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Introduction: 
Culpepper wrote “Design of Quasi-Kinematic Couplings” to detail a design method for 
quasi-kinematic couplings (QKC’s).  Culpepper’s goal was to achieve a precision 
coupling that has good manufacturability, cost effectiveness, and sealability.  At the time, 
methods existed for high precision couplings that did not meet the other three goals and 
other methods existed for manufacturable, inexpensive, sealable couplings that do not 
meet precision requirements. 
 
Culpepper’s work for practical couplings that achieve high levels of precision was funded 
by the automotive industry, but the results are generally applicable to any field that 
requires precision coupling.  Culpepper has also written other papers, including one in 
20052 concerning alignment correction that is general in nature but funded by the 
automotive industry.  Barraja3 wrote a paper on tolerancing kinematic couplings that was 
directed toward reducing costs while maintaining performance.  Barraja’s work featured a 
statistical analysis.  Goodman4,5 has written a number of papers on optical cylinders in 
V’s.  Goodman’s work is concerned with practical considerations in optomechanical 
mounting, but it is primarily applicable to optics, as V-blocks are not generally useful 
elsewhere.  Hale6,7 wrote on the general techniques on designing kinematic couplings.  
Hale’s work is research oriented in nature where the performance greatly outweighs any 
affordability or manufacturability concerns. 
 
Numerous papers have been written on precision coupling, and a wealth of information is 
readily available to the avid researcher.  Culpepper’s work on QKC’s provides excellent 
insight into design considerations with a practical thrust.  The ability to utilize 
inexpensive and readily manufacturable couplings is critical for many optomechanical 
designs, which is why this paper was chosen for review. 
 
Paper Synopsis: 
Introduction: 
Automotive systems, precision optics, and photonics require high precision alignment 
tolerances on the nano/micrometer level, which is currently beyond current low-cost 
capabilities.  This has resulted in the development of the QKC to achieve these cost and 
performance requirements. 
 
Existing, commonly manufactured couplings include the pinned joint, rail-slots, tapers, 
and dove tails.  Micron-level precision is not easily achievable with these since such 
precision would require very tight tolerances on pins, holes, surface finishes, etc. 
 
Kinematic coupling, typically balls and grooves, provides exact constraint with better 
than 1-μm precision, but these couplings are used infrequently in manufacturing since 
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they do not meet the following low-cost coupling requirements.  1. Low-cost generation 
of fine surface finish: inexpensive fine surface finish balls are readily available, but fine 
surface finish grooves are not.  2. Low-cost generation of alignment feature shape: balls 
and grooves are more complex than pin joints, and the surface hardness processing 
required that allow joints to survive Hertzian contact stresses drives the costs higher.  3. 
Low-cost means to form sealed interfaces: adding sealing flexures to kinematic couplings 
increases costs. 
 
There is a significant gap in cost and performance between kinematic coupling and 
commonly manufactured couplings.  The QKC is designed to address this gap, as is 
shown in Culpepper’s Figure 2. 
 

 
Culpepper’s Figure 2.  Shown because it succinctly defines the gap in cost and 
performance that QKC’s are to fill 
 
Quasi-Kinematic Coupling: 
Culpepper’s Figure 1 shows the basic concepts of the kinematic coupling and the QKC.  
Kinematic couplings (KC’s) feature a ball-in-groove joint where three balls on one 
component mate with three grooves on the second component with small area contacts.  
In QKC’s, axisymmetric balls of the first component mate with axismmetric grooves of 
the second component, forming arc contacts.  The contact relief may be provided on 
either the ball or the groove.  For both types of couplings, joints are oriented with 
symmetrically positioned ball-groove contacts with respect to bisectors of the coupling 
triangle. 
 

 
Culpepper’s Figure 1.  Shown because it succinctly describes KC’s and QKC’s. 
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The main difference between the two designs is the arc contact for the QKC rather than 
the small-area contact of KC’s that provide exact constraint in the six degrees of freedom 
(DOF’s).  QKC’s groove geometries are symmetric and are easier to manufacture, though 
the arc contacts give a certain amount of over-constraint.  However, with careful design, 
QKC’s can approach KC performance. 
 
