exists. Evaluation of plane coatinuum elements has shown that32the
critical value of N is about 25 to 3@ elements per edge when p = 7.2 decimal places”™, and
similar behavior should be expected for solid elements.

Fortunately, one can avoid excessive roundoff error by increasing precision from p, to
Py thereby increasing the critical number of elements per edge from Nl to:

N, = N 11g(Py T Py /d (22)
If the continuum case (p, = 7.2, N, = 25, d = 2) is taken as the baseline, Egq. 22 shows
that typical scientific mainframes (p, = 10.3) give N, & 8pg@. Even business machines are

2

satisfactory if double-precision ar%thmetic is used (p2 = 14.2, N,Rs 8,000) .

2

The roundoff error arises during solution of the global force-displacement relations when
the stiffness matrix K is factored. For example, suppose that Gauss triple factoring is
used:

11
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K = LDLT (23)
B B d

o~

where the factors L and D are respectively a lower-triangular matrix with unit values on the
diagonal and a diagonal matrix. The coefficients of the factors are:

n-q

fan = %an —3§1Djjl‘mjLn3)/Dnn ion=le2ye..mel (24)
m-~4 5

Dmm = Kmm - ziDjj(Lmj) ; m=1,2,...,d (25)
JL—

Equation 25 shows that information can be lost from the diagonal coefficients when large
numbers are subtracted to produce small differences. The resulting error will grow as
factoring proceeds down the diagonal.

In addition to the number of elements per edge, other factors such as stiff/soft systems
(see next section) or poor performance of distorted elements can ill-condition K and create
roundoff error. It is prudent, therefore, to include a roundoff error test in the equation

solver, e.g.:

6D = MAX[-log, (D, /K )] ; m=1,2,...,3 (26)
which directly measures the number of decimal places lost. One should also keep in mind
that all factoring and related algorithms (e.g. eigenvalue solvers) are subject to the
roundoff effect.

Stiff/soft systems

Finite element models of stiff/soft systems can produce meaningless results if the model
consists of small-displacement-theory elements. A stiff/soft system consists of two or more
components with significantly different elastic moduli. Systems in which the flexibility of
the soft component allows large rigid-body motions of the stiff component are the difficult
ones to model. Results can be difficult to evaluate because the solution for one load case
can be correct while another can look right but be wrong.

Figure 14 illustrates a case involving the design of a 15¢-KeV X-ray telescope for flight
on a spacecraft., The system consists of two detectors surrounded by a structural box
independently mounted on elastomer pads which damp out launch vibrations and squib shocks.
Collimators (not shown) cover the box openings to directionally tune the detectors to X-ray
sources perpendicular to the page. The box is fabricated from slabs of single-crystal
cesium iodide (CsI) doped to scintillate at X-ray energies in the detection band.
Scintillations in the box trigger photomultiplier tubes to null outsany uncollimated counts.
The stiff/soft structural system consists of the CsI box (E % 5x18° psi) and the elastomer
mounts (E = 109 psi).

The telescope designer requested a finite element analysis of the corner detail to see if
the operational stresses would exceed the strength of CsI (about 24¢ psi). Both launch
acceleration loads and differential thermal expansion in orbit had to be considered. Part
of the box containing one corner detail was isolated and equilibrating boundary conditions
were applied as shown in Figure 15. The model consisted of small-displacement plane
continuum elements.

The thermal expansion case was analyzed first, and the model was accepted when the
computed nominal thermal stress in the vertical leg was found to agree with hand
calculations. The corner thermal stresses were well below the strength of CsI, but analysis
of the acceleration case produced corner tensile stresses of about 35¢ psi, and it appeared
that the box would not be able to survive a launch. Fortunately, a stress contour map of
the entire detail was to be prepared to document this_result. When elements near the ends
of the legs were mapped, stresses of the order of 10 psi were discovered! A check of the
displacement solutions for both cases revealed what had happened. 1In the launch case,
numerical truncation of the applied loads Hl’Ml""'v2 created a slight moment imbalance on

the model. This imbalance was enough to deflect the soft mount, however, in a way that
caused the box corner to rotate as a rigid body. At the ends of the legs, the displacements
corresponding to this rotation were of the order of the element size, making the small-
displacement model invalid.

