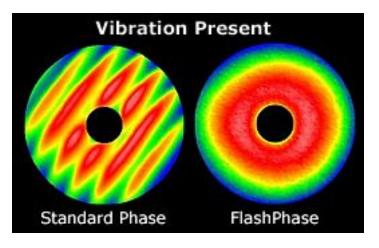
Tutorial Selection of Vibration Isolators

Masaki Hosoda Dec. 7, 2009 OPTI 521

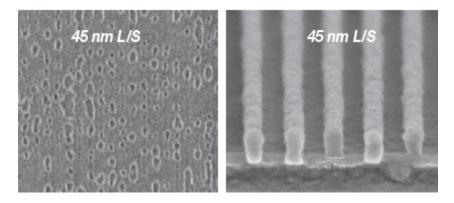
Contents

- Purpose
- Motivation
- Two types of Vibration Isolation
 - Passive Vibration Isolation
 - Active Vibration Isolation
- Summary

Purpose of this presentation

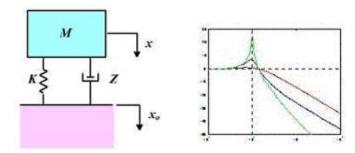

- Let you know
 - how vibration isolation works
 - how to select vibration isolators
 - examples of application

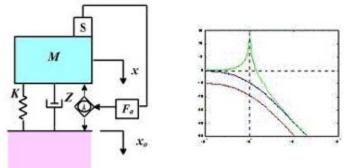
Motivation


Vibration Isolation is important for

- Optical measurements
- Optical fabrications

From Zygo, GPI series http://www.zygo.com/?/met/interferometers/gpi/flashphase/


Dec. 7, 2009



From TMC, STACIS http://www.techmfg.com/appnotes/SematechAppnote.htm

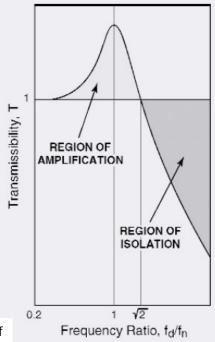
Two types of Vibration Isolation

- Passive Vibration Isolation
 - Mass, Spring, and Damper
 - Can isolate high frequency (5Hz~)
- Active Vibration Isolation
 - Mass, Spring, Damper, and Feedback or Feedforward
 - Can isolate low frequency (~5Hz) + high frequency

From TOKKYOKIKI http://www.tokkyokiki.co.jp/technology/technology_a.html

Dec. 7, 2009

Passive Vibration Isolation


$$f_n = \frac{1}{2\pi} \sqrt{\frac{k}{m} \left(1 - \left(\frac{C}{C_c}\right)^2 \right)}$$

 C/C_{c} is Critical damping ratio C_{R}

Material	Approx Damping Factor C/Cc	Tmax (approx.)
Steel Spring	0.005	100
Elastomers:	-	-
Natural Rubber	0.05	10
Neoprene	0.05	10
Butyl	0.12	4.0
Barry Hi Damp	0.15	3.5
Barry LT	0.11	4.5
Barry Universal	80.0	6.0
Friction Damped Springs	0.33	1.5
Metal Mesh	0.12	4.0
Air Damping	0.17	3.0
Felt and Cork	0.06	8.0

Table 1 Damping factors for materials

commonly used for isolators

•You want f_d/f_n •f_d is defined.

•Then fn should

- •C/C_c should
- •k should
- •m should

d Dec. 7, 2009

From Barry isolators selection guide.pdf

Selection of Passive Vibration Isolator

Determine f_d (Disturbing frequency)

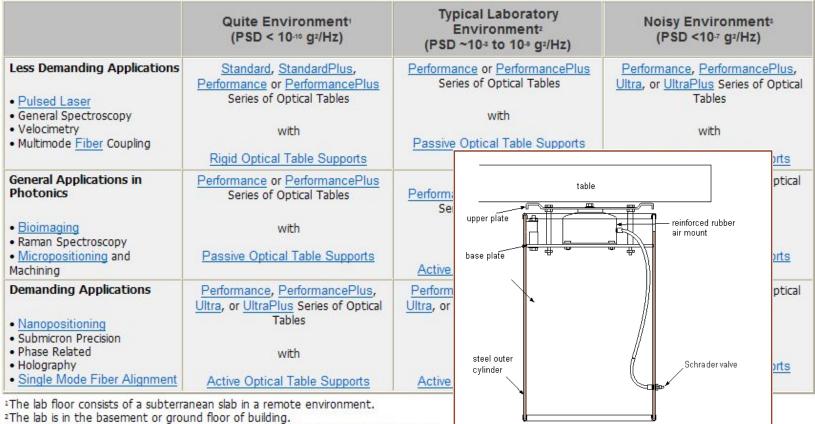
TABLE 2.2

Vibration Power Spectral Densities for Typical Military and Aerospace Environments

