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I.  Introduction 
 
In your typical optics lab, most of us, as scientists or engineers, are familiar with 
geometrical optics, which assumes that the wavelength of the light approaches 
zero.  When constructing a formalism for light propagation and optical analysis, 
this assumption allows us to ignore any effects resulting from diffraction and 
greatly simplifies most calculations.  This approximation – that the wavelength is 
very small compared to the system dimensions – is a very good one for optical 
wavelengths.  In general, though it is dependent on the system dimensions, this 
assumption holds well for all wavelengths shorter than the mid-IR (~25 
microns).  However, when one goes past this point, the assumption begins to 
break down.  Optical design in submillimeter astronomy has as much to do with 
radio optics as it does with traditional optics.  At these wavelengths (~1 mm), the 
system dimensions no longer dominate and diffraction begins to play a large role.  
In this paper I will discuss and illustrate through real examples, how this change 
of regime affects optical designs and what considerations that can bring to our 
optomechanical designs. 
 
 
II. Theory 
 
The primary difference in optical design, when transitioning between geometrical 
and Gaussian beam optics, is the impact of wavelength on diffraction effects.  At 
optical wavelengths, the entrance pupil for standard telescopes (ranging from a 
few inches to several meters) can be anywhere from one hundred thousand to 
tens of millions of wavelengths across.  In this regime, diffraction is clearly 
negligible and geometric optics work extremely well.  However, if you look at this 
same range of telescopes at a wavelength of one millimeter, you find that the 
entrance pupil can be anywhere from tens of thousands to as few as one hundred 
wavelengths across.  Diffraction can no longer be ignored for these frequencies 
and system scales.  At each point throughout the system, the beam bundle can 
and must be treated as a Gaussian beam, down to and including the focus.  This 
concept is not truly so foreign to an engineer in the optical regime, as the 
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Gaussian focus of a radio telescope has the very same shape as an Airy disk, 
including a first minimum at ~1.22 λf/D.  The only difference is that for optical 
wavelengths, the central spot is perhaps 50 nm across.  At submillimeter 
wavelengths, this central spot grows to 0.1 mm and will clearly have diffraction 
effects when focused on a detector that is only 0.5 mm across.  Only very well 
designed optical wavelength systems can be treated as diffraction limited – and 
then only in the sense that the optical surfaces are designed and manufactured to 
this degree of accuracy; but in radio and submillimeter astronomy, the system is 
always diffraction limited. 
 
Detector technology can also be very different in the submillimeter regime.  In 
particular, the research I do is in the coherent branch of submillimeter 
astronomy.  Incoherent detectors, such as bolometers, are used as simple 
temperature detectors, much like your standard CCD optical system.  Coherent 
detectors measure both the amplitude and the phase of the incoming wave.  This 
allows spectroscopy to be done on the astronomical signals, something one 
cannot do in a straightforward manner with incoherent detectors.  Coherent 
detection, however, is done in waveguide.  This requires coupling of free space 
light waves to waveguide.  The standard method of doing this uses feedhorns 
which capture the light as a single-moded Gaussian and send it down the 
waveguide to the detector.  The apertures for these feedhorns are typically on the 
order of a few wavelengths across and are designed to transmit (and therefore 
receive) Gaussian beams.  Therefore, any optical analysis that will be performed 
on them must fundamentally be done in the Gaussian regime.  In order to create 
a complete optical system, one must couple the incoming light which is focused 
by the telescope to the power pattern of the feedhorn. 
 
Gaussian beam formalism is a direct solution to the Helmholtz wave equation 
(shown in this case for the electric field, but equally applicable to the magnetic 
field). 
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A Gaussian field does not have infinite extent like a plane wave in geometrical 
optics, it varies as a Gaussian in the directions perpendicular to propagation.  
This formalism assumes that the electric and magnetic fields are perpendicular to 
each other and to the direction of propagation.  If we let the direction of 
propagation be along the positive z direction, we assume the following form for 
the electric field, ignoring time dependence. 
 
 jkzezyxuzyxE −= ),,(),,(  (2) 
 