The launch case was subsequently solved by fixing the nodes at the mount/box interface
and ignoring the stress-raising effect of the artificial hard-point thus created. The
corrected stresses near the inside corner were well below the strength of CsI. Thus, only a
fortuitous decision to map all of the stress data saved an adequate design from rejection
based on a meaningless stress analysis.
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Counterintuitive behavior

Intuition underlies every structural analysis model. For example, slender beam theory
neglects the transverse-shear contribution to beam deflection. This intuition is inaccurate
for span/depth ratios less than 18, however, requiring addition of transverse-shear
flexibility to the theory to deal with short beams. This limit of slender beam theory is
well understood, but analogous subtle effects can cause complex structures to behave counter
to the model-maker's intuition, as shown by the following two cases.

In the first case, fracture of a pitch-control crank ring in the propeller of the USS
Barbey (DE1988) led to a three-dimensional stress analysis of the failed part. Figure 16
illustrates the location of the failure in the crank-ring/propeller-blade attachment detail
and shows a cutaway view of a similar design for the USS Spruance (DD963). The DD963 design
was also analyzed to see if Spruance-class crank rings should be expected to have failures

similar to the DE1#88 fracture.33

Figure 17 is a perspective plot of the DE1#88 crank ring finite element grid. The model
consisted of 4-node tetrahedra and 8-node hexahedra. Typical element sizes were much larger
than the scale of the significant stress-raising details and many elements were stretched to
the limit of acceptable aspect ratio in order to model the complex crank ring with a
reasonable number of nodes. Hence, the model was used only to compute nominal section
stresses, and handbook factors for threads or fillets were then applied to translate the
nominal values into detail stresses. This procedure was adopted to cope with an obvious
limitation of the finite element model.

However, a more subtle aspect of the structure's behavior was not recognized. The loads
applied by the propeller blade through its attachment bolts to the crank ring were
calculated under the assumption that the bolt preloads made the structural stack behave as
an integral unit. 1In particular, beam-theory distributions were used for applied stresses
corresponding to bending moments from the propeller blade. Later Navy tests of strain-gaged
propellers showed that the actual bending stresses were concentrated at specific bolts.
Lateral prying of the affected bolts due to local flexibilities in the blade palm was found
to be the cause (see Figure 18). Thus, the original intuition about integral stack behavior
under preload conditions was wrong, and subsequent analyses had to be modified to include
nonlinear contact at the blade-palm/crank-ring interface.

In the second case, a finite element analysis was used to correct an intuition based on
shell theory. The object of concern was the quartz window in the Cerenkov radiation counter
shown in PFigure 19. The window was a thick-walled shallow spherical cap designed to
withstand the internal pressure in the counter vessel. The original stress analysis was
based on a constant-thickness shell theory, and the curvature of the window's edge was also
neglected. Under these assumptions, pressure on the convex side always leads to compressive
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Figure 16. Blade attachment details in controllable-pitch propeller
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Figure 17. USS Barbey crank ring finite element model
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Figure 18. Prying action of blade
palm on attachment bolt

stresses in the shell.

The designer was concerned about the possibility
of local tensile stresses, however, in view of the
strength properties of quartz (about 7 ksi tensile
strength as compared to 120 ksi compressive
strength). Axisymmetric ring elements were used to
model the exact curvatures on all the window
boundaries. Figure 20 presents the principal-stress
contour plots obtained from the finite element
analysis, showing the existence of a tension pocket
near the edge of the window. Subsequent development
tests showed that the critical pressure and failure

location agreed with the finite element

predictions.34
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Paying attention to significant details

Structural components usually fail at joints, bonds, or geometrical stress-raisers. The
finite element analyst must accordingly shift his attention from nominal section stresses,
which his models easily produce, to the significant construction details which control the
strength of the structure. There are four different ways to shift the focus.

