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Abstract 
 
 The purpose of this tutorial is to introduce the concept of image quality, how it 
might be quantified and determined for both coherent and incoherent imaging, and how 
these concepts relate to the more familiar (and importantly, measurable at the 
manufacturing stage) quantities of wavefront error and/or surface figure error. Because 
various rules of thumb exist for relating these specifiable and measurable quantities both 
to one another and to the increase in cost and difficulty in the manufacturing process, the 
bulk of this tutorial serves as a primer to imaging, with appropriately cited references for 
the reader who wishes to learn more.  
 
Introduction – what is image quality, and how can it be quantified? 
 
 Before discussing how the quality and characteristics of optical surfaces may 
affect image quality, it is necessary to develop an understanding of what is meant by the 
term “image quality.” A complete definition of image quality requires answering the 
following questions: What information is desired from the image? How will that 
information be extracted? What objects will be imaged? What measure of performance 
will be used? [1] With these questions in mind, the authors present the concept of task-
based imaging, in which the information you desire to extract is the task, and the means 
by which it is extracted is the observer. 
 For the purposes of this tutorial, we consider a basic imaging system, represented 
by the imaging equation: g = Hf . Here, f  describes a vector in object space, H  is a 
matrix representing the imaging system, and g  describes the measured data vector. For a 
simple photographic camera, f  represents discrete samples of an infinite series of points 
within object space, and g  represents the digital value for each pixel in the output image. 
 There are several ways to quantify the performance of a photographic imaging 
system, and thus several ways to consider performance degradation (for an overview, see 
[2]). Our definition of an imaging system lends itself naturally to the point spread 
function (PSF) interpretation, and to the consideration of image quality degradation from 
diffraction blur, rather than from geometrical aberration. This is a reasonable assumption 
to make, as optical surface imperfections will rarely be so large as to create any 
geometric aberration. 

To quantify degradation of performance, we therefore first define “perfect quality 
imaging” to be diffraction limited (the mathematics of which are not considered in this 
tutorial). In this case, a point object is imaged to a radially symmetric distribution with 
width (peak to zero) of 

 r = .61λ
NA '

,   (1) 

 



where λ  is the wavelength of light and NA’ is the numerical aperture of the imaging 
system in image space.  

We assume that the imaging system and detector are well matched, such that the 
smallest resolvable point object is imaged entirely onto a single detector element (pixel); 
any “blurring” in the image is caused by an increase in the width of the system point 
response, and results in a spread of energy across multiple pixels. This is a good rule of 
thumb in imaging system design, and is easily approximated in the visible light regime by 
D ≈ f / #W , where D is the width of the system point response in [µm] and f/#W is the 
working f/# of the imaging system.  
 
 
Diffraction limited imaging and the Rayleigh Criterion 
 
 The conditions for diffraction limited imaging are defined by a perfect thin lens, 
which images a plane wave into a perfect spherical wave that converges to the optical 
axis after propagating a given distance (what we call the focal length of the lens) along 
the +z axis. A perfect lens therefore has a transfer function: 
 
 tlens r( ) = e

−ikRf tap r( )   (2) 
 
where k is wavenumber, Rf = r2 + f 2 , f  now represents the focal length of the ideal 
lens, and tap r( )  represents the amplitude transmission of the aperture (typically described 
as a cylinder function) [1].   

However, any real lens does not transmit this perfect spherical wave, but instead 
propagates a wave that deviates in phase from the ideal spherical wave (i.e. the Gaussian 
reference sphere) by some amount in the plane of the exit pupil. We call this phase 
deviation the wavefront error, and it can be expressed as kW r( ) , where k is wavenumber 
and W r( )  is a spatial distance measured along a line parallel to the z-axis (i.e. an optical 
path difference, OPD) between the ideal and actual wavefronts. The transfer function for 
the aberrated wave is therefore 
 
 
 tlens r( ) = e

−ik Rf −W r( )( )tap r( ),   (3) 
 
and it is this OPD function, W r( )  (i.e. the generalized pupil function [3]), which is 
expanded assuming rotational symmetry into the well known Seidel aberrations. For 
convenience, we consider a thin lens with the aperture stop at the lens, and define the 
pupil transmission by 
 
 t pupil r( ) = tap r( )e

ikW r( ).   (4) 
 



In this way, making the Fresnel approximation and disregarding the constant phase factor 
allows us to relate the pupil function to the aberration and aperture of the lens, while 
ignoring the inherent power of the lens. To account for the dependence of wavefront error 
on the incident wave itself, W r( )  is modified to W r;r0( ) , where r0 is the vector 
describing the object point location.  

The Rayleigh Criterion (a generally useful relative measure of optical 

performance) states that if this OPD is less than or equal to a quarter wave W r( ) ≤ λ
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then the performance of the imaging system will be nearly indistinguishable from perfect 
[4]. Additionally, the Rayleigh Criterion leads to another useful rule of thumb for depth 
of focus. If we define the maximum blurred spot size to be just within this limit, and 
considering that our imaging system is otherwise diffraction limited, the depth of focus is 
approximated as δ ≈ f / #( )2 in [µm] [4]. 
 
