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Deformation of Axial Members  

For a prismatic bar of length L in tension by axial forces P we have determined: 

P
A

σ =                       L
δε =  

It is important to recall that the load P must act on the centroid of the cross section.  
Now, let us assume that the bar is made of a homogenous material and that the 
material is linearly elastic so that Hooke’s law applies. 

E = σ/ε  
Combining and solving for displacement, we obtain the following equation for the 
elongation (deformation) of the bar. 

PL
AE

δ =  
The above equation shows that deformation is proportional to the load and the length 
and inversely proportional to the cross sectional area and the elastic modulus of the 
material. 
The product AE is known as the axial rigidity of the bar. 
We can see that a bar is tension is analogous to an axially loaded spring.  Recall for a 
spring P = Kδ, where K is the spring stiffness.  Likewise, the above equation can be 
expressed as follows: 

AEP
L

δ=  
The quantity AE/L is the stiffness K of an axially loaded bar and is defined as the force 
required to produce a unit deflection. 

In an analogous manner, the flexibility ƒ is defined as the deformation due to a unit 
load.  Thus the flexibility of a axially loaded bar is: 

Lf
AE

=  
In general, the total elongation (deformation) of a bar consisting of several parts having 
different axial forces and cross sectional areas may be obtained as follows: 
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Consider the following example: 

 
Where: 
a = 10 in  A(a) = 1 in2 

b = 15 in  A(b) = 2.0 in2 
P1 = P2 = 1000 lbs 
E1 = E2 = 10,000,000 psi 

When the axial force or the cross-sectional area varies continuously along the axis of 
the bar, the previous equation is no longer suitable.  Recall the strain at point Q is 
defined as follows:   

 

0
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x

d
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δ δε

∆ →

∆
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∆
 

Therefore: 

Qd dxδ ε=  

But ε = σ/E and σ = P/A 
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Thermal Strains & Design Concepts 

Thermal Strains – All the members and structures we have considered so far were 
assumed to be at a constant uniform temperature.  Let us consider a homogeneous bar 
AB, which rest freely on a smooth horizontal surface.  If we raise the temperature by ∆T, 
we observe the bar elongates by an amount δT.  

 
( )T T Lδ α= ∆  

Where α is a material characteristic called the coefficient of thermal expansion.  
Therefore, we conclude that the thermal strain is: 

T Tε α= ∆  
α = in/in/°F or in/in/°C or mm/mm/°C  

In many cases α is stated as parts/million/°F or parts/million/°C. 
Strains caused by temperature changes and strains caused by applied loads are 
essentially independent.  Therefore, the total amount of strain may be expressed as 
follows. 

εtotal = εσ +  εT 

total T
E
σε α= + ∆  

Note: Since homogeneous, isotropic materials expand uniformly in all directions when 
heated (and contract uniformly when cooled), neither shear stresses nor shear stains 
are affected by temperature changes 
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Now let us consider that the same rod is placed between two fixed supports as shown 
below.  It is assumed that there is no stress or strain in the rod at this initial condition.  If 
we raise the temperature by ∆T, the rod cannot elongate because of the supports.  
Therefore, δT = 0.  

 

 

 
 

Our problem is to determine the stress in the bar caused by the temperature change ∆T.  
From previous examples, we observe that this problem is statically indeterminate.  

Superposition Method  
1. Designate one of the unknown reactions as redundant and eliminate the 

corresponding support. 
2. Treat the redundant reaction as an unknown load, which together with the other 

loads must produce deformations that are compatible with the original 
constraints. 

3. Solve by considering separately the deformations caused by the given loads and 
the redundant reactions and by adding (superposing) the results obtained. 

 
0T Pδ δ δ= + =  

Substituting: 

( ) 0PLT L
AE

δ α= ∆ + =  
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Therefore: 

( )P AE Tα= − ∆  

And: 

)( TE
A
P

∆−== ασ  

 
Coefficient of Thermal Expansion for Common Materials 

Coefficient of thermal 
expansion z Material 

10-6/°F 10-6/°C 
Aluminum and aluminum alloys 13 23 
Brass 10.6-11.8 19.1-21.2 
      Red brass 10.6 19.1 
      Naval brass 11.7 21.1 
Brick 3-4 5-7 
Bronze 9.9-11.6 18-21 
       Manganese bronze 11 20 
Cast Iron 5.5-6.6 9.9-12.0 
       Gray cast iron 5.6 10.0 
Concrete 4-8 7-14 
       Medium strength 6 11 
Copper 9.2-9.8 16.6-17.6 
       Beryllium copper 9.4 17.0 
Glass 3-6 5-11 
Magnesium (pure) 14.0 25.2 
       Alloys 14.5-16.0 26.1  28.8 
Monel (67% Ni, 30% Cu) 7.7 14 
Nickel 7.2 13 
Nylon 40-60 75-100 
Rubber 70-110 130-200 
Steel 5.5-9.9 10-18 
        High-strength 8.0 14 
        Stainless 9.6 17 
        Structural 6.5 12 
Stone 3-5 5-9 
Titanium (Alloys) 4.5-5.5 8  10 
Tungsten 2.4 4.3 
Wrought Iron 6.5 12 
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Design Concepts 

Failure – State or condition in which the member or structure no longer functions as 
intended. 

Modes of Failure 
• Yielding  
• Fracture 
• Excessive deformation 
• Creep 
• Buckling 
• Fatigue 
• Brittle Fracture (Fracture Mechanics) 
• Mathematical Analysis 
• Probabilistic mechanical design 
• Allowable stress design (ASD) 

 
Factor of Safety 

StrengthFS
Stress

=  
Margin of Safety 

1AllowablestressMS
Stress

= −  
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Knife Edge Support Example 

• FEA Analysis of Knife Edge Support 
• 4 Node Shell Elements 

– Cell Structure 
– Knife Edge 

• 3 Node Beam Elements 
– Bolts 

• 2g Gravity Load Applied as Pressure to Knife Edge 

FE Model 

 
 

Max Displacement. = 0.064 in. 
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Max Stress = 8416 psi 
 

 
Margin of Safety 
(Ball Aerospace Equation) 

 

1
FS*sLimitStres

tressAllowableSMS −=  

 

 

Gravity 
Load

Ring 
Thickness  

(in)

Principal 
Stress     
(psi)

Stress 
Concentration 

Factor

Ring 
Material

Yield 
Strength  

(psi)

Ultimate 
Strength  

(psi)

Factor of 
Safety 
(yield)

Factor of 
Safety 

(ultimate)

Margin of 
Safety 
(yield)

Margin of 
Safety 

(ultimate)

5215 0.500 2207 1.0 6061-T6 40000 45000 3 5 5.04 3.08
5215 0.375 3933 1.0 6061-T6 40000 45000 3 5 2.39 1.29
5215 0.313 5582 1.0 6061-T6 40000 45000 3 5 1.39 0.61
5215 0.250 8416 1.0 6061-T6 40000 45000 3 5 0.58 0.07


