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Buckling 
Buckling and Stability: 
As we learned in the previous lectures, structures may fail in a variety of ways, 
depending on the materials, load and support conditions.  We had two primary 
concerns: (1) the strength of structure, (i.e. its ability to support a given load without 
excessive stress) or (2) the stiffness of a structure, (i.e. its ability to support a given 
load without excessive deformation).  We will now consider the stability of a structure – 
its ability to support a given load without experiencing a sudden change in its 
configuration or shape.   Our discussion will be primarily related to the analysis and 
design of columns.  A column is a straight, slender member subjected to an axial 
compressive load.  Such members are commonly encountered in trusses and in the 
framework of buildings, but may also be found in machine linkages, machine elements 
and optical systems. 
If a compression member is relatively short, it will remain straight when loaded and the 
load-deformation relations previously presented will apply.  However, if the member is 
long and slender, buckling will be the principle mode of failure.  Instead of failing by 
direct compression, the member bends and deflects laterally and we say the member 
has buckled.  In other words, when the compressive loads reach a certain critical value, 
the column undergoes a bending action in which the lateral deflection becomes very 
large with little increase in load.  Failures due to buckling are frequently catastrophic 
because they occur suddenly with little warning when the critical load is reached. 
To illustrate the phenomenon of buckling in an elementary manner consider the 
following idealized structure.  The member is sized such that the design stress, σ = P/A, 
is less than the allowable stress for the material and the deformation, δ = PL/AE is 
within the given specifications.  We may conclude that the column has been properly 
designed.  However, before the design load is reached, the column may buckle and 
become sharply curved – clearly an indication that the column has not been properly 
designed. 
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Stability of Structures: 

We may gain insight into this problem by considering a simplified model consisting of 
two rigid rods AB and BC connected at C by a pin and a torsional spring of constant K. 

 
As shown below, if the two rods and the two forces P and P’ are perfectly aligned, the 
system will remain in the equilibrium position, (a).  However, if joint C is displaced 
slightly to the right so that each rod now forms a small angle ∆θ with the vertical, (b), will 
the system be stable or unstable? 

 

If joint C returns to the equilibrium position, the system is considered to be stable.  
Otherwise, if joint C continues to move away from the equilibrium position, the system is 
unstable. 

We can determine if the system is stable or unstable by considering the forces acting on 
rod AC.  The forces consist of two couples, namely the couple formed by P and P’ and 
the moment M.   
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The moment, which tends to move the rod away from the vertical, is:  

P (L/2) sin ∆θ 

Couple M, exerted by the spring, tends to bring the rod back to the vertical position.  
Since the angle of deflection of the spring is 2∆θ, the moment of couple M is: 

M = K (2∆θ) 

If the moment of the second couple is larger than the moment of the first couple, the 
system tends to return to its equilibrium position and is stable.  However, it the moment 
of the first couple is larger than the moment of the second couple, the system tends to 
move away from the equilibrium position and is unstable.  The value of the load for 
which the two couples balance each other is called the critical load and is denoted by 
Pcr.  Equating the two we have: 

Pcr (L/2) sin ∆θ = K (2∆θ) 

Applying small angle theory: 

Pcr  = 4K /L 

The system is stable for P < Pcr (values of load less than the critical value) and unstable 
for P > Pcr.  

Euler’s Formula for Beams with Pin-Pin Connections: 

To investigate the stability behavior of columns, we will begin by considering a long 
slender column with pinned joints at each end.  The column is loaded with a vertical 
force P that is applied through the centroid of the cross section and aligned with the 
longitudinal axis of the column.  In addition, the loading is conservative (i.e. the force is 
guided and remains vertical).  The column itself is perfectly straight and is made of a 
linearly elastic material that follows Hooke’s law.  Thus, it is considered to be an ideal 
column. 

When the axial load P has a small value, the column remains straight and undergoes 
only axial compression, σ = P/A.  This straight form of equilibrium is stable and if 
disturbed, the column will return to the straight position.  As the axial load increases, we 
will reach a condition of neutral equilibrium in which the column will have a bent 
shape.  The corresponding load is the critical load, Pcr.  At this load, the ideal column 
may undergo small lateral deflections with no change in axial force and a small lateral 
force will produce a bent shape that does not disappear when the lateral load is 
removed.  Thus, the critical load can maintain the column in static equilibrium in either 
the straight position or in a slightly bent condition.  At higher values of load, the column 
is unstable and will collapse by bending.    
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Now lets examine a free body diagram of the bend column.  Recalling that a beam is a 
structural member whose length is large compared to its cross sectional area, a column 
can be considered as a vertical beam subjected to an axial load.  As shown below, x 
denotes the distance from the end of the column to a given point Q of its elastic curve 
and y denotes the defection of that point.  This is identical to our beam of previous 
lectures, however the X axis in now vertical and directed downward and the Y-axis is 
horizontal and directed to the right. 

 
Summing moments about point Q, we have M = -Py.  Therefore: 

2

2

d yEI M Py
dx

= = −  

Rearranging we have: 

2

2 0d y P y
dx EI

+ =  

Which is a linear, homogeneous differential equation of second order with constant 
coefficients.  Setting 

2 Pk
EI

=  

and introducing prime notation, we obtain: 



OPTI 222 Mechanical Design in Optical Engineering  

 79

y” + k2y = 0 

The general solution of this equation is 

y = C1 sin kx + C2 cos kx 

To evaluate the constants of integration we use the boundary conditions at the ends of 
the beam. 

y(0) = 0 and y(L) = 0 

The first yields C2 = 0 and the second yields C1sin kL = 0.  From this we conclude: 

C1 = 0 (trivial solution) 

or 

sin kL = 0 (nontrivial solution) 

Therefore: 

kL = nπ 

Substituting for k we obtain: 

2 2

2

n EIP
L
π

=   n =1,2,3… 

The smallest critical load for the column is obtained when n=1: 

2

2cr
EIP
L

π
=  

The above expression is known as Euler’s formula and the critical load is also known 
as the Euler load.  The corresponding buckled shape is also called the mode shape.  
Buckling of a pinned-end column in the first mode (n = 1) is called the fundamental case 
of column buckling.   
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Returning to the differential and substituting for P we obtain: 

1 1sin sin n xy C kx C
L
π

= =   n=1,2,3… 

For the first mode of buckling (n = 1): 

1 sin xy C
L
π

=  

As shown of the previous page, the column buckles into a sine wave and the constant 
C1 represents the maximum deflection of the midpoint of the column.   The value of C1 
is indeterminate and can be obtained from a nonlinear analysis.  This is typically of little 
concern because we are typically interested only in the value of the critical load. 

The value of stress corresponding to the critical load is called the critical stress and is 
denoted by σcr.   Therefore: 

2

2
cr

cr
P EI
A AL

πσ = =  

Recalling from a previous lecture that the moment of inertia I = r2A, where r is the radius 
of gyration.  Substituting for I we obtain: 

2

2cr
E
L
r

πσ =
 
 
 

 

The quantity L/r is called the slenderness ratio of the column. 

As shown on the previous page, the critical stress is proportional to E and inversely 
proportional to (L/r)2.  For a constant value of E (E = 250 GPa), we can plot stress vs. 
L/r. 

 


