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Introduction

As spaceborne optical systems ‘increase in diameter to
achieve improved resolution, the stability requirements im-
posed on structures approach values which were unthinkable
only several years ago. To achieve the capabilities of these
apertures optical path errors must not exceed a specific frac-
tion of the wavelength of light, and this fraction, typically
A/20 rms in the focal plane, is independent of system size.
Thus, from a percentage error basis, large optical support
structures represent a far more formidable development task
than do smaller systems. The Large Space Telescope (LST)
sponsored by MSFC/NASA is a case in point. The Optical
Telescope Assembly (OTA) is shown (Fig. 1) installed in the
LST spacecraft. The vertex-to-vertex spacing of the primary
and sccondary mirror is 193 inches. To achieve satisfactory
optical performance, this spacing must be maintained con-
stant to a precision of 1y for observation periods up to 10
hours. During this time it may be nccessary to alter the
spacecraft attitude with respect to the sun, which would
change the temperature levels and gradients within the struc-
tures. It is believed that by exploiting the use of graphite-
€poxy in a novel manner, the stringent alignment require-
ments can be satisfied with a nominally passive structure.

Design Requirements
Although principally driven by optical alignment criteria, the
LST optical structures must also satisfy other technical re-
quirements, These include strength, weight, dynamic, and
cost constraints. Only those which include on-orbit align-
ment criteria, however, are discussed in this article.
Thermal Loads
It will be shown that the thermal changes, which occur be-
tween factory and orbit, are not critical to system perform-
ance. But the thermal changes that can occur subsequent to
arrival on station are of consequence. The thermal design
envelope, shown in Fig. 2, was developed from analyses of
various vehicle pointing attitudes and heater system control
accuracies. The envelope represents the maximum antici-
pated change that might occur during a single target
observation.

Alignment Requirements

The working depth of focus at the £/24 image plane is +4321
at 0.63y wavelength, By applying the simple lens formula

to the two mirrors successively, the following useful relation-
ship is obtained relating defocus to changes in mirror radii
and spacing,
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The change in radius of curvature, 3R, is equal to

oR = RanT + R2aaT

h
where the former relates to a uniform temperature change
AT and the latter to a change in the gradient through the
mirror thickness, AT. The effect of material in homogeneity,
a difference in o between the front and back of the mirror
would simply be

9 0
oR = Rpaal
h
The terms employed in these equations are defined in Fig. 3.
For the system parameters shown in Fig. 3,

6f=58 3R, -48 aR, - 117 a¢,.

A (<) sign indicates a movement of the focus toward the pri-
mary mirror, i.e., for a positive ¢, or an increase in the pri-
mary-to-secondary spacing, the focus moved toward (-) the
primary. The system defocus is the difference between the
change in focal plane position, af, and the change in posi-
tion of the mechanical focal plane, 30,.

With the above equation the tolerance on despace, 9%,
is developed. Based on the system thermal analysis pre-
pared by J. Bartas of Perkin-Elmer the maximum aT and
AT’ for the primary and secondary mirrors are

o ot
Primary +1.8°F 0.45°F (cold front)
Secondary +1.8°F 1°F (cold front)

The result in a focus change, Af, of

AT AT’
Primary 1.7 -171u
Secondary *1.7u - 32u

which added on an RSS basis is 1750, Allowing for a focus
sensing and correction (initial alignment) error of 100y
and another 50y for growth of 2,(7.5)u/F°) and location
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Fig. 1. 2.4 Meter OTA/SI Configuration,
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Fig. 2. Thermal Design Envelope.
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Fig. 3. Optical System Parameters.

uncertainty of the four Science Instruments, 107y remain
for the effect of a change in 2, as 22 equals approximately
1u. Through reapportionment of tolerances and refinement
of the manner in which they add, this despace requirement
can be relaxed to 1 -1/2u. Regardless, over a 200 inch
structural path length and over the temperature extremes
presented in Fig. 2, attainment of this despace alignment is
a formidable engineering challenge.

