TUTORIAL ON SPECIFYING OPTICAL COMPONENTS USING ISO 10110 STANDARDS

Alex Lyubarsky OPTI 521 December 8, 2013

Introduction to Optical Specification Standards
 (Section 1)

 Sections 2-13 of ISO 10110 Standard Specification

■ ISO 10110 Drawings

• Q & A

Introduction

- ISO 10110 standard created to provide universal understanding of drawings and specifications of optics
- 13 sections with detailed description on how to specify optical components
- GD&T mechanical drawings practices apply
- First-angle projection (not third angle)
- Other optical standards:
 - ASME/ANSI Y14.18M-1986
 - MIL-STD-34
 - DIN 3140

ISO 10110 Table of Contents

Part	Title	Indication
1	General	N/A
2	Material imperfections – Stress birefringence	0/
3	Material imperfections – Bubbles and Inclusions	1/
4	Material Imperfections – Inhomogeneity and Striae	2/
5	Surface form tolerances	3/
6	Centering Tolerances	4/
7	Surface Imperfection tolerances	5/
8	Surface Texture	√
9	Surface Treatment and coating	())
10	Table representing data of a lens element	N/A
11	Non tolerance data	N/A
12	Aspheric surfaces	N/A
13	Laser irradiation damage threshold	6/

Material Imperfections

Stress Birefringence (sec. 2)

- Anisotropic index of refraction across an optic
- Indication: 0/A in nm/cm

$A=\Delta s/a=K\sigma$

 Δs = optical path difference (nm) a = sample thickness (cm) K = stress optic coefficient difference (nm/cm)/(kg/mm²) σ = stress (kg/mm²)

Bubbles and inclusions (sec. 3)

- Bubbles: Pockets of trapped gas within the glass
- Inclusions: Opaque or highly scattering regions within glass
- <u>Indication</u>: 1/NxA, where N is # of max. sized defects, A is grade # in mm of the max. size defect allowed

- Inhomogeneity and striae (sec. 4)
 - Inhomogeneity: Variation of index of refraction within an optics
 - Striae: localized changes of the index of refraction
 - <u>Indication</u>: 2/A;B, where A, B are the class #s for homogeneity and striae

Surface Form Tolerances (sec. 5)

■ Indication: 3/A(B/C) RMSs < D (all Ø...)

Tolerance place holder and name		Tolerance definition
A	Saggita tolerance	This is the P-V deviation of the best fit sphere from a sphere with the nominal radius of curvature.
В	Irregularity	The P-V error relative to the best fit spherical surface.
с	Rotationally symmetric irregularity	The P-V of the best fit aspheric surface.
Г	RMS _t	RMS departure from a sphere with the nominal radius of curvature.
D	RMS _i	RMS departure from the best fit spherical surface.
	RMS _a	RMS departure from the best fit aspheric surface.
	(all Ø)	Size of Aperture over which the surface form tolerances apply.

Centering Tolerances (sec. 6)

Specification of surface tilt and edge run-out (ERO)
 <u>Indication</u>: 4/σ or 4/σ(L), where σ max. tilt (arc-min or arc-sec), L is max lateral displacement (mm)

Surface Imperfections (sec. 7)

Specification of Scratches and digs

Indication: 5/NxA; LZ x F

- N = max. # of digs
- A = max size of digs (mm)
- Z = max. # of scratches
- F = width of widest scratch (mm)
- L = indicates "long scratch"

Surface Texture (sec. 8)

Matte Surfaces – Grinded or chemically etched
 Intentionally scatter light diffusely into large angles

- Specular Surfaces produce very little scattered light
- Indication: See image below
 A = surface type (P for polished, G for ground)
 B = Indicates RMS or PSD measurement
 C = Indicates sampling length (mm)

Surface Treatment (sec. 9)

Specification of surface treatment and coating
 AR, dichroic, reflective, etc.

