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1. Introduction

The Finite Element Method (FEM) was developed in 1950” for solving complex structural analysis problem in
engineering, especially for aeronautical engineering, then the use of FEM have been spread out to various fields of
engineering.

In solving a structural problem, the fundamental continuum equation is set up for infinitesimal small elements of a
bulk. Since this fundamental equation usually results in the differential equations or integral equations with some
boundary condition, it is not easy to get analytical solutions. For this case, the discrete analysis can be used to
approximate the continuum problems with infinite degree of freedom (DOF) by using only finite degree of freedom.
The discrete analysis includes Rayleigh-Ritz Method, Method of Weighted Residuals (MWR), Finite Differential
Method (FDM) and Boundary Element Method (BDM) as typical examples. FEM is also categorized in the
discrete analysis.

The basic idea of discrete analysis is to replace the infinite dimensional linear problem with a finite dimensional
linear problem using a finite dimensional subspace. For the Finite Element Method, a space of piecewise linear

functions is taken to approximate the solutions. An appropriate set of basis is usually referred to an “element”.

2. Formulation of small displacement elastic problem
Although the materials covered in this section is out of scope of the OPTI-521 class, we should discuss the basic
concept of elastic problem. For small deformation, the basic equations for elastic problem are given by following

equations.

(a) Equation of Equilibrium
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where F is the body force per unit volume. This equation simply represents the equilibrium of the forces

applied to the material.

(b) Strain-Displacement Relationship v
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For the two dimensional plane stress problem with homogeneous

isotropic material,
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(c) Stress-Strain Relationship
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For a homogeneous and isotropic material, the stress-strain relationship can be greatly simplified. Starting

from Hook’s theorem,
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the stress-strain relationship is given by
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Matrix expression greatly simplifies the expression.
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This is the most basic stress-strain relationship for homogeneous and isotropic materials. For the two
dimensional case (plane stress problem), the stress-strain relationship can be expressed as follows. Starting

from Hook’s theorem,
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Using matrix expression
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(d) Dynamic Boundary Condition

T, =T,;0onSs where T, =0, n ,n;is the surface normal.

This condition should be applied to the forces on the surface of the bulk considered.

(e) Geometric Boundary Condition

U; =u;;onS,
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3. Element

In the process of discretization, an appropriate basis of piecewise functions is used. The term ‘element’ usually
refers to a set of basis used in FEM. Although there are many types of elements correspond to the various types of
problems, the simplest element, triangle linear plane element is introduced here. Inside the triangle element, the

displacement u is approximated by primary expression.
u(x,y)=a,tax+a,y

v(x,y) =B, + Bx+ B,y
Let the displacement at each node of the element be (u;, vi), (u;, v;) and (uy, vi), then the following relations should

be satisfied. y
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Using the results, the strain of the element can be expressed by
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Then the strain-displacement relation is given by
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The most important concept here is the B-matrix which gives us the matrix of coefficient for the strain-
displacement relationship. The final simultaneous equations can be obtained by this B-matrix working with the D-
matrix and the principle of virtual work.

Similarly to the above development, a physical quantity A can be approximated by

Ax,y)=a,+a,x+a,y

:N1A1 +N2A2 +N3A3 :zNiAi =[N] 4}

N, = [(J’2 = y3)x+(x; = x,)y + (3%, _yzxs)]/A
N, = [(ya —y)xX+(x, = x)y + (X, _yS'xl)]/A
Ny = [ = y)x + 0, =)y + (x = 3x)] /A

The matrix [N] is called the Shape Function.

4. Variational Principle
Although there are many methods for discretization such as collocation method and Galerkin method, the principle
of virtual work is widely used to formulate the FEM for continuum elastic problems. It requires that the energy of

the system in equilibrium should be minimized or at least locally minimized. For the FEM, this principle states that
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While the expression of the principle of virtual work seems difficult and complicated, what the equation means is
really simple. It requires that the energy stored in the body should be equal to the energy provided by the applied
body force and the surface force. Working with the element introduced in section 3 and using the equations
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The equation above can be rewrite as
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If we assume that the total variational strain energy and the total virtual work can be given by summing the

variational strain energy and the virtual work of each element respectively, i.e,



oU = Z U™ and W = Z ow (suffix m represent the m-th element)
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Then the following equations can be obtained.
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Since, in above equations, d{u} can be arbitrary chosen, the governing equation of each element is given by
[K10u} = {F}
This expression represents exactly the Hook’s law which is extended to the multi dimensions. The final equation

for the system considered can be constructed by the sum of the governing equations of all elements.