While the decenter and tilt tolerances were developed
separately from ray tracing, the critical design driver actually
was the despace.

Design Approach
The structural path that controls primary-to-secondary mir-
ror despace is illustrated in Fig. 4. From a common datum
where the primary mirror attaches to the main telescope
ring, the primary and secondary mirror components of de-
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Fig. 4. Despace Paths,

space are calculated. The primary mirror axial position ref-
erence is established by mount design on the back surface.
The displacement of the primary mirror, AA, is

AA = (a @) tayy tagly tagy)aT

AA =51 x 106 in/F°(1.3 [F")
Similarly

AB=(aghg tagly tasF)aT +aep

The term asFSAT accounts for the quasi-Poisson effect in
the truss caused by expansion of the ring. The length ¢,
actually a trim spacer, is intended to make AA equal to AB
when the truss elongation, A%y, is zero. Thus from a despace
aspect the system is insensitive to the anticipated +1°C
changes in the main ring temperature. Since a through «¢
are in physical contact and since the ring and mirror are
heater controlled to 21° £ 1°C, it is reasonable to expect that
elements 1 through 6 will be isothermal.

AB isequal to (70 x 10-6 —3.40:5)AT + a8y, where F5 is
-3.4 and 24 is 1.6" of aluminum.

To calculate the factor F an equation was developed re-
lating the axial expansion of a truss bay (which can be
summed over the total number of bays) to the ring and
strut geometry.

Figure 5 illustrates the geometry of a single bay showing
projection normal to axes 1 and 2.

Consider the projection on plane 2 (looking along axis 1)
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Fig. 5 Truss Bay Geometry

Consider the projection on plane 2 (looking along axis 1)
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Fig. 5. Truss Bay Geometry,

aa = Rsinfa T

(for each ring)

For the lower ring in the diagram

R2 cosBag (1 - cos B)aTy
B s

AS,

A similar expression can be derived for the top ring so the
effect of both rings are added,

_ R2ap cos 8(1 - cos 8) (T +Tg)
2 S

AS

and A is understood.
Also

_LAe _ 5
AS3—T—Q O‘QTL

Summing AS |, AS,, AS,.

Tt = Temp change of top ring
Ty = Temp change of bottom ring
Ty = Temp change of strut

28 =1 [e2aT, +R2ap(cos - 1Ty +T| (1)

From this equation, F. can be determined. In the case of a
temperature rise in element S only T, and TT equal zero
and

28 =1 R2ay (cos 8- 1)aT
For the LST truss

S =67 inches @=4.9 x 10°¢ in/in/F°
R =555inches  ©=225°

So AS=Fg=-3.5« inches/F°

With the local effects in the main ring and mirror mount
accounted for and negated, full attention is now directed
toward the metering truss itself.

In elementary terms the elongation of the truss resulting
from the change in axial gradient shown in Fig, 2 is

o

by =5 apaT

ol —

or

< 0.015 x 10°% in/in/F°

atreqd
for an elongation of 1u. The fundamental problem facing
the structural designer is twofold. One, the variability of «
from a design nominal is on the order of +0.05 ppm/F° for
graphite-epoxy laminates and two, the expansivities at the
various nominal temperatures along the truss length may be
different. .

To solve the variability problem, a means of adjusting the
expansivity of the elements forming the structure is required.
Ideally this adjustment should be performed in the post-
cured condition so that process variables can be compen-
sated. Further, the adjustment on tuning should not intro-
duce additional process variables but should be a discrete
operation. Finally, the tuning elements should not locally
alter the thermal diffusivity of the member, otherwise tran-
sient behavior would be compromised. The concept de-
scribed herein meets these requirements.