Plugging equation (2) into equation (1), we obtain the reduced wave equation. 
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At this point we must make an approximation to simplify the solutions to the 
wave equation.  If we assume that the beams are basically paraxial (which, in 
practice, includes beams that are mostly confined to within 30 degrees of the z 
axis), we can make two approximations.  First, that the variation of the field in 
the propagation direction is small over distances on the order of a wavelength.  
Second, that the variation of the field in the direction of propagation will also be 
small compared to the variation in the directions perpendicular to it.  These 
approximations allow us to disregard the third term in equation (3) as it is 
negligible compared to both the first two terms and the last term.  Adopting this, 
we obtain the paraxial wave equation. 
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The solutions to the paraxial wave equation are the Gaussian beam modes.  These 
solutions, as well as much of Gaussian beam formalism, are well-known to those 
familiar with laser design and engineering.  Considered in cylindrical 
coordinates, and assuming axial symmetry, the paraxial equation becomes 
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We assume a basic form for the wave equation of 
 

 )(2/2

)(),( zqjkrezAzxu −⋅=  (5) 
 
where q(z) is the complex Gaussian beam parameter.  This solution can be more 
fully developed and q(z) can be solved in terms of R, the radius of curvature of the 
wavefront, and w, the beam radius, which is the radius at which the field is 
equation to 1/e of its on-axis value.  The beam radius is at its smallest (i.e. the 
focus) when z=0 and is called the beam waist radius, denoted w0.  A detailed 
examination of this derivation can be found in Goldsmith2.  For the purposes of 
this paper, however, I will skip it and reveal the important elements, which are 
the solutions for R and w as a function of distance along the axis of propagation.  
Schematic diagrams of Gaussian beam propagation can be seen in Figure 1, taken 
from Goldsmith2. 
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Figure 1:  Gaussian Beam Propagation, taken from Goldsmith2 

 
One can see that if we return to the geometric limit, as λ goes to 0, the radius of 
curvature of the wavefront goes to infinity, i.e. a plane wave.  However, these 
equations must be used when designing any diffraction-limited optical system.  
This becomes particularly important when considering beam sizes.  As a general 
rule, programs such as Zemax or Code V still perform fairly well in the 
submillimeter regime for basic optical design – e.g. optimizing lens and mirror 
surfaces.  Though I will not discuss it here, it is most often the case that ray 
tracing programs can be used for the optical design of a submillimeter system.  
But, more rigorous programs such as Breault Research Organization’s ASAP must 
be used to analyze the performance of these systems by taking into account 
diffraction effects. 
 
However, the standard ray tracing programs do not manage Gaussian beam sizes 
well.  If one designs an optical system entirely in Zemax and does not consider 
Gaussian beam sizes, vignetting will become a significant problem because the 
energy distribution spreads out much further than geometrical optics would 
predict.  This matters not only because energy is lost around the edges of the 
optics, but also because, since we are in the diffraction regime, if we have a beam 
that is larger than a given aperture, we will introduce even more diffraction 
effects.  These effects can lead to ripples and distortions in the Gaussian beam 
profile.  These distortions reduce the match to the feedhorns, which couple most 
efficiently to a pure Gaussian. 
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Case Study #1 – PoleSTAR LO Beam Splitter 
 
A prime example of this effect is illustrated by the Local Oscillator (LO) beam 
splitter designed for PoleSTAR.  PoleSTAR is a 4-pixel 810 GHz array receiver 
designed by the Steward Observatory 
Radio Astronomy Lab (SORAL), for 
the Antarctic Submillimeter Telescope 
and Remote Observatory (AST/RO) 
formerly in operation at the South 
Pole.  An AutoCAD image of 
PoleSTAR can be seen in Figure 2.  
The four PoleSTAR superheterodyne 
(coherent) pixels are arranged in a 
2x2 grid (shown in Figure 2 as a 
single beam bundle), with 30 mm 
between adjacent pixels.  Another 
aspect of coherent submillimeter 
detection is the need for a local 
oscillator source.  Current computer 
technology can not process an 810 GHz sky signal in a spectrometer.  Instead, the 
sky signal is beat against another reference signal (the LO) in the detector (or 
mixer).  Basic interference theory tells us that two frequencies will be produced 
by this combination - a sum and a difference of the two initial waves.  The LO is 
designed to have a frequency very close to the sky frequency, such that the 

difference frequency, or Intermediate 
Frequency (IF), will be around 5 GHz, 
which can be processed by a 
spectrometer.  Though these signals can 
sometimes be injected in waveguide 
within the mixer, they are most often 
injected quasi-optically, usually with a 
beam splitter, before the sky signal 
reaches the detector.  This was the case 
in PoleSTAR; but because it was an 
array receiver, the LO signal had to be 
distributed to the four pixels.  This 
seems like a simple problem, as the 
signal can just be divided up by 2 
mirrors and 2 beam splitters, as shown 
in Figure 3. 
 