First, it is common practice in plane elasticity to use triangle elements to locally
refine a grid near a simple stress-raiser (see Figure 21A). One can also use
special-purpose hybrid elements to refine the grid (Figure 21B) or mixed-order isoparametric
elements to increase the order of the element polynomials (Figure 21C). Equivalent
procedures using tetrahedra and hexahedra are possible for three-dimensional grids. The
last two approaches are easier to visualize spatially, but only the tetrahedron solid
elements are commonly available in general-purpose programs.
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(a) Bilinear quadrilaterals (b) Bilinear quadrilaterals (c) Transition from bilinear to

refined by constant- refined by 5-node hybrid biquadratic quadrilaterals
strain triangles pentagon elements (dis- via 5-node mixed-order iso-
placement linear between parametric elements

each node pair)
Figure 21. Alternate methods of grid refinement

Second, one can use the substructuring procedure available in some general-purpose
programs. A region surrounding the detail is isolated from the model, and the remainder of
the model is designated as the substructure. The degrees of freedom in the substructure are
then conceptually divided into an interior set (I) and a boundary set (B). The boundary set
includes the nodes at which external loads are to be applied and the nodes along the
isolation cut. The global stiffness matrix of the substructure,

Xsgp  Ea1
K = T ) (27)
~ BI ~I1

can be reduced by means of a procedure similar to factoring to the form:
_ _ T -1

Kr = Bgs - gy (Brp) ~ Ky (28)
and 5R
benefits in a single analysis, but it can save computing costs in situations involving many
cases of different applied loads and/or detail design variations. One should be aware,
however, that ill-conditioning of K, may cause large errors in K, if the interior set
contains a high percentage of the total degrees of freedom in the substructure. Such

situations can be corrected by including enough fixed degrees of freedom in the boundary set
to suppress all possible rigid-body motions of the substructure.

can then be coupled with the isolated region. Substructuring alone offers no

Third, one can often supplement a general-purpose finite element analysis with handbook
formulae or engineering analyses, e.g. as in the ad hoc analysis of the DE1@88 crank ring
mentioned earlier. Airframe stress analysis is a good example of the application of this
approach to design practice. Some aircraft manufacturers combine panel-and-stringer finite
element analysis with company-developed procedures for calculating stresses at company-
standardized design details. The aircraft industry approach is a sound engineering practice
in its environment of evolutionary design work performed by large staffs of junior
engineers.

Finally, one can use the hybrid technique to formulate an element which accounts for the
stress-raising behavior of a generic detail. Figure 22 illustrates such an element which
was specifically developed to wrap around open or bilateral-symmetrically loaded fastener
holes by including terms up to cos(28) in the angular distribution from the analytical

solution for stress near a hole in an infinite plate.35 The special element couples a
coarse exterior grid to an interior grid with refinement comparable to the grid around the
C-5A lug (Figure 4). Figure 23 illustrates some results obtained from a program which
combined the special element, a hybrid singularity element, and some substructuring to

compute stress intensity factors for skin panels with cracked fastener holes.23 The

computations required about one CPU minute per case on an IBM S-370/168.

Modelling complex structures

One must always sacrifice detail to analyze a complex structure. Otherwise the model may
exceed the available computing capacity or it may contain an extreme range of element sizes,
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making it a stiff/soft system. Conversely, the model will not be adequate if too much
detail is sacrificed. Creating a balanced and well documented model is the crucial step in
the analysis.

Frameworks and frame/plate combinations are generally the most difficult structures to
model. For example, consider the A-frame and engine cradle in a recently built fleet of
city buses (Figure 24). Early service cracking in these components, particularly the
A-frame (Figure 25) led to retrofit-kit modifications. The modified engine cradle (Figure
26) is a good example of structural detail in a frame/plate combination.

FRONT CAB

SUSPENSION

FUEL TANK

ENGINE & —
REARWALL  TRANSMISSION ltf@,p

Figure 24, City bus structural configuration

Since either A-frame or engine cradle failures could create potentially unsafe operating
conditions, both components had to be analyzed to assess the structural integrity of the

modifications.36 In this case detail could be discarded immediately in areas with low

stress (based on strain-gage data) and where original cradles on high-mileage buses had not

experienced cracking. However, such shortcuts cannot be taken in pre-production design
stress analysis.

In either case the analyst must develop his model by translating production drawings into
finite element language. Production drawings focus on locations of and relationships
between attachments to guide machinists and welders, i.e. it is up to the analyst to
properly locate and orient midplanes and neutral axes. Accurate reconstruction is essential
to avoid angular or offset artifacts between adjoining elements, Jointwork often involves
physical offsets, however, and the analyst must make auxiliary calculations to reasonably
represent true inter-component flexibilities with idealized connector elements. Service
loads are usually applied to the structure through complex attachments to finite regions,
requiring auxiliary equilibrium analyses to guide the location of loaded nodes.