The concept, as applied to tubular members such as those
forming a truss, is illustrated in Fig. 6. Here a single strut is
constructed from a single graphite-epoxy system but with
different laminate (i.e., layup) geometry in the left- and
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right-hand sections. On the left, for example, the laminate
would be designed so that its expansivity, considering the
process variables is 0 £ 0.1 x 106, To the right of the tran-

sition zone it would be 04 0.1 x 1076 Obviously a net thermal
expansion of zero could be achieved if the left- and right-
hand sections could be ‘proportional such that

a et ap =0

or some desired finite value. The difference in expansivities
of the right- and left-hand sides is achieved by one of several
methods. The wrap angle of the laminate may change at the

a -(-)
L @y LL«IRLR-O
cR-(+)
%o
¢ e

- %" 0 v

Laminate Configuration R

ransition Zone

Lamlnate Configuration L
Fig. 6. Dual< Strut,

transition zone as the number of layers in each section could
be different. An angular difference of 5 degrees in a
[0°/+6/90°] g laminate can alter the expansivity by

0.2 x 10-6 in/in/F°, for example. To achieve a specific ex-
pansivity the following procedure could be employed.

1. Construct a member as shown in Fig. 7 with different
expansivities in the left- and right-hand sections. Note
that the number is longer than actually desired in the
finished picce.

2
- i -
A_"}I" °L "R ° —l“
Y N\
—-‘C [ S—— jL ——-—L—ZR ——ta— D—.‘
L

21 = As Manufactured Length

l.o = Final Desired Length

Fig. 7. Tuning Procedure.

2. After curing, remove a short section A and B from
each end and measure the coefficient of expansion ac-
tually achieved. This is performed using a Fizeau inter-
ferometer.

3. The expansivity of the length ¢ is

- QLO‘L +QR°‘R

o
Q()

[¢3

November-December 1975 / Vot.14 No.6 / OPTICAL ENGINEERING /

Since Since
QL = Qn - QR
. = (QO - QR)"‘L +epop

o
QO

and for the case where o, =0

Qo - Rpay tepap =0

AL
Qo = —— |2
R (aL_aR [}

where a, and ag have been determined by actual mea-
surements.

4. The distance g is measured off from the transition

zone and the length D sawed off. The distance ¢, is
measured back from this cut end and C removed.

or or

5. The resultant strut will have the required length, ¢,
and the specific expansivity, o, desired. The tolerance
on a, is a function of the precision with which a and
«y, are measured and the accuracy with which the cen-
ter of the transition zone is located. This tolerance
will be far less than the basic laminate tolerances to
which the member is initially fabricated.

Final verification of the member is obtained by measuring
aq over the length ¢, with such a dilatometer.

The « measurement of the end coupons, A and B in Fig. 7
are made at the nominal operating temperature of the mem-
bers for which they are intended. This solves the second
problem, that of « variations with temperature. This form
of construction and tuning is also applicable to the curved
segments that comprise the truss rings. Struts may be tuned
for zero expansivity when subjected to a uniform tempera-
ture change, AT, which results in a minimal error when a
gradient is also present, or zero for a gradient, AT’, which
results in an error for a uniform change. Considering the
struts of a truss bay to be arranged in pairs with alternating
(+) and (~) mating ends shown in Fig. 8, the effective « is

e L “1%2 9324
eff = 2 ®y—Cg  og-0y,
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Fig. 8. Basic Truss Repeating Element,

The development of this expression is shown in the follow-
ing analysis.

I2+11 I4+Iz Pe
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For compatibility, A; = 4,

]‘2 + T]
4

T4 +To Ta+ T]

T
-ty —— +agey 3

Al =(Y]Q] +0‘292

For zero-o tuned dualw struts

Ry = -oaply

013523 = - 0,494
therefore

. T, -T, (T,
Al—olel ——~—-4 +a3£3 —4

If T, =0 so that T, represents the axial gradient

~-T -T
Al =QIQ](—46> +a3Q <4—4>

Froma¢) = -0y, where ¢, =2 - ¢,

o
2
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After collecting terms,

ayf /ey L, 3t of . _
by =—— AT +— AT where AT =T,
4 \o; -a 4 \og-a,

The effective expansivity of strut pairs for several combina-
tions of «, @y, @3, and @, is shown in Table 1.
Note the aepp is on the order of 1/10th the basic laminate

tolerance for these cases. On the other hand one may con-
sider a single strut subjected to a temperature change shown
in Fig, 9. The expansion of the strut caused by the AT’ com-
ponent of the temperature change is

T, +T, T, +T,
+ a2Q2

2

which, after some manipulation, becomes

{ | 1
2

2 —»

j-——————— *.{

Fig. 9. Strut Temperature Change.