             Figure 3:  PoleSTAR LO Splitter 
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However, in practice, because of Gaussian beam effects, this problem becomes 
much more complicated.  In radio optics, we often think of receivers as 
transmitters in order to couple incoming light to the detectors.  As standard 
practice, we place plano-convex lenses one focal length in front of feedhorns, 
which emit very broad beams, to “collimate” the beam.  However, because of 
diffraction effects, these beams are not truly collimated and spread out like 
Gaussian beams.  If one ignored this fact, the beams, which would be the size of 
the lenses (27 mm in this case) would fit well through the LO splitter.  However, 
because of the Gaussian expansion, these beams only fit to about the 95% level.  
Though this may seem insignificant, this can cause significant distortion in the 
Gaussian beam profile.  Furthermore, there is now 5% of the LO power reflecting 
off errant surfaces which can cause interference or standing waves in the LO 
path.  LO coupling is known to be very sensitive and small variations in the power 
that couples with the sky signal can complete destabilize mixing.  Clearly in this 
case diffraction effects must be considered and accounted for.  Unfortunately, 
due to the fixed spacing of the pixels, these effects could only be managed rather 
than eliminated.  Nonetheless, an awareness of Gaussian beam effects is crucial. 
 
 
III. Optomechanical Considerations 
 
A.  Tolerances 
 
In general, engineers in the submillimeter regime have a much easier task when 
it comes to tolerancing their optical systems.  Because the wavelengths are so 
much larger, wavelength-dependant factors such as surface alignment are usually 
much more lenient.  A typical optical system might have linear and angular 
positioning tolerances that are measured in microns or milliradians.  On the 
other hand, a system with a wavelength 1000 times greater will be much more 
forgiving. 
 
Case Study #2 – SuperCam Tolerancing 
 
SuperCam is another array receiver currently being developed in SORAL.  
SuperCam is a 64-pixel 345 GHz heterodyne array receiver designed for the 
Heinrich Hertz Telescope (HHT) on Mt. Graham in southern Arizona.  An 
AutoCAD image of SuperCam in the apex room behind the 10 m HHT dish can be 
seen in Figure 4. 
 



Dathon Golish 
OPTI 521 

Gaussian Beam Optics 

7 

 
Figure 4:  SuperCam in the Apex Room of the HHT 

 
SuperCam’s optical system basically consists off an off-axis hyperbola and an off-
axis ellipse which change the f/13.8 telescope beam to an f/5 to match the 
feedhorns of the detector, which are inside the large blue cryostat.  Nominally, 
two off-axis mirrors would produce a considerable challenge in alignment and 
optomechanical stability.  However, when the tolerances are calculated in Zemax, 
which is still well suited for this task, notable differences are revealed.  A 
collection of Zemax’s results can be seen in Tables 1 and 2. 
 
Table 1: SuperCam Linear Shift Mirror Tolerances 

Optic Shift (along axis) (mm) 
 -X +X -Y +Y 

Flat Tertiary † † † † 
Hyperbola -15.8 15.8 -21.5 17.4 
Flat Fold † † † † 

Ellipse -16 16 -18.3 14.4 
†Shift has no effect. 
 
Table 2: SuperCam Angular Shift Mirror Tolerances 

Optic Rotation (around axis) (deg) 
 -X +X -Y +Y -Z +Z 

Flat Tertiary -.72 3.2 -1.5 1.5 * * 
Hyperbola -1.7 1.3 -1.7 1.7 -21.5 21.5 
Flat Fold -2.6 3.0 -3.1 3.1 * * 

Ellipse -1.4 1.3 -1.3 1.3 -21.5 21.5 
*Shift has no effect. 
 