The foregoing practical factors are further complicated by the need to analyze multiple
versions of the component. Structural integrity assessment requires analysis of the
original as well as the modified component to assure that predicted lifetimes agree with the
observed lifetimes in the original fleet. Pre-production design analysis must keep track of
an evolving component. 1In either case good practice requires that the model evolution be
regulated by an updated master schematic supplemented by records of each auxiliary analysis.

Ad hoc schematics were used to control the A-frame and engine cradle finite element
models for the bus structural integrity assessment, Figure 27 illustrates the engine cradle
schematic. These documents were supplemented by 12 reports of auxiliary analysis pertaining
to the models themselves, 26 reports of dynamic analyses performed to characterize the

locations and magnitudes of service loads, and 19 reports of detail fatigue analysis based
on the finite element model results.



Formalized systems are better than ad hoc procedures for the analysis of pre-production
designs if the structure is not one of a kind. For example, some aircraft manufacturers use
the finite element model of an airframe as its own master schematic, with CRT and hardcopy
display modes for interaction and record-keeping. Many of the supplementary records are
also systematized; for example, detail stress and fatigue analyses must be recorded on
stress—check forms which guide the junior engineer to correctly combine outputs from the
airframe model with the company's handbook procedures for analyzing generic details.

(a) Bus with failed A-frame leg

(b) View of failure from below

Figure 25. Example of service failure in rear suspension structure
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FATIGUE-CRITICAL AREAS
IN ORIGINAL STRUCTURE

Figure 26. Modified engine cradle structure

Evolving a finite element model of a complex structure involves many people. The
opportunities for misunderstanding are numerous, and errors can go undetected if the
evolution process is sloppy. The purpose of either ad hoc or formalized procedures for
controlling the model is to provide a record which the supervisor can use to detect and
correct errors, as well as to interpret results in the light of the model's limitations.

Dynamic analysis

The analyst must calculate the dynamic response of a structure to assess its ability to
maintain clearance (e.g. a spacecraft insidejits shroud during launch) or to estimate its
fatigue safety margin. Hamilton's principle’ can be used to extend the global equations
5% = E'OE static finite element analysis to the dynamic case:

M+ G3+ K= 0 (29)

where the nodal displacements 9 and loads g’are time-dependent, and where m,and,g are_,
symmetric mass and damping matrices, respectively, with M positive-definite (i.e. M
exists). The following subsections briefly sketch the practlcal application of numerical
methods to dynamic analysis. The discussion is restricted to linear systems except where
noted otherwise.

Determination of natural frequencies

Since most structures are lightly damped, it is customary to begin a dynamic analysis by
computing the undamped natural frequencies and mode shapes. Accordingly, C and Q are set
equal to zero, and Eq. 29 reduces to the eigenproblem: ~

Ky = MU[‘w\l (32)
=108 8. ...45 (31)

for a J-degree-of-freedom model, where Bj and Cdj are respectively the nodal-displacement
mode shape (eigenvector) and the natural frequency of the jth vibration mode.

. ) : : s s 3 < h
The elgensolutlons‘gj'CJj can be computed in principle by finding the roots of the

determinant of Eq. 38:
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(b) Structural section details

Ad hoc documentation of engine cradle finite element model
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(c) Model evolution notes
Figure 27 {(concluded)

wzﬂl =0 (32)

This procedure is impractical in general when J > 4, however, and a two-step matrix
iteration:

AZ = 26N A symmetric; Z = (2, 2, -+ %] (33)

is actually used to solve the problem. In the first step A = M, and in the second step:

A= M‘1/21<M"1/2 P PAd = twi (34)

Note t§?72 T L is a fu1?99eﬂtf}2property of Eg. 33. It is then easy to show that m'l/z
Z[\A and hence M is symmetric. Also, the eigenvectors are computed from
Z after the second 1terat10n.