1-50	0.001 g ² /Hz
20-1000	0.04 g ² /Hz
1000-2000	-6 dB/octave
15-100	0.03 g ² /Hz
100-300	+4 dB/octave
300-1000	0.17 g ² /Hz
≥ 1000	-3 dB/octave
20-200	0.07 g ² /Hz
10-30	+6 dB/octave
30-1500	0.13 g ² /Hz
1500-2000	-6 dB/octave
5-150	+6 dB/octave
150-700	0.04 g ² /Hz
700-2000	-3 dB/octave
15-100	+6 dB/octave
100-400	0.10 g ² /Hz
400-2000	-6 dB/octave
	$\begin{array}{c} 20-1000\\ 1000-2000\\ 15-100\\ 100-300\\ 300-1000\\ \ge 1000\\ 20-200\\ 10-30\\ 30-1500\\ 1500-2000\\ 5-150\\ 1500-700\\ 700-2000\\ 15-100\\ 100-400 \end{array}$

Source: From Vukobratovich, D., in Handbook of Optomechanical Design, CRC Press, Boca Raton, FL, 1997, p. 65, chap 2.

 $f_n = \frac{f_d}{\sqrt{2}}$

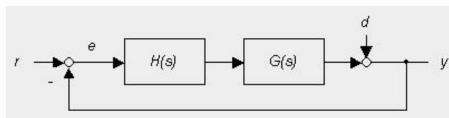

Use direct measurement or Rule of Thumb

and Min. f_n

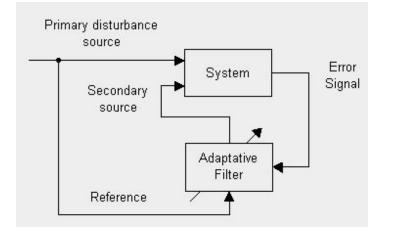
From Yoder

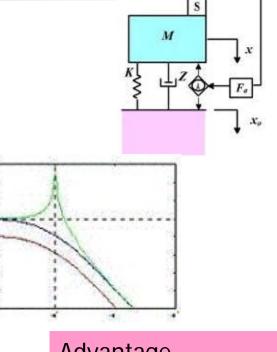
Example of Passive Vibration Isolator

Optical Table and Optical Table Supports Selection Guide



³The lab is on the upper floors of a building or near significant sources of vibrations.

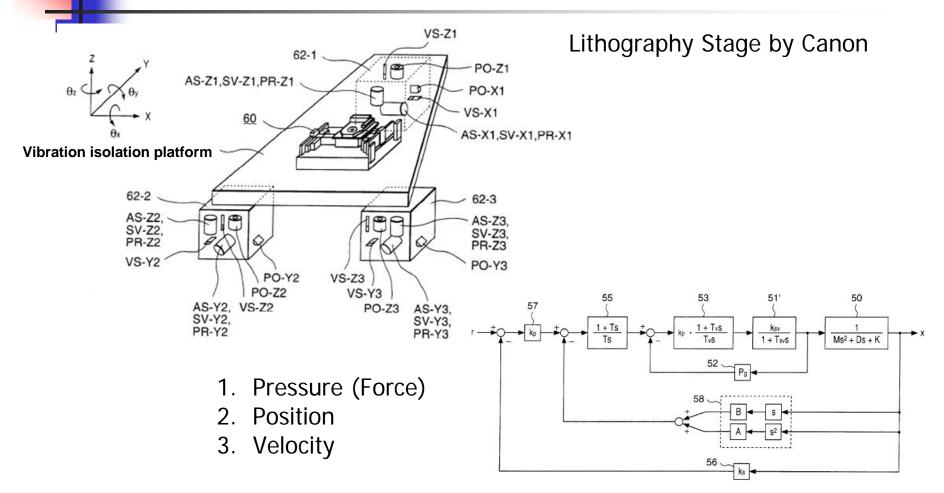

From THORLAB


Table 1. A selection matrix for optical tables and optical table supports based on the working environment and application.

Active Vibration Isolation

Feedback + Feedforward

Advantage •No Amplification Region Drawback


- •Cost
- algorism
- •Need reference

Dec. 7, 2009

Selection of Active Vibration Isolator

	Advantage	Drawback
Feedback	durable for unexpected disturbance	Slow response
Feedforward + Feedback	Fast response	Need correct reference Need correct model

Example of Active Vibrartion Isolator

S. Wakui, "Active vibration isolator, exposure apparatus, exposure method and device manufacturing method" United States Patent 6,286,644 B1 (2001)

Summary

- Two types of Vibration Isolation
 - Passive Vibration Isolation
 - Low cost, works for high frequency
 - Have amplification region, Not stable
 - Active Vibration Isolation
 - No amplification region, works for low freq.
 - Need Algorism and reference