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Abstract. This paper concerns the problem of describing and evaluating
thermal lensing phenomena that occur as a result of the absorption of
laser light in solid windows. The aberration function expansion method
is applied for deriving the two optical distortion coefficients x, and x-
that characterize the degradation in light intensity at the Gaussian focus
of an initially diffraction-fimited laser beam passing through a weakly
absorbing stress-birefringent window. In a pulsed mode of operation, the
concept of an effective optical distortion coefficient xef, which properly
combines the coefficients x4 and x- in terms of potential impact on focal
irradiances, then leads to the definition of a figure of merit for distortion.
The theory and calculations presented in this and earlier papers provide
simple analytical tools for predicting the optical performance of a window-
material candidate in a specific system’s environment.
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1. INTRODUCTION

Wavefront distortion caused by ‘‘thermal lensing’’ of optical
components can have a major 1mpact on the operation of high-
power laser systems.' Windows, in particular, can distort the
incident beam in a complex manner because thermally induced
phase shifts reflect changes in the optical path length arising
from position-dependent variations in window thickness as well
as from posmon- and polanzatlon dependent variations in re-
fractive index.”” This problem is now well understood in the
sense that a suitable theory has been developed and shown to
be amenable to practical calculations for relatively simple con-
ﬁguratlons 1n terms of both material characteristics and beam
geometry.*

In effect, the theory applies only if the following assumptions
are verified: (a) The window is subjected to axially symmetric
thermal loadings, (b) the elastic and photoelastic properties are
isotropic in the plane of the window, and (c) the stresses obey
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either “‘thin-plate’” or “‘long-rod’’ type distributions. Under those
conditions, and in the absence of mechanical loadings, uncon-
strained laser windows are subjected to stresses characterized
by cylindrically symmetric radial and azimuthal components
o, and gg, which relate to the temperature profile in a relatively
simple manner. Furthermore, the distortion of the beam can be
described by means of two principal phase shifts, 8d,
and ddyg, that is, the phase shifts experienced by a normally
incident light ray polarized in either the radial or the azimuthal
direction. These phase shifts arise from the change in path length
as the heated portion of the window expands and bulges outward,
from the temperature dependence of the refractive index, and
from photoelastic effects associated with nonuniform heating
patterns. Considering that o, and o differ everywhere except
on-axis, it follows that for windows made of stress-birefringent
material, the two principal phase shifts are also different, which
leads to two optical distortion coefficients for describing the
thermal lensing process. My purpose here is to present this
approach m a more coherent manner compared to earlier
treatments*~® but simple enough to allow the laser systems de-

~ signer to predict the window-induced degradation in focal in-

tensity and, thus, to assess the ‘‘performance’ of a window-
material candidate in the context of a design methodology, as
outlined in Ref. 7.

Early investigations of window-induced thermal lensmg made
use of methods such as conventlonal geometric optics,'? Kirch-
hoff’s vector diffraction theory, and Jones’s aberration-matrix
formalism.!? Bendow and Gianino,'! in particular, performed
extensive analyses, but because of the large number of param-
eters involved, their results are difficult to exploit for relating
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key features of the transmitted beam to specific window-material
characteristics. For this reason, I have adopted the aberration-
function expansion procedure to derive optical distortion coef-
ficients and thus characterize the degradation in beam intensity
at the Gaussian focus of an initially diffraction-limited laser
beam focused through a weakly absorbing medium. In Sec. 2,
I briefly review how the degradation can be described by means
of a symmetric and an antisymmetric combination of the phase
shifts 8¢, and dde, which then yield proper expressions (the
““‘chi approximation’’) for obtaining the two optical distortion
coefficients that relate the spatial temperature distribution to the
phase-aberration functions (Sec. 3). For the purpose of eluci-
dating how the reduction in target irradiance relates to specific
features of the laser window as well as the laser beam (Sec. 4),
I consider truncated Gaussian beam amplitudes and focus atten-
tion on pulsed modes of operation (the ‘‘short-time approxi-
mation’”), for which local temperature increases mirror the local
heat deposition, thus ignoring thermal diffusion effects. I also
address the problem of obtaining proper values for the relevant
elastic and photoelastic properties (Sec. 5), to emphasize that
using single-crystal constants, as is often done in the literature,
is basically incorrect. Finally, conclusions are stated in Sec. 6.