~

H=N']

Plane rotation matrices R are used to iterate the matrix A such that gféﬁ transforms one
off-diagonal coefficient Aij to zero:

col. i col. j
100 ... o... g ...
g1o... [/ BN P ...
R = o« 0 . . (35)
cos® ,.. =-sin@ row i
sin@ ... coso row j
. ]




- -1
20 = tan [Ai./(Aii—Ajj)] (36)
Roundoff errors can occur when the eigenvalues cluster (A ~’A ) and will affect any
parallel-solution algorithm.

If successive rotations R ... are used to sweep out the off-diagonal terms, the
transformed matrix A and the proauct Bl Ryeoe tend toward [~9y.] and Z, respectively. These

asymptotes cannot be reached in a finite number of steps because each rotation undoes some
of the work of the earlier rotations. The process is convergent, however, and the
off-diagonal terms can be swept repeatedly until the quantity:

(T80 Nagp?

decreases to a specified tolerance. This algorithm is known as Jacobi iteration and is
useful up to about J = 58.

Many other schemes are available for larger systems.37’38 For example, the modified QR
method found in some of the older general-purpose finite element programs is most efficient
when all J natural frequencies are sought from a J-degree-of-freedom model. The QR
algorithm reduces A to tridiagonal form in a finite number of plane rotations:

A11 (Symmetric)
B12 P22

A= 2 A23 A33 (37)
) [} A34 A44

The determinant |b - )\Ll can now be rapidly computed from the following recursion formulae:

Py(A) =1

PLA) = A, -\ (38)
_ - _ 2 L oa =

PyUA) = (Byy = AIPs_y = (Ay_y ) Pyp 5 3 = 203,03

Equations 38 are then iterated with trial values of A takiﬂg advantage of the property
that the number of consecutive agreements in sign of Pg, 11 e equals the‘wumber of roots

greater than A 39 After the roots have been found and arranged in asceﬁdlng order, the
eigenvectors can be computed from the iteration:

2;(%1) = 1Az (n) - Z A2z 1/ (39)

ix l"’l.

where A is the original matrlx. Step 1 (A = M) requires the eigenvectors to get to step 2
of the structural dynamic problem; the physlcal eigenvectors Z = U may be optionally
computed at the end of step 2.

In practice one rarely seeks all J modes because the model does not accurately represent
the higher modes and because the higher natural frequencies are generally well40 above the
maximum expected excitation frequency. In this case subspace iteration is the most
efficient approach. This algorithm iterates a subset of eigenvectors:

U(n) = [g (n) U, (n) ... g.(n)] ; J KK Jd (49)

used to deflate K and M to jX] matrices k and m, after which the subspace eigenproblem kv =
mV{‘TA(WL_] is solved and U is updated:

TeuRgm) s om o= gt MY (41)
(n+l) = k7MUY, (42) *

The procedure rapidly converges U(n) and [“AJ1) ] to the j lowest-frequency modes. The
subspace iteration method is found in many of the newer general-purpose finite element

*A static equation-solver (e.g. triple factoring) is actually used in lieu of computing's—l.
For unrestrained structures (K singular), the original problem must be modified to (K +1#y)2
= MU[“>\+¢\] (> 8) to permit factoring.
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programs.

The natural frequencies of highly damped structures can be determined by retaining the EL
term in Eq. 29, but the eigenvalues are complex numbers and the numerical procedures consume

37,38

much more computing time. The matrix iterations for either complex or real eigenvalues

should be performed in double precision to avoid serious roundoff errors.37

Element mass matrices

The global mass matrix M is assembled from element mass matrices m. An element can have
either a lumped or a "consistent" mass matrix.

A lumped mass matrix is defined by rational division of the element's mass into diagonal
values for each node, e.g.:

~

m = (pAt/4)’£ (43)

for a bilinear-displacement plane-stress rectangle of mass density S, area A, and thickness
t. Rational lumping for elements with arbitrary shapes and/or higher~order interpolations
is difficult and non-unique.41

For assumed-displacement elements in which the internal displacement field u is related
to the nodal displacements q by u = Bq, a consistent mass matrix can be computed from the
interpolation functions B: ~

m = fvpngdv (44)

where V is the element's volume. For hybrid elements, in which u is generally defined only
on the boundaries for the purpose of stiffness matrix formation, one can define a "hybrid-
consistent” mass matrix by extrapolating B into the element's volume and using Eq. 44.
Consistent mass matrices generally have off~diagonal terms, but they avoid the difficulties
of lumping and are particularly convenient for dealing with the rotary inertias required by
beam and plate bending elements.