5. Simple Example

Now consider the simple example shown on the right.

The coordinates of each point are given by

Node #1; (0, 0) Node #2; (1, 0) / 6 5 H

Node #3; (2, 0) Node #4; (2, 1) fd:\ N

Node #5; (1, 1) Node #2; (0, 1) &) “ W) N
Node #1 and Node #6 are fixed on the wall. @/l \/
The force A (1N) is applied to the Node #4 as shown in the figure. 1 u? U3

<Step 1> Preparation & calculating D-matrix
The triangle plane strain linear element should be chosen since it represents the physics considered here better than
the other elements.

For simplicity, assume that the D-matrix is given by

1 05 0 * note that this D-matrix does not seem to be realistic.
[D]=|05 1 O For aluminum (E=70GPa and n=0.23) D-matrix is given
0 0 1 1 023 0 1 023 0
7%10" 10
[D]:m 023 1 0 |=74x10"4[023 1 0
(1+0. TN g o 1_2'23 0 0 0385

It is also assumed that the governing equation for the system is given by [K |{u} = {F'}.



<Step 2> Constructing the elements

Four element can be constructed by given six nodes.

Element #2; Node #2 = #3 = #4

; Node #1 = #2 = #5
Node #4 = #5 = #2

Element #1;
Element #3;

#5 = #6 = #1

Element #2; Node

B}

<Step 3> Calculating the B-matrix and the K-matrix

The B-matrix is given by
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the B-matrix can be expressed as follows;

>

For the element #1
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Therefore the governing equation ([K]{u}
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By repeating the same procedure, the governing equations for each element can be obtained. The followings shown

below are the result.

<Element #2>
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<Step 4> Adding up all elements

As a result of adding up all equations, the following equation can be obtained.

<Sum>
ul vovl w2 v2 i ud3 i v3iudivd i uds: vb i ub i v6
21011105 0: 0! 0001511 1]ul 1
0213101010108 035050 A]vil | o1
471 4145 4505 0 15 2:15: 0 0 | u2 f2
051 1455 4 1 1145: 015 2:0: 0 |v2| [g2
00 A1 2 s 110550080 0]ul | B
0 0 :05: -1:-15: 2 1 -1+ 01:0 0 0| v3]=] g3
0:0:i0i45i 41 1:i2:i0i1:05:i0:0 | udl| [fa
0.0 :15:0i05.-1:0:2:1:4:0:i0]|va| [ag4
0 15! 2:15: 0:0:1:1:4:45: 1:05[us5| [15
45: 0 :15: -2: 03 0 :05: -1 :-15: 4 : 1 :1|vs| [g5
1705:0:0:0:0:0:0i4:1: 245 u| [
17470100 0:0:0:05:1:145; 2 |ve| [g6
<Step 5> Boundary conditions
The boundary conditions for this example are
Constraints; (uy, vi) = (ug, v¢) = (0, 0)
Force; (fs, g4) = (0, -1)
Then the system equation can be rewrite as follows;
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where (f}, g;) and (fg, g¢) are the reaction forces due to the constraints applied on Node #1 and #6.

<Step 6> Formulation of the system equations

Following the procedure explained above, the final equations for the system can be rewrite as follows;



For the displacement {u};

4 -15 -1 05 0 -15 -2 157 [u, 0
-1.5 4 1 -1 -15 0 1.5 =21 |v,| |0
-1 1 2 -15 -1 05 0 0 | [u;| |0
05 -1 -15 2 1 -1 0 0 A2 0
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For the reaction force {F};
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For the strain {e};
& =Bl =[B]lu}

For the stress {S};
0 =DLE =[D]Le}

6. Summary

While only the basic concept and the simplest example are introduced in this report, the FEM is widely used in
various engineering fields, such as nonlinear problem, natural vibration analysis, large displacement region,
thermal analysis, fluid dynamics and even an electromagnetic field analysis, and then there are many types of
elements related to the specific physical quantities. Even though it is impossible to give a full explanation of FEM
in this report, good opto-mechanical engineer should know the basic concept and various applications of FEM

which enable us to expand the capability of dealing opto-mechanical issues.
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