2. WINDOW-INDUCED IRRADIANCE DEGRADATION

We assume that the thermal lensing process gives rise to radially
dependent wavefront distortions but does not alter the incident
beam intensity. In that case, the Strehl ratio, or ratio of focal
irradiances with and without aberration, is simply'!

2

1
’J; (V2)lexp(idd,) + exp(idde)]VI(p) pdp

s =

(1)

2 r

1
l fo VI(p) pdp

where 8¢, and d¢e are the phase aberrations experienced by
normally incident light polarized along radial and azimuthal di-
rections, respectively (the other symbols are defined in Table
I). This expression provides a convenient starting point for ana-
lyzing thermal lensing caused by high-power laser windows. For
weak distortions, in particular, we may proceed by expanding
the two multiplicative phase factors to second order in the manner
originally suggested by Born and Wolf,"? i.e.,
8¢

exp(idd) = 1 + 8 — 2 (2)

which yields

1
s=1 - 5(54),2, + 5d) + §<a¢p + 3y , 3

where the symbol ( ) refers to amplitude-weighted averages over
the entire aperture:

1
fo Y(p) VI(p) pdp
¥ = —— )

= 1
L VI(p) pdp

On introducing symmetric and antisymmetric combinations of
the radial and azimuthal phase aberrations,
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TABLE {. List of symbols.

?

Cp H
D :
E H
F(W) :
G .
G(W) :
I(p,t) :
Io :
i3 :
K :
Kq H
k :
L :
n :
all :
9] :
dij t
*
qij :
s :
Sij H
siY :
t H
ta :
W :
b2 :
e :
Bapp :
By H
8s :
3L :
&n :

(8n)stress:
(8n)temp :

&T :
84g :
8¢p :
S+ :
L. :
€2 :
P H
oz :
9g :
9, H
$ :
X+ :
X- :
Xeff :

Heat capacity per unit volume
Window diameter

Young's modulus

Form factor, Strehl ratio

: Shear modulus

Form factor, distortion coefficient
Beam intensity

Peak intensity

Hershey's factor

Bulk modulus

Beam-profile factor for distortion
Propagation constant (2n/X)

Window thickness

Refractive index

Stress-optic coefficient,

parallel orientation

Stress-optic coefficient,
perpendicular orientation
Piezo~optic tensor element, single crystal
Piezo-optic tensor element, aggregate
Strehl ratio

Compliance tensor element, single crystal
Compliance tensor element, aggregate
Exposure time

Thermal lensing time

Truncation parameter

Axial position

Expansion coefficient

Apparent absorption coefficient

Bulk absorption coefficient

Surface absorptance

Thickness variation

Index variation

Stress-induced index variation
Temperature-induced index variation
Beam-induced temperature increment
Phase aberration, azimuthal polarization
Phase aberration, radial polarization
Symmetric phase-aberration function
Anti-symmetric phase-aberration function
Axial strain component

Laser wavelength

Poigson's ratio

Normalized radial distance

Axial stress component

Azimuthal stress component

Radial stress component
Window-induced phaseshift

Optical distortion coefficient,
symmetric

Optical distortion coefficient,
anti-symmetric

Effective optical distortion coefficient

: Beam radius (1/e2)
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by = 366, + ddo) , ®

b = 50y — 30 , ©)

this procedure then leads to a remarkably compact expression
for the Strehl ratio,

s=1~ {vaidé.] + Go1)} ™
keeping in mind that the variance is defined in accord with

var[Y] = (Y2 — (¥)* . (8)

The advantage of this formulation is quite obvious: Since 8¢ -
exists only if 8¢, and d¢de are different, Eq. (7) specifies the
impact of birefringence with regard to focal irradiances com-
pared to all other sources of distortion.

