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1. INTRODUCTION 

First order optics are the principles and equations which describe the geometrical imaging of any optical 

system.   The foundations of first order optics are derived from the concept of central projection, 

collinear transformation and the camera obscura.  These foundations will be used to demonstrate the 

fundamental parameters of an optical system such as image position, size and orientation.  These 

fundamental parameters will be calculated from the different cardinal points of an optical system using 

both Newtonian and Gaussian imaging equations.  To extrapolate upon these imaging principles, the   

derivation of Snell’s law and the law of reflection will be covered.   

 

2. FUNDAMENTAL CONCEPTS 

Central Projection 

The geometry of first order optics is extrapolated from the concept of central projection.  The central 

projection concept states that a given object located in the object plane which is projected through the 

“projection point” will form an image of the object in the image plane.  The central projection concept is 

an application of the mathematical concept of projection.  Projection is defined as a mapping of a set 

into a subset.  In relation to the central projection concept, the set encompasses the points and/or lines 

which define the object in object space, the mapping function would be the projection point and the 

subset encompasses the image points and/or lines which define the object in image space.  Collinear 

transformation is a type of projection which has applications to optics, as well. 

 

 

Figure 1. Central Projection 

 



Collinear Transformation 

A collinear transformation is a one to one mapping between two spaces.  In the world of optics, the 

spaces are referred to as object space and image space.  All of the points within object space pass 

through the same projection point which maps them to points within the image space.  The projection 

function of a collinear system states that points map to points, lines map to lines and spaces map to 

spaces.  The points, lines and spaces in object space all have corresponding and unique points, lines and 

spaces in image space.  The notion of these corresponding and unique elements describes the basis of 

conjugate elements.   

Next, the camera obscura is described to illustrate the idea of image formation with rays.  This is a 

necessary concept in order to build upon the mathematical principles and equations which govern the 

geometric behavior of the object and image equations.  Further details of these imaging equations and 

their response to small perturbations can be described by linear shift invariant systems theory. 

 

The Camera Obscura 

The camera obscura is the simplest form of an imaging system.  It consists of a black box with a pinhole 

in one side.  Light from an object placed outside of the box will propagate through the pinhole and form 

an inverted image on the wall.  Here light can be thought of as a ray which travels from left to right to 

form the image.  Notice that the geometry and concept of the camera obscura is an adaptation of the 

central projection concept.  An important detail of this imaging system lies in the pinhole diameter.   

 

Figure 2. Camera Obscura 

As the pinhole diameter increases so does the image brightness.  This is because a larger aperture will 

enable more light to pass through the optical system.  Though, if the aperture is too large then the 

image will become blurry.  This, of course, describes the preliminary concept of resolution and the point 

spread function (PSF).  Conversely, as the pinhole diameter decreases, thereby improving image 

resolution and PSF, so does the image brightness.  Before expanding upon the complexities of resolution 

and PSF, the geometric relationship between the object and image distances must be understood.   



The distance from the object to the pinhole is known as the object distance while the distance from the 

pinhole to the image is known as the image distance.  The idea of object and image distances leads to 

the mathematical concepts of imaging as independently explain by Sir Isaac Newton and Karl Gauss. 

With the concepts of central projection, collinear transformation and the camera obscura laid out, a 

mathematical and physical geometric basis can now be constructed to help derive and illustrate, 

respectively, the first order properties of an optical system. 

 

3. IMAGING EQUATIONS 

The imaging equations can be derived by tracing the chief and marginal rays of an optical system.  The 

marginal ray is an on-axis ray which travels from the center of an object to the edge of the stop and to 

the center of the image.  The chief ray is an off-axis ray which travels from the edge of the object 

through the center of the stop to the edge of the image.  In other words, the marginal and chief rays 

define the extrema of rays which define an image to the first order. That is to say, all other rays which 

can be traced through an optical system lie between the marginal (image center) and chief (image edge) 

rays.   The image location is known as the focal plane and is our first introduction into the cardinal 

points.   

 

Figure 3. Marginal and Chief Rays 

The cardinal points define points of angular and spatial significance within an optical system.  Any 

optical system can be decomposed in terms of the six cardinal planes.  The six cardinal planes are the 

front and rear focal planes, nodal planes and the principle planes.  The focal planes are the planes at 

which all rays parallel to the optical axis in object space will come to focus in image space.  The same is 

true for rays traveling from image space towards object space.  The nodal planes are the planes of unit 

angular magnification.  A ray which passes through the front nodal point will pass through the rear nodal 

point at the same angle with respect to the optical axis.  The principle planes are the planes of unit 

lateral magnification.  A ray which passes through the front principal point will pass through the rear 

principal point at the same vertical distance from the optical axis.  The front and rear cardinal points are 

conjugate to one another. 

