Gaussian Beam Optics

Dathon Golish OPTI 521 Tutorial

December 5th, 2006

Why work with Gaussian beams?

Geometric vs. Diffraction-limited regimes

System Scale vs. Wavelength

Detector Technology

I. Theory

$$\left(\nabla^2 + k^2\right)\Psi = \frac{\delta^2 E}{\delta x^2} + \frac{\delta^2 E}{\delta y^2} + \frac{\delta^2 E}{\delta z^2} + k^2 E = 0$$

$$E(x, y, z) = u(x, y, z)e^{-jkz}$$

$$R = z + \frac{1}{z} \left(\frac{\pi w_0^2}{\lambda}\right)^2$$

II. Beam Sizes – PoleSTAR LO

Figure 2: PoleSTAR on AST/RO

PoleSTAR: 4-pixel 810
 GHz Array

LO 4-way Splitter

III. Tolerancing – SuperCam

- SuperCam: 64-pixel 345
 GHz Array
- Typical tolerances are on the order of microns & milliradians.
- With wavelengths ~1000 times larger, tolerances are much more lenient.

III. Tolerancing – SuperCam

Optic	Shift (along axis) (mm)						
	- X	+ X	- Y	+ Y			
Flat Tertiary	†	†	†	†			
Hyperbola	-15.8	15.8	-21.5	17.4			
Flat Fold	†	†	†	†			
Ellipse	-16	16	-18.3	14.4			

†Shift has no effect.

Optic	Rotation (around axis) (deg)						
	-X	+ X	- Y	+ Y	- Z	+ Z	
Flat Tertiary	72	3.2	-1.5	1.5	*	*	
Hyperbola	-1.7	1.3	-1.7	1.7	-21.5	21.5	
Flat Fold	-2.6	3.0	-3.1	3.1	*	*	
Ellipse	-1.4	1.3	-1.3	1.3	-21.5	21.5	

*Shift has no effect.

IV. Optical Manufacturing – SuperCam

Optic	Surface Quality Quantity	Value	
Flat Tertiary	Curvature Error in Fringes	43	.57
Flat Tertiary	Irregularity in Fringes	28	.31
Hyperbola	Radius of Curvature (1692 mm Nominal)	-54	84.5
Hyperbola	Irregularity in Fringes	-1.67	1.4
Flat Fold	Curvature Error in Fringes	-3.2	2.9
Flat Fold	Irregularity in Fringes	-2.1	3
Ellipse	Radius of Curvature (772 mm Nominal)	-16.7	25.8
Ellipse	Irregularity in Fringes	-4.6	5.6

• Wavelength = $870 \ \mu m$

Fringe = 0.435 mm, flatness easy to achieve

V. Vibration & Stability – TREND

- TeraHertz REceiver with a NbN Device (TREND)
- FIR Laser LO Source
- Long lever arm
- LO Instability

VI. Cryogenics – SuperCam

The optimal biasing level will allow a submillimeter photon of the desired frequency or energy to boost the superconducting electron to the other side of the insulative potential barrier by filling in an empty energy level in the other superconducting layer. This yields a large current flow for a photon "impact", the desired effect.

- Superconductor-Insulator-Superconductor Detectors
- Require LHe temperatures (4K) or lower
- Mixer plane is kept at 4K
- Differential contraction becomes a significant factor

VI. Conclusions

 Just a sampling of the various issues working in this regime can introduce.

 As the FIR technology and radio technology approach each other, these differences must be recognized and reconciled.

 Terahertz technology in particular is growing quickly and will require knowledge of both regimes.

