Presentation on "Production Engineering and Implementation of a Modular Military Binocular"

December 2, 2006 Andrei Kazmierski University of Arizona College of Optical Sciences OPTI521, Presentation

Key Words

Binocular T14/T14E1/M19 Modularity Monte Carlo Analysis Collimation Dipvergence Divergence **Production Engineering** Stereoscopic Asymmetric Housing Eyepiece Objective

双眼鏡 双眼鏡のモデル名 モジュール方式 モンテカルロ分析 視準/平行 垂直平行性 水平平行性 生産技術 / 製造 立体鏡 不均整 筐体 接眼レンズ 対物レンズ

Basic Summary

- Binocular: Key instrument for military personnel
- WWII-model issues (size, weight, reliability, maintenance)
- Post-WWII: US Army authorizes work on a new binocular
 - First effort: T14
 - Evolution: T14 \rightarrow T14E1 \rightarrow M19

Emphasis on modular design

- Successful with respect to stated objectives
- Mass-production of M19 and related issues

Key Players

Farrand Optical Company and Frankford Arsenal (Development of T14 \rightarrow M19)

Bell & Howell Company

(Mass Production of M19)

Modularity

• 5 non-maintainable modules:

(Eyepiece, objective, hinge pin, left and right housings)

• Only 2 special tools required for assembly/disassembly

Ring Body assembly Gasket Gasket Gasket Cover and eyepiece assembly Screw Ring Cap Feticle assembly Feticle assembly Screw

- Issues described in Slide 3
- 250 separate parts
- 100 special tools required for assembly/disassembly

WWII Era

Performance Requirements

CHARACTERISTIC	UNITS	SPECIFICATION RANGE
Collimation	minutes of arc	
Dipvergence		+/- 15
Divergence		20 +/- 20
Resolution	seconds of arc	6 maximum
Image Tilt	minutes of arc	30 maximum
Parallax	mm	0.127 maximum
Eyepiece Focus	diopters	+/- 4

Collimation – most difficult specification parameter to achieve

Production Engineering Concept

- Production flow: Fabrication \rightarrow Assembly \rightarrow Machining
 - No alignment or adjustment after assembly maintains consistency with modular design.
- Approach:
 - Pre-focused/collimated modules
 - Module machining after assembly/sealing
 - Significant effort on tooling/machining using optical alignment to meet specifications
 - Simple optical testing to qualify components
 - Studies to ensure specification compliance and improve quality

Production Engineering Issues

- Housing Module
 - New adhesive delivered by US Army
 - Fixturing required to maintain position of prisms
- Objective Module
 - Telephoto air-spaced triplet
 - Critical dimensions = tight tolerances
 - Mounting surfaces defined last after assembly/sealing
- Eyepiece Module
 - Axial movement for focus with minimal "wander" leads to spring preload solution

Summary

- M19 provided US armed forces with a truly modular military binocular that addressed the issues of previous models.
- The M19 offered reduced size and weight and rapid field-maintenance.
- Numerous issues encountered/solved with regards to production engineering of M19.