 

 



For reference, the symbolic interpretation of the Newtonian and Gaussian imaging systems is explain in 

table 1. 

Symbol Meaning 

F Front Focal Plane 

P Front Principal Plane 

z Object Distance 

fF Front Focal Distance 

h Object Height 

n Object Space Refractive Index 

F’ Rear Focal Plane 

P’ Rear Principal Plane 

z’ Image Distance 

f'R Rear Focal Distance 

h' Image Height 

n' Image Space Refractive Index 

m Magnification 

fE  

Table 1. Symbol Meaning 

 

Newtonian Imaging Equations 

The imaging equations were first derived by Sir Isaac Newton in 1666 using similar triangles.  In relation 

to the conjugate object and image planes, the Newtonian equations are referenced to the focal planes. 

 

Figure 4. Newtonian Imaging Equations 

  

Figure 5. Newtonian Imaging Geometry 

 

 



Gaussian Imaging Equations 

Gauss later derived similar imaging equations where the conjugate object and image planes are 

referenced to the principal planes.  Both sets of imaging equations assume that the lenses are thin and 

therefore the principal and nodal planes lie at the center of the lens. 

 

Figure 6. Gaussian Imaging Equations 

 

 

Figure 7. Gaussian Imaging Geometry 

4. OPTICS LAWS 

Law of Reflection 

The simplest form of ray propagating can be understood by the law of reflection.  The law of reflection 

states that for a ray incident upon a flat surface at an angle of α with respect to the surface normal 

reflect away from the flat surface at an angle of –α with respect to the surface normal.  Figure 8 

provides a visualization of the reflection which takes place at a flat surface. 

 

Figure 8. Law of Reflection 



Law of Refraction: Snell’s Law 

In any optical system, light travels through different types of media.  As light travels from one media to 

another the direction of propagation will alter depending upon the incident angle and the properties of 

both media.  The simplest model which describes the change in direction is known as Snell’s Law.  Snell’s 

Law states that a ray in media 1 which is incident upon a surface at an angle of α with respect to surface 

normal will alter its direction into media 2 at angle β with respect to the surface normal.  This altering of 

direction is known as refraction.  The equation which mathematically describes Snell’s Law is shown in 

equation 1. 

                                                                                𝑛1 sin 𝛼 =  𝑛2 sin 𝛽                                                                      (1) 

Where n1 and n2 are the indices of refraction for the incident and transmitted surface.  One can image 

that any time a ray of light interacts with different media that Snell’s Law can be applied to determine 

the change in the direction of propagation.  Figure 9 provides a visualization of the refraction which 

takes place at an interface between two different media. 

 

 

Figure 9. Law of Refraction 

When the transmitted medium has a higher refractive index than the incident medium the ray will bend 

towards the surface normal.  When the transmitted medium has a lower refractive index than the 

incident medium the ray will bend away from the surface normal.  The principles of reflection and 

refraction can be applied to optical systems to understand how object and image motion are affected. 

 

5. OBJECT AND IMAGE MOTION 

Object and image motion is described in relation to a three dimensional Cartesian coordinate system.  

This coordinate system has six effective degrees of freedom: x, y & z motion and θX, θY, & θZ rotation, as 

described in figure 10.  There exist reflective and refractive optical elements which will alter the ray 

propagation through an optical system and thus effect the object and image motion.  Common reflective 

elements include mirrors and prisms and common refractive elements include plane parallel plates (PPP) 

and lenses. 



 

Figure 10. The Six Degrees of Freedom 

Reflective Elements 

Prisms  

Prisms are useful tools which make it possible to compact an optical system into a smaller form factor.  

The process of compacting an optical system is known as folding.  There exist five main catagories of 

prisms which can be used to fold an optical system into different geometries.  They are the deviation, 

dispersion, displacement, rotation and expansion prisms.   

In addition to the 3D coordinate system, image motion due to a prism can also be described by the 

image handedness and parity.  Image handedness refers to the number of reflections.  There are two 

types of image handedness- right and left.  Right handedness refers to an image which has been 

reflected an even number of times.  Conversly, left handedness refers to an image which has been 

reflected an odd number of times.  Figure 11 demonstrates right and left handedness. 