Whether a lumped or consistent mass matrix gives the better answer depends on §he element
performance characteristics. This can be seen by examining the Rayleigh quotient” for an
approximate frequency in terms of an assumed global mode shape u:

T T
w? % (u'ku)/ (u M) (45)
A diagonal mass matrix maximizes the denominator in Eq. 45. Hence, lumped masses should be

used to correct the tendency of conformal elements to be over-stiff (5?55 too large), but
consistent masses give better results with nonconformal elements.

Response equations for lightly damped structures

The dynamical equations of a lightly damped structure can be simplified by transforming
them from the nodal displacements q to the modal coordinates q:
~ ~

q =3 (46)

where U are the eigenvectors and E}t) are the time-~dependent spatial amplitudes of the
natural modes, Substitution of Eq. 46 in Hamilton's principle reduces Eq. 29 to:

Mg + €4 + [Rg = (47)
where
cRa = u'Mg o - ylcy
= T = _ 4T (48)
MR = WKy 5 209

Note that while [~EK~] and [~M.] are always diagonal, C will not be diagonal ualess C happens
to be a linear combination of K and M. It is obviously advantageous to have C diagonal so

that the modal equations are completely uncoupled. There are two practical approaches to
decoupling.

The more common approach is to sidestep the issue of element damping by assigning modal
damping factors directly. The matrix C is implicitly assumed to be diagonal, and Eq. 47 is
recast in the nondimensional form:

44 S A - 2 . =) -
g+ [M2(w-1g + ~wig = Rl (49)



where Cj = Cj/Z\/KjMj is the damping factor for the jth mode. One can justify this approach

by noting that joint friction and air drag rather than structural continuum properties are
the primary sources of damping, i.e. element damping matrices which might lead to a
nondiagonal C have little meaning.

Mcdal damping factors are convenient to use, but their selection requires good judgement
based on knowledge of the dynamic behavior of real structures. For example, inexperienced
analysts sometimes make the mistake of computing large-amplitude service motions based on
damping factors measured in small-amplitude vibration tests. The true situation is that
joint friction is a much more effective damping mechanism at the larger amplitudes, and the
damping factors should be increased accordingly.

The alternate approach is to deal directly with element damping when the structure is a
mechanical system containing discrete dampers whose properties are specified. 1In this case
it is unlikely that C will be a linear combination of K and M. However, one can approximate
the effects of the discrete dampers by averaging their power dlsslpatlon over the system's
natural modes, e.g.:

Save = 78 (50)
h
where J

n = (1/J) Z (,,J ,C,gj)/(u Ku-) (51)

Equations 5@ and 51 are not unique, i.e. combinations of K and M can be used, the average
can be weighted, and it may be better to average over only a few modes. The averaging
procedure should be cautiously applied and correlated with vibration test data.

Response calculations

It is most convenient to use the uncoupled modal equations for computing dynamic
responses, but the final answers must be transformed back to physical coordinates. The
following paragraphs outline three procedures which conform to these reguirements and can
easily be programmed as post-processors if not already included in one's general-purpose
finite element program.

Frequency response functions (FRF) are often of interest, e.g. when designing spacecraft
components to meet FRF specifications in a sinusoidal sweep test on a vibration table. 1In
this case the applied loads are in phase,

it
o(e) = et %% (52)

where §L is the excitation frequency, and the steady-state modal coordinate reéponses are
complex functions:

qJ(IQ-) = Re[qj] + 1Im[qj]

[1-(Q /ey 21/?j

et INTVAREENY SVRNERS A e
iy - —24j2512/u)j»1<3 w0
1-(A/wp 1528 2/wp” 7~
The nodal displacements can be computed by substituting Egs. 53 into Eq. 46:
Re(g] = URe(q] ; Im(q] = UIm(q] (54)

Also, if particular element stresses g’: Bg are wanted, one need only substitute the
product BU for U in Egs. 54. -~
“w A ~
Service loads are often stationary random processes, i.e. their statistics are

independent of time even though one cannot directly specify Q(t). 4z Service loading from a
single random source is specified in terms of its autospectraT’den31ty S (rl), which

describes the distribution of mean square as a function of frequency. The RMS of'g(t) is
given by:
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(=]