Clearly, SuperCam’s sensitivity to positional errors is much more lenient than a 
typical optical system.  With positional errors over half an inch and angular 
errors between one and three degrees, the system is much easier to align and 
keep stable during observations.  In this case, operating at such large wavelengths 
is actually a benefit, as many of the normal optomechanical issues become 
irrelevant. 
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Lenient tolerances in the submillimeter regime become very convenient when 
considering the fact that one cannot align the optics visually.  Even in the infrared 
there are IR-sensitive cards you can use to track a beam path, but in the 
submillimeter there is no way to visually track the beam path.  Moreover, the 
detectors only work at cryogenic temperatures (as discussed in section D) so a 
quick measurement cannot be easily taken to determine alignment either.  
Typically, one has to design a laser alignment module that is mounted to simulate 
the telescope beam and align the optics.  However, submillimeter dielectrics such 
as high density polyethylene do not transmit at optical wavelengths, so this 
method still only works for reflective systems.  Therefore, submillimeter optical 
systems have to start very well aligned without user intervention or it will be too 
difficult to find the proper alignment. 
 
 
B.  Optical Manufacturing 
 
At long wavelengths, the manufacturing of optical elements also becomes much 
easier.  As a general rule, we prefer to make optics with surface roughnesses 
around λ/10 rms, sometimes lower depending on the level of accuracy required.  
However, because our wavelength is 1000 times larger, our rms surface 
roughness is correspondingly larger.  For example, at 300 GHz (1 mm), this 
implies only a 0.1 mm rms surface roughness.  This makes the creation of flat 
mirrors much simpler for the manufacturer.  An average precision lapping 
machine found in your typical optics shop will often be sufficient.  Additionally, 
the tolerances on radii of curvature can be relatively lenient for the same reasons.  
We can normally make our optical elements on standard CNC machining 
equipment.   
 
Case Study #3 – SuperCam Optical Manufacturing 
 
Returning again to the SuperCam array receiver, a tolerancing was also done on 
the optical components to determine their manufacturing requirements, shown 
in Table 3.  Recalling Figure 4, the system consists of two flats and two curved 
mirrors. 
 
Table 3:  Surface Quality Tolerances 

Optic Surface Quality Quantity Value 
Flat Tertiary Curvature Error in Fringes -.43 .57 
Flat Tertiary Irregularity in Fringes -.28 .31 
Hyperbola Radius of Curvature in mm (1692 mm Nominal) -54 84.5 
Hyperbola Irregularity in Fringes -1.67 1.4 
Flat Fold Curvature Error in Fringes -3.2 2.9 
Flat Fold Irregularity in Fringes -2.1 3 
Ellipse Radius of Curvature in mm (772 mm Nominal) -16.7 25.8 
Ellipse Irregularity in Fringes -4.6 5.6 
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These surface quality quantities, except radius of curvature, are all measured in 
fringes, which at this wavelength (870 microns) correspond to only 0.435 mm.  
Producing a maximum curvature error of 0.2 mm for a flat mirror is not a 
difficult task.  Though its large size – around 0.7 m – will present a problem, this 
is not really a function of the frequency regime.  Furthermore, the radii of 
curvature must be held to somewhere around 3% of their radius, which is 
considered base precision for typical machining.  These mirrors will be 
manufactured on a computer-controlled milling machine in the Steward 
Observatory shop and do not require a specialty machine shop. 
 
 
C.  Vibration & Stability 
 
One area of optomechanics where submillimeter astronomy is not as lenient is in 
system stability.  As described in Case Study #1, the mixing of sky signals and 
local oscillator signals can be very sensitive to variation.  If an LO signal is 
unstable, whether because of the oscillator itself or vibrations along the signal 
path, mixing can easily break down.  This problem becomes especially significant 
as we approach the terahertz end of our spectrum, as signal generation 
technology becomes less reliable. 
 