3. THE TWO “CHI” COEFFICIENTS

Prior to the onset of thermal loadings, the window is assumed
to be at uniform temperature and birefringence free; any normally
incident light ray that traverses the window without experiencing
significant deviation or loss in intensity then emerges with its
phase shifted by an amount

b =k(n—- DL, ()]

where k designates the propagation constant, n is the unperturbed
index of refraction, and L refers to the window thickness (path
length). The absorption of laser power gives rise to radially
dependent aberrations as a result of the change in path length
and the change in index caused by beam-induced temperature
gradients:

8 = kf(n — 1)8L + Lbn] . (10)

The variation in path length reflects the magnitude of the tensor
component of strain in the z direction, i.e.,

8L = e.L ()

in single-subscript notations, which relates to the temperature
field and the stress tensor by means of Hooke’s law, '

[0 2% v
e = odT + = — Z (0, + 0v) (12)

where 8T refers to the beam-induced local temperature rise av-
eraged over the pane thickness:

L
ST = lf 3T(p,z,0)dz . (13)
L)

The stresses occurring in a solid window that is not constrained
by external forces, has an axially symmetric temperature distri-
bution, and is made of elastically isotropic material can be de-
scribed analytically for two simple model situations'”:

(a) The plane-stress model, which applies to ‘‘thin-disk’’
geometries, that is, when the window thickness is much smaller
than the window radius [L/(D/2) < 0.5], yields

I P
1
o = (xEI:J 8Tp' dp’ — —if 8Tp' dp’] , (14)
0 po
1 1 P
g = aEl:f 8Tp' dp' + p_zf d3Tp' dp' — 8T | , (15)
0 o
o, =0, (16)

for the principal stresses; note that for this approximation to be
valid, the axial stress must vanish.
(b) The plane-strain model, which yields

o, = 0, + Op , a7

with planar stresses as in Eqs. (14) and (15) but for the factor
oF, which must be replaced by aF/(1—v); in principle, this
‘‘long-rod’” approximation should be used when the window
aspect ratio satisfies the condition L/(D/2) = 2 and axial stresses
no longer can be ignored. With regard to the change in index,
we must consider not only the temperature dependence but also
the stress-induced photoelastic effect:

on = (Sn)\emp + (On)swess - (18)

The effect -of temperature can be easily formulated if the index
of refraction varies more or less linearly over the temperature
range of interest; in a first approximation, we may write

Onemp = (g;-) 5T (19)
o=0

and set (9n/dT)q -0 equal to the thermo-optic coefficient, dn/dT,
as measured at the reference temperature. Index variations caused
by thermal stresses involve considerations relating to the pho-
toelastic effect,'® which show that

ni!

@nduress = —— [910, + 41(00 + 0] 0
for plane waves polarized along the radial direction and
On)stress = T [une + qi(crp + 0] @21

for azimuthal polarizations, the symbols qj and q, referring to
the stress-optic coefficients for stresses applied parallel and per-
pendicular to the polarization axis.

At this point, it becomes a straightforward matter to establish
that the two aberration functions 8¢+ and 8¢ — of Sec. 2 relate
to the temperature field in a fairly simple manner :

8d . = kx+LOT + p-independent terms , (22)

3b_ = kx_L®T — 8T) , (23)

*Note that p-independent terms do not contribute to the variance of 3¢+ and
hence do not contribute to the degradation in focal intensity [see Eq. (7)].
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Fig. 1. Comparison of optical distortion coefficients for CaF2, KCI, and ZnSe at the He-Ne laser
wavelength; note that these coefficients are displayed on a log scale.

where 87 represents the mean temperature increase from the
window axis to the radial position p, i.e.,