Opms = Q {) SQ(_,Q)dQ. (L in units of Hz) (55)
where Q in Eq. 55 represents the spatial distribution of the loads. The modal coordinate _
responSes are characterized by a complex spectral density matrix S. Only the real part of §
is needed for RMS computation; the typical term is given by:

= _ T T
Re[Sij(ﬂ)] = Hi(Q)Hj (ﬂ)SQ(Q)gi ,Qg 5j (56)
where H is defined in the second of Egs. 53. The diagonal of the matrix:
o0
(qu)MS = E(/'Re[S(Il)]d(l)UT (£ in units of Hz) (57)
~ o ”~v ~

contains the mean squares of the nodal displacements, and similarly (a’g[T)MS can be

computed by substituting BU for U. If Q(t) results from two or more random sources,
procedures analogous to Egs. 56 and 57 can be devised by superposition, but one must account
for the cross-spectral densities between the sources.43

Stresses from transients such as spacecraft deployment, a bus running over a pot hole, or
a railroad wheel striking a rail-end gap in jointed track can affect the integrity of a
structure. Dynamic finite element models of structures cannot simulate the local stress
waves caused by short transients because the models are based on elliptic field equations,
while the stress-wave field equations are hyperbolic. However, dynamic finite element
models are worthwhile for investigating ringing and the effects of long transients.

Transient response is often computed by applying finite difference operators38 to the
time derivatives in Eg. 29 and integrating numerically. This approach avoids the need for

eigensolution and is useful for treating nonlinear systems.44 However, explicit finite
difference operators introduce frequency distortion, artificial damping, and/or instability
characteristics which limit the allowable integration time-step size45 46 t to the order of
I/QJMAX’ where Wvax is the highest natural frequency in the model. ~’ There are

implicit operators which are unconditionally stable for linear systems, but these require
matrix equation solving at each time step. Hence, large models consume huge amounts of
computing time (typically 2@ to 58 CPU seconds per second of real time) to produce useful
results.

Working with the uncoupled modal equations is a good alternative for lightly damped
linear systems. The modal equations can be integrated analytically if the transient loads
(t) are interpolated piece-wise. The resulting numerical procedure is free of the finite
difference constreints, and t is limited only by the need to make a reasonable

approximation of g(t). For example, let g(t) be linearly interpolated between tﬂ—l and tq:
Qet) = (e -t)g, o + (-t o 1/Ae (58)

where gn = g(tﬁ) and in general At1 =t can be varied from one step to another. It

-t
n n-1
is then easy to derive the following procedure for computing the response of the jth modal
coordinate (omitting the subscript 3 from Q, q, K, g, and (g for brevity):

?Jn =X + e C‘“IA’C“[(%J‘,I_l—x)cos((,«)DAtn) +
+ (1/wp) (w253_1/§—w25n_1-§w§n_1-§wX)sin(wDAtn)]
2= (59)
G, = 0y /K + (At -2 /w)x +
+e” {wAtn[(an_l+2ZX/w'Bn—l/i)cos((")DAtn) *
+ (1/w ) (G, Hw T, - (-2 XL En_l/k) sin(wDAtn)}
where
=== TR
X = (0,0, ) /KAt i W= w--Jl-g (69)

. . 2 s . bd s : 3 .
The initial conditions R and q, can be expressed in modal coordinates in accordance with:
~ <

< -1
4 = [~K=1U"kq (61)



Pseudo-dynamic analysis

It is occasionally possible to take a shortcut in dynamic analysis if one has some test
data and if the first vibration mode is known to dominate a structure's dynamic response.
In this case a static analysis will give a reasonable estimate of the spatial distribution
of the dynamic deformations if the spatial distributions of the static and dynamic loads are
similar; the test data can then be used to calibrate the amplitude. Structures which accept
and react major loads in phase at a few discrete locations are good candidates for this
shortcut.