%1% —ete— %

Thus, depending on the relative severity of the predicted

AT and AT’ tuning may be biased to favor the more critical
condition. If, for example, the strut in Fig. 9 is tuned so
that 21 = [ag lag — aj)}1/2¢,, ie., a¢, is zero for a gradient
AT  and that oy =-0.03 and «, = +0.02 ppm/F°, the effec-
tive expansivity in the presence of a uniform temperature

Table 1. Effective Expansivity

FOR AN AXIAL GRADIENT CONDITION:

o . —1- [ulaz _ a3a4
oe“ 2 cxl-u2 us-a
a = 0.05 oy = 0. 05
a, = -0.05 ay = -0.03
ay = -0.05 oy = -0.05
o 0 0.01 | 002 | 003 | 0.04 005 | a, = O | 001 | 0.02 [0.03]0.04 0.05
a, = -0.013 -0,008 | -0.005 | -0.003 | -0.001 | a, = -0.0081-0.005[-0.002 | 0 T0.002[0.003
o = 0.05 oy = 0.025
ay = -0,03 ay = -0.025
ay = -0.03 oy = -0.03
@ = _0 | 001 | 002 | 0.03 | 004 [0.05 |, = O | 0.01 [0.02]0.03 |0.04 |0.05
a, = -0.005 | -0.006 | -0.003 | -0.002 | -0.0008! 0 a, =-0.008-0.003 0 [o.00110.00210.003
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change, AT, is-0.011 x 10-6 in/in/F°, However, by alterna-
ting the (+) and (=) ends of the struts in the assembly the ra-
1io ¢ feo of (+) and (-) segments will alternate with respect
1o aT" and the sign of auep(AT) will change. Hence, in the
complete truss assembly, cancellation will occur in a man-
ner similar to that described in Fig. 8,

The sensitivity of the overall truss assembly of off-nomi-
nal (non-zero) values of o may be assessed by use of Eq. (1),
This equation was also employed as a check on a finite cle-
ment model of the truss which was then used to determine
the deformations caused by more complex thermal condi-
tions, such as axially varying side-to-side temperature gradi-
ents, At the time this paper was written work had not been
completed on the final math model. In this model cach
strut is modelled with two diserete fengths with the transi-
tion node (mid-length grid point) randomly located and with
separate material propertices “cards”™ for each element of the
model. The model used in the studies thus far employs 48
bar clements for the struts and 16 bar clements for each of
the four rings. A total of 65 nodes with 390 degrees of free-
dom describes the deformations of the structure.

From the closed form solution, the change in length of
cach truss bay is given by

AS=7475 0 T - 3.53.a, (T, +T,) inches

The comparison between the results of the finite element
model and the suceessive bay by bay use of the above exact
cquation is shown in Fig. 10. This excellent correspondence,
himited only by round-off accuracy confirms the validity of
the finite element model for more complex temperature pro-
files. Note that if oy is 10.6 ag, AS is identical to zero when
Tg =Ty =T or the temperature change of the system is
uniform. This form of temperature desensitization of struc-
tures has previously been used in telescope structures before
the use of composites. In those instances the gecometry of
the structure was configured to satisfy o ratio constraints

for titanium/aluminum combinations.

-12 0
-15 -6

| N

Lo.osxa08/ )
o =0,39x10
6

e 67.7" - & 6

re———— A = 20,9x10"
(Computer)

Solution:

a8 = 2.24264 x10°° T -1.375161x107° (Tp+Ty)

Bayl s =3.0461 x10°8

Bay2 As=7.615x10"°
Bay 3 a s =10.661 x10°8
6

% A8=21.3x10"" by Formula

Fig. 10.