— 2 L4
8T = p_lf 8Tp' dp' . (24)
0

Equations (22) and (23) define two optical distortion coefficients
X + and X -, which characterize the medium’s sensitivity to ther-
mal lensing and properly assemble the material parameters that
control the thermal lensing process. In effect, they are the ei-
genvalues of the relevant Jones matrix, as discussed in Ref. 12.
In a disk geometry, the calculation yields

dn 7

X+ = ot (0= Dadl +v) + —"‘— @i+ q.) » ©5)
ok

X-="7 qy ~ q1) » (26)

which demonstrates that ¥+ combines the temperature-induced
change in index, the contribution due to bulging, plus the average
photoelastic effect for the two polarizations; the coefficient x -
exists only if the medium is stress-birefringent. For *‘thick”
windows we have

dn /4

X+ = o + . (tIu + 3qy) ., @n
oEl4

X- = (qn - 4q1) , (28)

1 -

which no longer mcludes a ‘‘bulging”’ term, thus reflecting the
well-known observation'® that the thickness variation 8L is p-
independent in that geometry. In both instances, birefringence-
independent distortions replicate the temperature profile as cre-
ated by the incident beam, whereas birefringence-dependent con-
tributions are always minimal in the central window region but
may become substantial at larger radial distances. With regard
to the elastic and the stress-optic coefficients, I remind the reader
that the theory holds only for macroscopically isotropic material
or, in the case of windows made of highly oriented cubic ma-
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terial, if the beam propagates along the [111] direction, in which
case the coefficients must be obtained from the compliance ten-
sor and the piezo-optic tensor by means of the formulas given
in Sec. S.

At the He-Ne laser wavelength, for instance, the optical dis-
tortion coefficients of a *‘thin’’ laser wmdow made of ZnSe,
KClI, or CaF; are displayed in Fig. 1.7

On a macroscopic scale, polycrystalline, chemically vapor
deposited ZnSe exhibits xsotropxc propemes and has a large x +
coefficient (x + = 1X10~ 1) that originates primarily from
the thermo-optic coefficient and thus, ensures polarization-in-
dependent lensing in this material; there is, nevertheless, a sub-
stantial stress-birefringence contribution (see Fig. 1), but it does
not affect the focal irradiance, as shown in the next section. At
this point, we may note that in relation to the dissipated power,
the wavefront deformation in ZnSe should be almost an order
of magnitude greater than in KCl, or even two orders of mag-
nitude greater than in CaF,, which agrees with much experi-
mental evidence.!”

As shown in Fig. 1, randomly oriented KCl windows behave
essentially in the same manner as (111)-oriented windows, which
suggests that KCl-induced thermal lensing does not depend much
on crystalline order or preferred orientation. Isotropic contri-
butions dommate in the sense that the *‘small-birefringence con-
dition,”” x%/x% << 1, appears to be satisfied, but it should be
pointed out that ¥ 4+ is actually negative, which substantiates the
obserlxgation that KCI windows behave in the manner of a negative
lens.

For randomly oriented CaF», the two x coefficients are very
small but comparable in magnitude, which explains why de-
polarization can become highly apparent with polycrystalline
CaF, windows.'? With (111)-oriented material, however, x -
becomes practically insignificant (see Fig. 1) because the critical
direction of Joiner, Marburger, and Steier'® almost coincides
with the [111] direction, which suggests that (111)-oriented CaF-
laser windows as recently developed at Harshaw Crystals and
Electronics (Solon, Ohio)'® should not exhibit any detectable
birefringence, and this irrespective of the polarization of the
incident beam.