The city bus A-frame mentioned eatlier36 was successfully analyzed in this manner.
However, the engine cradle dynamic response could not be reliably estimated from static
analyses because engine pitch and roll as well as vertical loads caused significant dynamic
stresses in the cradle. Figure 28 illustrates the lack of correlation between the dynamic
stresses and the static stresses from vertical loading. Static stresses corresponding to
unit pitch and roll conditions could be computed, but the difference in pitch/roll and
vertical loading frequencies prevented correlation without load phase information.
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Figure 28. 1Illustration of lack of correlation between static and dynamic
stresses in city bus engine cradle

Stability analysis

Eigensolutions can be used to predict mechanical instabilities as well as natural
frequencies by replacing the mass matrix with a stability stiffness matrix. Since the
lowest eigenvalue determines the stability boundary, one-mode subspace iteration or simple
matrix power iteration should be used in the computation.

For example, the beam element stiffness matrix (see Eq. 2¢ and Figure 11) was derived
from the strain-energy expression:

(1/2)q7kq = (EI/2)]2(d2w/dx2)2dx =
“~ Vo o

4
- (1/2)%T<EI/0(dZET/dx2)(dzlg/dxz)dx)gu (62)

where w(x) = Bg is a cubic interpolation of the beam deflection. The corresponding
stability stiffness matrix is derived from the work done by a column load P moving axially
as the beam deflects:
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) £
P/6/l+(dw/dx)2 - 1)ax ¥ (p/z)/ (dw/dx) 2dx =
(o) (7]

- (1/2)9“T(P/o (aB"/dx) (dB/dx)dx)g\’: (1/2)q" (Pk ) q (63)
36 (Symmetric)
- -3¢ al?
Xy = (1/3087) (64)

-36 -34 36
3 -202% -3¢ ag?

Equating the strain energy and the external work then leads to the equilibrium condition:
X9 = Pksq (65)

for a single-element buckling analysis. The matrices k and k_ can also be assembled to
create structural stability models,_, and continuum buckling ~“problems can be similarly
investigated with plate elements. The lowest eigenvalue P is the critical buckling load.

Finite element models can also be used to investigate flutter and hunting instabilities.
Unsteady aerodynamic forces cause lifting surface flutter and appear in the stability

47

stiffness matrix. Railroad vehicles can experience hunting instability driven by unsteady

gravity and creepage forces at the wheel/rail contact points.48'49 Vehicle speed is the
eigenvalue in both cases. The stability stiffness matrices for both flutter and hunting are
complex and thus require complex eigensolution algorithms. These problems also differ from
buckling in that the stability boundary results from the frequency coalescence of two
natural vibration modes, not necessarily the two lowest modes of the structure. Hence, one
must retain perhaps 10 modes in the finite element model to estimate the critical speed, and
even so there is no guarantee that the two critical modes will have been retained.

Concluding remarks

The examples presented in this paper demonstrate that the finite element method is not a
panacea for analyzing complex structures. Both senior engineers responsible for the
structure and junior engineers responsible for detail stress analysis must remember that a
finite element program is not a substitute for good engineering practice. The method is
convenient, however, and is often the best way to get the necessary answers if the following
guidelines are kept in mind.

Test new programs and new applications of old programs

Does the software actually do what the user's guide and comment cards say it does?

Avoid theoretical overkill

Tailor the analytical approach to symmetries or near-symmetries of the structure and
environment. Concentrate on major behavior (inextensional bending, plane stress,
skin/stringer construction, etc.).

Avoid model overkill

Seek the simplest model that will adequately simulate the transfer of applied loads
through major components to reaction points. Reserve the finite element method as a last
resort for cases where engineering models are inadequate. Limit finite element detail to
the level of the other approximations made to create the model (shapes, attachments,
knowledge of load distributions, etc.). Does the precision of the model exceed the
precision required of the results?

Seek a well conditioned model

The grid pattern should please the eye. Grade gently to fine grids in regions where high
stress gradients are expected. Be aware of the performance limits arising from element
interpolations and roundoff effects.



Control the model

Document evolution as it occurs. Keep the structure designer in the loop. Is the
reasoning behind each revision clearly stated? Does everyone understand and agree on
physical interpretation of the results?

Qualify the results

Is the model in equilibrium? Do the displacements and stresses behave reasonably
everywhere in the model? Do key results correlate with test data?

Maintain adequate margins

Remember that design margins are determined by the component's function, the structure's
mission, and the fabricator's ability to produce construction quality. The fact that a
finite element model is used to compute stresses is no excuse for shaving margins.
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