 

Figure 11.  Right and Left Handedness (respectively) 

Image parity refers to an even or odd number of refelctions.  Even parity referes to an image which has 

been refelcted an even number of times and odd parity referes to an image which has been refelcted an 

odd number of times.  Each handedness is capable of producing four different image orientations 

depending upon the number of reflections, as shown in figure 12. 

  

Figure 12. Image Orientations 



90° Deviation & Displacement Prisms 

Common 90° deviaton and displacement prisms include the right angle prism, the Amici prism, and the 

penta prism.  The right angle prism is the simplest form of a prism.  It consists of a single reflecting 

surface oriented at 45° to the incident beam.  The right angle prism has right handedness and odd 

parity; it will keep an erect image.  The Amici prism is identical to the right angle prism with the 

exception that it has a roof.  The Amici prism has right handedness and even parity;  it will revert the 

image.  The Penta prism contains two reflecting surfaces oriented at 22.5°.  Each reflection will cause a 

45° change in the beam pointing resulting in a total of 90° of image deviation.  The Penta prism has right 

handedness and even parity; it will invert an image.  

    

Figure 13. Right Angle, Amici, & Penta Prisms (respectively) 

 

180° Deviation & Displacement Prisms 

The most common 180° deviation and displacement prism is the Porro prism.  It consists of two 

reflective surfaces both oriented at 45° to the incident beam.  Each reflecting surface causes a 90° 

deviation for a total of 180° of deviation.  The Porro prism has right handedness and even parity; it will 

invert an image. 

 

Figure 14. Porro Prism 

 

 

 



45° Deviation & Displacement Prisms 

Common 45° deviation and displacement prisms include the half penta and Schmidt prisms.  The half 

penta prism consists of two reflecting surfaces oriented at 11.25° to the incident beam causing a total 

deviation of 45°.  The half-penta prism has right handedness and even parity; it will keep the image 

erect.  The Schmidt prism consists of four reflecting surfaces which deviate the beam 45°.  The Schmidt 

prism has right handedness and even parity; it will rotate the image by 180°. 

 

Figure 15. Half Penta and Schmidt Prisms (respectively) 

Image Rotation and Erection Prisms 

Common image rotation and erection prisms include the Dove, Schmdt-Pechan, and Abbe-Koenig 

prisms.  The Dove prism consists of one reflecting surface.  The Dove prism has left handedness and odd 

parity; it will invert an image.  The Schmidt-Pechan prism consists of two elements separated by an air 

gap, six reflecting surfaces and a roof.  The Schmidt-Pechan prism has righthandedness and even parity; 

it will rotate an image by 180°.  The Abbe-Koenig prism consists of four reflecting surfaces including a 

roof.  The abbe-Koenig prism has righthandedness and even parity; it will rotate an image by 180°.   

 

Figure 16. Dove, Schmidt-Pechan,  Abbe-Koenig Prisms (respectively) 

Prism Type Reflections Image Orientation Application 

Right Angle  Deviation & Displacement 1 Erect Endoscopy 

Amici Deviation 2 Revert Eye Pieces 

Penta Deviation 2 Invert Projection 

Porro Deviation & Displacement 2 Invert Binoculars 

Schmidt Deviation 4 Erect Stereo Microscope 

Half-Penta Deviation 2 Erect Pechan Erector Assembly 

Dove Rotation 1 Invert Astronomy 

Pechan Rotation 6 180° rotation Binoculars 

Abbe-Koenig Rotation 4 180° rotation Binoculars 

Equilateral Dispersion 0 Erect Spectroscopy 

Anamorphic Pair Expansion 0 Erect Laser Diode Beam Expander 

Table 2. Prism Summary 



For the special case of a thin prism, the beam will deviate according to index of the prism and the wedge 

angle of the prism, as shown in figure 17. 

 

Figure 17. Thin Prism 

Mirrors 

Prisms are effectively mirrors which have been compacted into smaller form factors.  It is important to 

understand how the movement of a mirror effects image motion.  The general rule of thumb for image 

rotation is that any rotation of a mirror will cause a image rotation of twice the mirror rotation.   

 

Figure 18. Mirror Rotation 

The general rule of thumb for image motion is that any translation of the mirror, which is not orthogonal 

to the direction of propagation, will increase the OPL by twice the mirror translation.   

 

Figure 19. Image Translation 

 

 

 



Refractive Elements 

Vertical Plane Parallel Plate 

Plane parallel plates (PPP) can be used for a number of different applications.  In this example, a PPP will 

be used to demonstrate the concept of the optical path difference (OPD).  In this example, the OPD is a 

function of the index of the PPP glass and the thickness of the glass (assuming the incident medium is 

air).  In figure 19, the dashed lines represent the undeviated beam and the solid lines represent the 

deviated beam described by Snell’s Law.  The equation in the figure describes the displacement of the 

focused beam along the optical axis, Δz. 