"For a discussion of the wavelength dependence, the reader may consult Ref. 5.
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4. THE SHORT-TIME APPROXIMATION

Returning now to Eq. (7) and making use of the two x coeffi-
cients, it is seen that

var[dd ] = (kxL)*var(dT] , (29)
(3b2) = (kx-LXGT — 37)H , 30)

which clearly specifies how the temperature distribution impacts
the focal point intensity. For our purposes, and since the bire-
fringence is expected to play a relatively minor role (see Fig.
1), we may try to relate the intensity degradation to the variance
of the temperature rise; in other words, we may rewrite the Strehl
ratio expression as follows:

s = 1 — (kxetL)*var[8T] . (31

This amounts to injecting the concept of an ‘‘effective optical
distortion coefficient,”’

24 ’
Xeft = IX+][1 + G(if) ] : (32)

which involves a temperature-profile-dependent factor G,

_ (@1 - 37

G =0 -6’

(33)

and indicates that birefringence now can be accounted for by
means of the factor [1 + G(x-/x+)*1"; from the point of view
of the reduction in target intensity, the ratio x> /x% thus mea-
sures the relative weight of birefringence compared to all other
sources of optical distortion.

In principle, the temperature distribution 87 induced by the
passage of a laser beam through a solid window must be obtained
by solving the heat-diffusion equation in conjunction with ap-
propriate boundary conditions. In a pulsed mode of operation,
however, if one assumes that the time scales are such that planar
thermal conduction as well as surface-cooling effects can be
ignored, the local temperature rise is simply given by

1 ’ ’
oT = f Tp.ydr (34)
o at

where 987/dt relates linearly to the power per unit area absorbed
by the window:

oT(p,1) _ Bappl(p.?)
ot c,

(35)

Here, it is understood that Bpp refers to an ‘‘apparent absorption
coefficient’’ defined in the same manner as 87 in Eq. (13), which
means*

2
Bapp = By + _E'a_f , (36)

where By is the bulk absorption coefficient and s characterizes
the localized surface absorption.

For the purpose of exercising this model, we now consider
the case of an incident beam possessing a Gaussian power-
density profile:

PARAMETER W
2.0 1.5 1.0 0.5 [o]
T T T

s
©
g 8
e
- .
= =
3 S
e r z 7
&
4~ E =
- § 2 -
=
2r = =
[} 1 [¢] 1
0 ) 1 l | I L1
1 10 100

TRUNCATION (%)

Fig. 2. Form factor G of Eq. (42); the parameter W characterizes the
truncation of the Gaussian beam [the truncation is exp(—2W)], as
illustrated in the inset.

Hp,H) = I()exp(—2Wp?) (37

with 1,(f) representing the on-axis intensity at the window ap-
erture and W referring to the truncation parameter,

D/2)*
W= ( wz) ) (38)

In the short-time approximation (STA), or prediffusion regime,
local window temperatures reflect local beam intensities and 8T
can be expressed simply as a product of two single-variable
functions,

3T = f(p)g(®) . (39)
The function f(p) has the shape of the incident beam,
J(p) = exp(—2Wp?) , (40)

while g(¢) is proportional to the beam fluence on-axis:

t
g = %‘%’3 REGLAE @41
P

On this basis, it is immediately seen that the form factor G
defined in Eq. (33) becomes a function of truncation only,

@) = FOP)

G =
e Fe) - (e’

(42)

which is amenable to analytic/numeric evaluation, keeping in
mind that f(p) represents an average as in Eq. (24). The results
are displayed in Fig. 2; we note that the dependence on beam
shape is quite weak with G(W) close to 0.75 for the type of
truncations normally anticipated (W = 1). In the context of the

*Since the power passed through the aperture is P = Po[l — exp(—2W)], the
term exp( — 2W) measures the truncation in percent; in the absence of aberrations,
optimum truncation in terms of focal irradiances at a fixed beam-power level
Py corresponds to a truncation parameter W of 1.26.
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STA model, we therefore take it that

Xeft = ;x+]{1 + ovs(i—:)zr

is a good approximation, which validates the concept of an
‘‘effective chi.”’