Indication: Lambda in a circle

Tabular Form (sec. 10)

- Element drawing separated into 3 zones
 - Zone 1: Typical drawing title block (name, part #, manufacturer, etc.)
 - Zone 2: Space for tabular lens data (3 fields)
 - Field 1: Left surface specifications
 - Field 2: Material specifications
 - Field 3: Right surface specifications
 - Zone 3: Illustration of part

Non-Toleranced Data (sec. 11)

Standard tolerances to a feature with nontoleranced data

			mum (diagonal) the part [mm]	
Property	up to 10	over 10 up to 30	over 30 up to 100	over 100 up to 300
Edge length, diameter [mm]	±0,2	±0,5	±1	±1,5
Thickness (mm)	±0,1	±0,2	±0,4	±0,8
Angle deviation of prisms and plate	±30'	±30′	±30'	±30'
Width of protective chamfer [mm]	0,1 - 0,3	0,2 - 0,5	0,3 - 0,8	0,5 - 1,6
Stress birefringence acc. to ISO/DIS 10110-2 [nm/cm]	0/20	0/20	-	-
Bubbles and inclusions acc. to ISO/DIS 10110-3	1/3x0,16	1/5x0,25	1/5x0,4	1/5x0,63
Inhomogeneity and striae acc. to ISO/DIS 10110-4	2/1;1	2/1;1	-	-
Surface form tolerances acc. to ISO/DIS 10110-5	3/5(1)	3/10(2)	3/10(2) (all Ø 30)	3/10(2) (all Ø 60)
Centring tolerances acc. to ISO/DIS 10110-6	4/30'	4/20'	4/10'	4/10'
Surface imperfection tolerances acc. to ISO/DIS 10110-7	5/3x0,16	5/5×0,25	5/5x0,4	5/5×0,63

Aspheric Surfaces (sec. 12)

- Same rules apply to specifying aspheres
- Exceptions:
 - Term "asphere" must be indicated on drawings along with equation
 - Sag table provided on drawing

Drawing indications for an ellipsoid

Laser Damage Threshold (sec. 13)

Defines the energy density which surface damage should not occur when surface is irradiated with a laser (units J/cm²)

Indication:

- Pulsed lasers: $6/H_{th}$; λ ; pdg; f_p ; $n_{TS} \ge n_P$
- Continuous lasers: 6/E_{th}; λ; n_{TS}
- λ = wavelength
- "pdg" = pulse duration group number from ISO 11254
- "f_p" = pulse repetition rate in Hz
- "n_{TS}" = number of test sites on the sample surface
- " n_P " = number of laser pulses applied to each site

ISO 10110 Drawing Sample

Left Surface	Material	Specification	Right Surface
R Aspheric Øe 30,0 Protective chamfer 0,4 ± 0,2 Coating 527,021 3/5(1) 4/- 5/5x0,25; L3x0,1;E0,4 6/-	BK7 Ne 1,5972 ± (Ve 63,96 ± 0, 0/10 1/5x0,16 2/0,1		R 68,224 ex Øe 29,5 Protective chamfer 0,4 ± 0,2 3/5(1) 4/1,5' 5/5x0,16; L2x0,5 6'-
Rev Level	Dr Date	the second se	TICS R US INCORPORATED
Next Assy	Chk	Tit	
Revisions	Eng	Ob	jective Lens no.1
Ltr Descr dt	QA	Siz	e A Drawing number 70862B
Ind Acc ISO 10110			

Questions?

Thank You

Backup

Classes of Homogeneity and Striae

Homogeneity Class Numbers

Class	Maximum permissible variation of refractive index within a part [10 ⁻⁶]	
0	± 50	
1	± 20	
2	± 5	
3	± 2	
4	± 1	
5	± 0,5	

Striae Class Numbers

Striae class	Density of striae causing an optical path difference of at least 30 nm in %
1	≤ 10
2	≤ 5
3	≤ 2
4	≤ 1

5	Extremely free of striae The restriction to striae exceeding 30 nm does not apply
	Further information to be specified in a note

Kimmel, R. K., Parks, R. E., ISO 10110 Optics and Optical Instruments – Preparation of drawings for optical elements and systems: A User's Guide, Second Edition, OSA, 1995.

Yoder, P., Opto-Mechanical Systems Design, Third Edition, CRC Press, 2006.