However, since this form of athermalization depends on
the small difference of relatively large numbers (« in the
case of metallic pairs) it is impractical except in those situa-
tions of precisely uniform soak conditions.

FFor the LST truss design under discussion here, the pre-
ceding equation can be used to examine the cffect of lami-
nate « tolerance on performance. Applying the tempera-
ture profile of Fig. 2, the axial deformation of the truss on
a bay-by-bay basis is

Bay #1 AS; =-1570aq + 148 ay
Bay #2 AS, = =112V ag +105ay,
Bay #3 AS3 =~ 449 ag + 424y

Fora £0.05 x 10°% in/in/F° uncertainty or spread in the
nominal strut (ag) and ring (ag ) tolerances, the RSS despace
crror is 99 x 10-¢ inches or 2.5u. This is in excess of the ]
budget.

If tuned struts are employed where the nominal strut un-
certainty is £0.005 ppm/F° and the ring tolerance remains
* 0.05, the RSS uncertainty is reduced to 0.33p. The wider
ring tolerance is retained because

(a) the system is less sensitive to ring o uncertaintics

(b) the ring is more difficult to tunc.
To accomplish uniform soak athermalization, as opposed to
a zero-o approach

74.75

(\R/L\’S = 3 x 3.53 = 10,588

As a consequence of the assumption that the axial gradient
in the strut is linear,

Bay #1 apfeg = 10.588
Bay #2 aplag= 10,588
Bay#3  opfag = 10.588

If, in this instance, ag = 0.05 x 10-6 and therefore ap =
10.588 x 0.05 x 10-6 =0.5294 x 10-6, the change in length
of each bay is obviously zero.

However, by applying a 20.05 ppm/F° tolerance on
ap and ag, a 2.1y error in the first bay alone is possible. If
the temperature change over a bay is not linear then the near
match between uniform soak and gradient athermalization is
defeated. For example, if the temperature change is as indi-
cated in Fig. 11, AS) = 1420 ag - 148 a the gradient ather-

-34 -19 -18

| : !

Fig. 11. Truss Temperature Change.
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malization ratio would be 9.59. The associated despace er-
ror for this single bay is 0.2p. Further, with +1°C (1.8°F)
uncertainties in the forward bay temperatures, the despace
variability becomes approximately 0.4y, for just a single bay.
Based on the « tolerances previously discussed, individual
piece part acceptance measurements are required. Tuning

to zero or near zero « is a logical extension as it negates the
effect of temperature uncertainties associated with athermal-
ized structures.

The results of this approach are illustrated in Fig, 12,
where the finite element model of the truss is subjected to
simultaneous axial and lateral temperature gradients of 24°
and 10°F, respectively. It must also be noted that careful
attention is given the strut-to-ring joints to prevent a build-
up of the graphite-epoxy thickness in the short transverse
direction, where « is on the order of 25 x 10-6 in/in/F°, If
this is not done, and assuming a total flange thickness of
0.18 inch per joint, an additional despace error of 3.6 could
result. The joint design envisioned for the truss consists of a
chopped fiber :(HiMAT) laminate whose expansivity is ap-
proximately 0.2 x 10-6 in/in/F°. The total length of these
sockets is 8 inches over the entire truss, resulting in an addi-
tional despace error if only 0.5, This can be offset by set-
ting the strut « values slightly negative. The truss design de-
scribed in this paper weighs 242 pounds including the spider
and has a first lateral mode of 26 ¢ps, when supporting a to-
tal secondary mirror and mount of 70 pounds.

Condition | Despace | Decenter | Tilt
-1°F X-Tit. Ring 0.02u ° )
24°F Axial Gradient Change 0.3%7u
10°F Lateral Gradient -0.11p 0.3n 0.01 sec

0.3

-

0.01 sec ori i
0,37 . rimary Mirror Vertex
Values Based on Change

Between Hot and Cold Cases
Secondary Mirror Vertex
Fig. 12, Tuning to Near Zero. 2
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