Coherent vs. Incoherent Imaging 
 
 When an object amplitude distribution is decomposed into a series of delta 
functions, the field in the image plane can be considered as the field in the object plane 
convolved with the system point-spread function (PSF). In the case of coherent imaging, 
this PSF is proportional to the Fourier transform of the scaled pupil function 
 

 pcoh r( )∝Tpupil m
r
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Here, m is the magnification of the imaging system, r is the coordinate vector, and z’ is 
the distance along the +z-axis that the diffracting wave propagates (typically, this is 
evaluated for the case of z’ = f). For a full description of this calculation, see Section 9.2 
of [1]. This is related to the incoherent transfer function by 
 
 pincoh r( )∝ pcoh r( )

2 .   (6) 
 
For a full description of this relationship, see Section 9.7.6 of [1]. If coherence is of 
particular interest to the object being imaged, then it should be noted here that this 
proportionality involves the coherence area of the source. However, partial coherence and 
the concept of coherence area are outside the scope of this tutorial, and any interested 
readers are encourage to review Ch. 9 of [1]. 

The intensity in the image space, scaled for magnification, is now related to the 
intensity in the object space by a convolution (Eq. 9.287 in [1]): 
 
	   Iim

(s ) r( ) = Iobj r( )∗ pincoh r( ). 	  	   (7)	  
 
 In the presence of aberrations, the aberrated image is determined by calculating an 
aberrated PSF, using the pupil function in Eqn. (4). This convolution may also be 



expressed as a multiplication in Fourier space, which will be discussed in the following 
section. 
 
Relation to OTF/MTF 
 
 As linear, shift-invariant systems, ideal imaging cameras are described by transfer 
functions in addition to PSFs. The optical transfer function, another useful performance 
metric, is the normalized transfer function of the system. It describes the translation and 
contrast reduction of an imaging system observing a periodic sine pattern at various 
frequencies (0, increasing to some maximum), and is the Fourier transform of the 
incoherent PSF. The result of this relationship is that the OTF is described by the 
normalized auto-correlation of the amplitude transfer function, which is itself a scaled 
version of the pupil function: 
 

	  
 

H ξ ,η( ) =
Pincoh ρ( )
Pincoh 0( )

=
F2 pincoh r( ){ }
F2 pincoh 0( ){ }

∝
t pupil ! t pupil%& '( λz 'ρ( )
t pupil ! t pupil%& '( 0( )

	  	   (8)	  

 
Where 

 
H ξ ,η( )  is the OTF, Pincoh is the 2D Fourier Transform (represented by  F2 ), and 

 !  represents the auto-correlation integral. A full description of this relationship and the 
associated calculations may be found on Section 6.3 of [3] and in wk12-b-12 of [7]. The 
MTF, which represents the ratio of output modulation to input modulation and is often 
the specified transfer function of the system, is the modulus of the OTF. 
 
Aberrated Transfer Functions  
 

As discussed above, a lens with aberration contains an additional phase term. In 
the case of coherent imaging, the transfer function is the Fourier transform of the PSF, 
and the coherent PSF is the Fourier transform of the pupil. Therefore, the coherent 
transfer function is a scaled version of the pupil, and this same scaling may be applied to 
the erroneous phase term that aberrations cause in the pupil plane (see Eqn. (4)): 
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 For an incoherent system, this additional phase term must be included. This can 
be done in the auto-correlation by as follows 
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Though complex, this is a direct relationship between wavefront error and OTF for an 
incoherent imaging system. 
 
Optical Surfaces 
 
 With an understanding of the transmission of an aberrated lens, and how 
wavefront error reduces image quality by affecting the two most common performance 
metrics for an imaging system, it is necessary to examine how optical surfaces may affect 
W r( ) . In the general case, wavefront error may be directly related to surface error by 
 
 W r( ) = ΔS r( ) n−1( )cos θi( )   (11) 
 
where ΔS r( )  is the surface deviation from ideal, n is the index of refraction, and θi  is the 
angle of incidence from the aberrated surface normal. In determining lens requirements, a 
useful extension and approximation to this relationship is that the RMS wavefront error 
(RMSWFE) is one quarter the peak-to-valley (PV) surface error [5]. It should be noted 
that this ratio is different for various types of surface error (i.e. corresponding to different 
Seidel aberrations), and if high frequency surface error components (e.g. from diamond 
turning) exist. A more complete analysis of these variations can be found on Pg. 30 of 
[6]. Scatter from optical surfaces may also increase stray light, reducing the signal to 
noise ratio (SNR) of the imaging task at hand. However, a discussion of this is outside the 
scope of this tutorial.  
 
Conclusion 
 
 The material discussed above may be used both in understanding the 
consequences of a particular surface error on either the point spread function or transfer 
function of a system, or to determine an appropriate wavefront error tolerance (which 
may then be related to surface error tolerance) given some maximum allowable spot size 
(usually determined by detector element size), or minimum required OTF/MTF value 
(usually determined by application, and convention).  
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