 

Figure 20. Plane Parallel Plate 

Tilted Plane Parallel Plate in a Collimated Beam 

A titled PPP in a collimated beam will cause a vertical deviation of the beam.  In this example, the 

vertical deviation of the beam is a function of the index of the PPP glass, the thickness of the PPP and 

the angle of the tilted PPP in radians.  In figure 20 the dashed line represents the path of the beam for 

the case when the PPP is vertical and the solid line represents the path of the beam when the PPP is 

tilted by an angle θ. The equation in the figure describes the displacement of the beam in the vertical 

axis, Δy. 

 

Figure 21. Tilted PPP 

Tilted Plane Parallel Plate in a Converging Beam 

A tilted PPP in a converging beam will cause an axial and vertical displacement which will also induce 

several types of fourth order aberrations within the optical system.  The axial and vertical displacement 

of the beam were described in the previous two sections.  The aberrations induced by the tilted PPP in 

the converging beam are a function of the index of the PPP glass, the thickness of the PPP, the angle of 

the tilted PPP in radians, the f/# of the system, and the Abbe-Number of the glass.  The equations 

describing these aberrations are in table 3. 

Δz 



 

Figure 22. Tilted PPP in Converging Beam 

Aberration Equation 

Spherical 
−

𝑡(𝑛2 − 1)

𝑓/#4 128𝑛3
 

Coma 𝑡𝜃(𝑛2 − 1)

𝑓/#3 16𝑛3
 

Astigmatism 𝑡𝜃2(𝑛2 − 1)

𝑓/#2 8𝑛3
 

Transverse Color 𝑡𝜃(𝑛 − 1)

𝑛2 𝜈
 

Longitudinal Color 
−

𝑡(𝑛 − 1)

𝑛2 𝜈
 

Table 3. Fourth Order Aberrations 

 

Lens Movement 

When designing optical systems it is important to understand how the motion of a lens will affect the 

motion of the image.  In a 2D system, lens motion can be described in three different ways.  The lens can 

either tilt about the optical axis, move perpendicular to the optical axis (decenter) or move along the 

optical axis (axially).  For the first case, when the lens is thin there is no change in image motion as the 

lens is tilted about the optical axis. 

Lens Decenter 

When the lens is decentered by some amount ΔXL the image moves by some amount ΔXI.  As the lens is 

decentered the mechanical and optical axes will no longer be collinear.  The mechanical axis will remain 

unchanged but the optical axis will alter by an angle α.  The change in the optical axis angle is described 

by equation 2.   

                                                                                        𝛼 =  
∆𝑋𝐿

𝑜
                                                                                (2) 

Where o is the object distance.  The effect of lens decenter on image motion can be seen in figure 23. 



 

Figure 23. Lens Decenter 

The image motion can then be calculated using similar triangles.  The image motion is described by 

equation 3, where i is the image distance. 

                                                                    ∆𝑋𝐼 =  ∆𝑋𝐿

(𝑜 + 𝑖)

𝑜
=  ∆𝑋𝐿(1 − 𝑚)                                                     (3) 

Lens Axial Translation 

Axial translation of a lens will result in an image motion along the optical axis.  In this example, as the 

lens is translated axially by a distance ΔzL the resulting image moves -ΔzF.  The object position thus 

changes from o to o’ and the image position changes from i to i'.  Given these variables, the image 

motion can now be derived.   

 

Figure 24. Lens Axial Movement 

The change is object and image distance is described by equations 4 and 5, respectively. 

                                                                      ∆𝑜 =  𝑜 − 𝑜′ =  −∆𝑧𝐿                                                                           (4) 

                                                                     ∆𝑖 =  𝑖 − 𝑖′ =  ∆𝑧𝐿 −  Δ𝑧𝐹                                                                     (5) 

Using the imaging equation (6), the equation can be rearranged to solve for the magnification. 

                                                                                
1

i
+ 

1

𝑜
=  

1

𝑓
                                                                                     (6) 

                                                                          
∆𝑖

Δ𝑜
=  −

𝑖2

𝑜2
=  −𝑚2                                                                           (7) 

The resulting image motion can be solved by plugging equations 4 and 5 into 7. 

                                                                    Δ𝑧𝐹 = ∆𝑧𝐿  (1 − 𝑚2)                                                                               (8) 