In this light, we may reconsider the problem of evaluating
the reduction in focal intensity and, by the same token, derive
a criterion for characterizing the optical performance of candi-
date window materials. For this purpose, we write [see Eq. (39)]

(43)

var[dT) = [g(1)}*varlf(p)] (44)

and evaluate the variance of f(p) for Gaussian shapes defined
as in Eq. (40):

2
_l-exp(=5w) [ - exp(=3W)
varlf(e)l = 57— exp(— W) {3[1 - exp(—W)]}
= FZ(W) . “3)

If the beam intensity remains steady throughout the exposure,
this leads immediately to an explicit expression for the window-
induced degradation in focal intensity,

2
_1- [w] , )
(jP

which is applicable to relatively weak distortions, or distortions
that are acceptable in the sense of Maréchal. 13 Assume now that
the apparent absorption coefficient is essentially equal to the
bulk absorption coefficient, that is, assume that the coatings are
‘‘good enough’’ to satisfy the relation 2B8s << BvL. In that
case, the “‘lensing time,”” or time required for thermal lensing
to substantially degrade (s = 0.8) the performance of an initially
diffraction-limited window, is given by the product of a beam-
related term and a window-related term,

_ Ky (FOM),

Tk, L

“47)

where K, represents a beam-profile factor for distortion,

V0.2

d='F(V),

(48)

and (FOM);, is the figure of merit for distortion,

Cr

(FOM), = ,
BvXett

49

which regroups all window-material features that affect thermal
lensing. Since the function F(W) shows little dependence on
truncation for W = 1 but drops rapidly to zero for large trun-
cations, lensing proceeds more slowly for broader beams, smaller
intensities, longer wavelengths, and thinner panes, and with
window materials having a good figure of merit in terms of heat
capacity (Cp), light absorption (Bv), and sensitivity to distortion
(Xeff).
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Fig. 3. Young’s modulus of single-crystal KCi in the (001) plane and
the (111) plane; the modulus may exhibit substantial enhancement
along the principal crystallographic axes.

5. ELASTIC AND PHOTOELASTIC PROPERTIES

In cubic single crystals, many physical properties are anisotropic;
directionality equations, therefore, must be used to describe the
orientational dependence.ZI Take, for instance, the (001) plane
in KCI: The elastic modulus varies with direction in the manner
portrayed in Fig. 3 and exhibits protuberances along the crys-
tallographic axes. Actually, of all the standard crystallographic
configurations, only the (111) plane has isotropic elastic and
photoelastic properties. Specifically, we have

2
E = —, 50
B 5 + 51z + ()ses 50)
2 + 28512 — (V2)s.
va _ _ %5u $12 (2)s44 1)

3 su 4 sz + (Y2)sas

for Young’s modulus and Poisson’s ratio of relevance here.
These two expressions reduce to the commonly used formulas
(E = 1l/s;; and v ~si2/s11) only if the isotropy condition
holds for the elastic compliances. Regarding the elasto-optic
properties, Turley and Sines’s approach®! can be easily extended*
to derive suitable expressions for the two stress-optic coefficients
that enter our equations for the optical distortion [Eqs. (25)
through (28)):

1
qy = ‘2‘(411 + g1 + qa) , (52)

(g + 5g12 — qaa) - (53)

=1
gy = 6
Here, the g;;’s are the piezo-optic constants obtained from pho-
toelastic measurements performed on single crystals and listed
in the handbooks; as in the case of elastic properties, there is
no angular dependence in the (111) plane.
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Turning now to macroscopically isotropic solids, we know
that the following holds'®:

I

sa = 2051 — $12) (54)

*

gu = qu1 — qi2 (55)

if the sfj’s and the q:}’s are the elastic compliances and the piezo-
optic constants as measured for polycrystalline aggregates or for
amorphous compositions. Therefore, the elastic properties of
concern in a thermal lensing situation are simply

E=1, (56)

y= -2 (57)
Si1

Similarly, if the piezo-optic constants are available, as for chem-
ically vapor deposited ZnSe (g1 = —1.44x107'2Ppa”!,
g2 = 0.17X 1072 Pa~! at 0.6328 p.mzz), we have

gy = qu1 » (58)

q. = qu s (5%

which indeed is consistent with Eqs. (52) and (53), considering
the isotropy condition [Eq. (55)].