Case Study #4 – TREND 
 
TeraHertz REceiver with an NbN Device 
(TREND) was a 1.5 THz single-pixel 
receiver designed by the University of 
Massachusetts for operation on 
AST/RO at the South Pole.  The optics, 
however, were done in SORAL.  Because 
at the time no other LO devices were 
cheaply available at 1.5 THz, TREND 
used a far infrared laser to create its 
signal.  This laser was somewhat 
unstable and made observations 
difficult.  In addition, due to its size, the 
laser, along with most of its optics, was 
mounted in the ceiling above the 
receiver pallets.  This caused significant 
vibration problems in the optical path 
and often completely destabilized 
mixing in the receiver.  Had more care been paid to the vibrational characteristics 
of the LO optical system, these problems might have been somewhat mitigated.  
This problem occurs repeatedly in submillimeter receivers, often because the LO 
must be injected from a direction perpendicular to the optical table and is 
therefore often on a long lever arm subject to significant vibrations. 
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D. Cryogenic Temperatures 
 
Another aspect of submillimeter detector technology is the necessity of cryogenic 
temperatures.  It is often the case that detector technology in the optical regime 
works better at colder temperatures, in part because of the reduction in dark 
current, but it is not a necessity for most CCDs to function.  However, the most 
common types of heterodyne detectors are SIS devices, or Superconductor-
Insulator-Superconductor devices.  In the SIS device, Cooper pairs (pairs of 
bound electrons) are allowed to travel between superconductors because they 
have the same energy levels.  However, if one biases this gap with an applied 
voltage, the energy levels separate and the Cooper pairs are blocked from 
crossing the insulator.  Thus, only when an incoming photon supplies the 
appropriate amount of energy are Cooper pairs permitted to travel across the 
junction to the empty energy levels of the other superconductor.  Hence, we can 
convert an electrical current to a photon count.  However, this device obviously 
will only work when the superconductors are kept superconducting, which for 
most materials implies at least liquid helium (LHe) temperatures (4K); if not 
even lower (as low as 0.3 K using liquid Helium-3).  A schematic of the device can 
be seen in Figure 5, supplied by Craig Kulesa3 from the SORAL website. 
 

 
Figure 6:  SIS Device Schematic 

 
As a result, all of our detectors are designed in cryostats keeping them at LHe 
temperatures.  This naturally means that all mounting elements for the detectors, 
as well as the corresponding electronics (which also appreciate the lower 
temperatures as they are less noisy) are kept at 4K or lower.  We most often use 
oxygen-free copper at the 4K stage because its excellent thermal conductivity 
transmits the heat away from the mixers to the LHe pot efficiently.  But designing 
mixer mounts that will experience almost a 300 Kelvin shift in temperature 
requires special attention, especially because of copper’s moderately high 
coefficient of thermal expansion (~16.9 x 10-6/K)5. 
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Case Study #5 – SuperCam Mixer Block 
 
Again examining the SuperCam 
receiver, Figure 6 shows an Inventor 
drawing of a 1x8 SuperCam mixer 
block.  SuperCam’s 8x8 array will be 
composed of eight 1x8 “cards.”  This 
was done to simplify assembly, as the 
mixers require around 10 wires each.  
The mixer design includes an IF board 
(shown as green) which transmits the 
downconverted sky signals along a 
microstrip line to SMA-type coaxial 
connectors, as well as the many bias 
signals required to control each mixer.  
This board has a Rogers Corporation 
TMM 3 substrate, which is quoted4 as having a CTE of 37 x 10-6/K.  Because of 
the length of the board (to accommodate 8 pixels, each 11 mm apart from its 
neighbor), the thermal cycle causes a differential contraction of around 0.6 mm.  
Where as we might normally glue a board like this down, a differential thermal 
contraction of over half a millimeter might place too much stress on the board 
and shatter it.  Therefore we had to design the board to have oversized mounting 
holes (and an oversized pocket) capable of accommodating this shift.  This is just 
one example of how working at cryogenic temperatures can cause thermal 
contractions that pose a significant optomechanical problem.  Clearly, thermal 
issues must be carefully managed in heterodyne submillimeter receiver systems. 
 
 
V.  Conclusion 
 
Though this is of course just a sampling, this report is meant to introduce a 
number of optomechanical considerations that are introduced when working in 
the submillimeter regime.  Working at these wavelengths can be very different 
than what most optical engineers are used to.  But as FIR technology pushes to 
longer wavelengths and more applications are found for terahertz technology, 
these issues will become more commonplace and more important to understand. 
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