If the macroscopic property values of an isotropic aggregate
of cubic material are not available, we may proceed as follows:
Since the bulk modulus is an invariant, we know that the relation

1
= 60
3(s11 + 2512) ©0)
always holds and yields an exact number for the aggregate
partir de single-crystal compliances. The shear modulus, how-
ever,

1

G = ——r |
20T, — sh)

(61)

does not relate to single-crystal constants in an obvious manner
but falls between narrow bounds, as tabulated in Ref. 23. Be-
cause these two moduli, K and G, suffice to completely char-
acterize the elastic features of a solid, it is then a simple matter
to obtain both Young’s modulus and Poisson’s ratio of the ag-
gregate:

9KG
= 2
E=—a (62)
3K ~ 26
YT %G + 3K) 63)

For a discussion of the photoelastic properties of such aggre-
gates, I refer the reader to Ref. 5. Starting from the Flannery-
Marburger equations24 for the strain-optic coefficients, it is seen
that the two stress-optic coefficients are best expressed as fol-
lows:

I

9
qQ =qu + —;3 [qas — (g1 — q12)] , (64)

g1 = qn2 — Jg [gas — (gu1 — q12)] (65)

if the factor j3 is as given by Hershey,”

_ 5c4(3K + 4G)
GOK + 8G) + 6casK + 2G)

§E) (66)
keeping in mind that the ca4 elastic stiffness is the reciprocal of
the s44 elastic compliance. Again, we note that these expressions
are consistent with Eqs. (52) and (53) if the isotropy condition
holds; they also have been shown to be compatible with some
available experimental evidence.’

6. CONCLUSIONS

In its present form, the theory of thermal lensing applies only
if the window is exposed to axially symmetric laser beams and
has isotropic properties in the plane perpendicular to the axis;
this requirement implies window panes made of either (111)-
oriented cubic crystals, randomly orientated polycrystals, or
amorphous materials with elastic and elasto-optic coefficients as
discussed in Sec. 5.

In a fixed-focus, long-focal-length configuration, the degra-
dation in focal irradiance caused by thermal lensing is best de-
scribed by means of the two phase-aberration functions 8¢ .
and 8¢ — defined in Eqs. (5) and (6); an evaluation of the Strehl
ratio as carried out in Sec. 2 then yields a convenient expression
[Eq. (7)] for assessing the impact of stress birefringence on the
far-field irradiance.

The two optical distortion coefficients introduced in Sec. 3,
x+ and x-, relate the spatial temperature distribution to the
aberration functions 8¢ + and 8¢ —; Egs. (25) through (28) then
provide explicit expressions for obtaining these coefficients from
intrinsic material-property values and apply to thin-disk or long-
rod geometries.

In principle, the Strehl ratio relates directly to the variance
of the temperature rise by means of an equation such as Eq.
(31); this amounts to injecting the concept of an effective optical
distortion coefficient [see Eq. (32)], which shows that bire-
fringence gives rise to the correction factor [1 + G(x_/x+)2]'/ :
and, thus, that the ratio x* /x% measures the relative weight of
stress birefringence compared to all other sources of optical
distortion.

For the purpose of elucidating how the reduction in focal
irradiance depends on specific features of both the laser window
and the laser beam, it is of interest to consider the case of
truncated Gaussians in the context of a pulsed mode of operation;
it is then a straightforward task (see Sec. 4) to derive simple
analytical expressions for the factor G as well as for the pon-
derated variance of the temperature distribution.

This procedure immediately leads to the definition of a figure
of merit for distortion [Eq. (49)], which regroups all window-
material-related features that affect thermal lensing; for weak
distortions, the effective distortion coefficient x.¢ best charac-
terizes the window’s susceptibility to lensing but must be eval-
uated with care because of potentially significant cancellations
among the three terms that contribute to the coefficient x +.
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