The over-constraint of the QKC arcs can be minimized by reducing the size of the contact 
arc.  Smaller contact arcs result in smaller constraint forces parallel to the coupling 
triangle bisector, but it also reduces the coupling stiffness.  A quantitative metric for this 
trade-off is detailed later in the article/synopsis. 
 
The low-cost coupling requirements detailed earlier are met by properly designed QKC’s.  
1. Low-cost generation of fine surface finish: low cost polished spheres (bearings) are 
readily available.  High quality grooves can be achieved by burnishing the groove’s 
surfaces by pressing the harder, finer ball into it.  This requires a ball with a polished 
surface finish and 3 to 4 times the modulus of elasticity of the groove.  It also requires 
tangential sliding between the ball and groove surfaces to remove asperities.  2. Low-cost 
generation of alignment feature shape: the QKC groove can be made in simple drill 
operations using countersinks or form tools since the grooves are axisymmetric.  Groove 
reliefs can be made in place by drilling, forming, milling, or casting with comparable 
costs to pinned joints.  3. Low-cost means to form sealed interfaces: by making the ball 
contact feature hollow, by adding an undercut, and by providing a sufficient nesting 
force, the gap between the two components may be closed if the ball-groove materials 
plastically deform during the first mate.  Elastic recovery will allow a portion of the gap 
to return, which is necessary in maintaining its kinematic nature. 
 
Theory of Quasi-Kinematic Coupling: 
QKC’s are not like KC’s with point contacts where the displacements and contact forces 
are assumed to be normal to the contact.  The direction of the forces may not be assumed 
and contacts must not be modeled as point contacts.  The analysis method may be broken 
into the following steps: preload a coupling, impose displacement error on this mated 
state, calculate ball-groove contact forces, and calculate coupling stiffness.  The 
derivation of the kinematic and mechanics theories used in the model is discussed in 
detail in Culpepper’s Appendix A. 
 

A constraint metric defined as 
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used to determine how the ball-groove arc contacts can be designed to optimize 
performance.  The ratio serves as a useful metric in reducing the likelihood of over-
constraint based on the joint stiffness and material characteristics, where low CM’s 
indicate low over-constraint. 
 
When θcontact = 180°, CM = 1, and as θcontact→0, CM approaches 0.  θcontact~0° is not 
reasonable because of the substantial loss in coupling stiffness.  Thus the coupling 
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stiffness and CM need to be considered simultaneously, as is shown in Culpepper’s 
Figure 10. 
 

 
Culpepper’s Figure 10.  Shown because it succinctly shows the trade-off between 
stiffness and constraint. 
 
In a detailed example where θcontact = 120° (with other parameters defined and values 
calculated using the theory derived in Appendix A), the CM was found to be 0.41 and the 
stiffness Kr was found to be 195N/m.  If he design calls for only 125N/m stiffness, the 
contact angle can be reduced to 60°, and the resulting CM is 0.1.  The trade-off between 
stiffness and constraint is favorable at large contact angles. 
 
The full estimate of δover-constraint (error due to over-constraint) requires consideration of 
the post-plastically deformed mismatch between the ball and groove.  This mismatch 
between QKC joints depends on elastic contact deformation, plastic deformation, and 
multiple ball-groove mismatch tolerances.  The theory on describing this final mismatch 
is still undeveloped, so the CM along with joint stiffness will continue to be the factors 
examined for determining the QKC performance in this article. 
 
Testing MathCAD Model: 
The theory developed was implemented in MathCAD, shown in Culpepper’s Appendix 
B.  The MathCAD model was checked for consistency by the following five tests: 1. 
translation errors in z (vertical) direction resulted only in net z forces, 2. rotation errors 
about z-axis of coupling centroid resulted only in z moments, 3. displacements along one 
bisector of a 120° coupling resulted in no net y or z moments, 4. no x and y reaction 
forces resulted when the grooves are flat, 5. the model properly detected loose contacts as 
violations of “constant contact” constraint. 
 
Experimental Results: 
A QKC has been used in precision automotive assemblies, providing 0.67-μm 
repeatability, but unusual stiffness requirements resulted in large contact angles and 
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atypical orientations.  Thus an experiment was run with a QKC more comparable to the 
angles and orientations of an ideal KC. 
 
A QKC with θcontact = 60° (CM = 0.1) with low-cost attributes of typical quasi-kinematic 
joints was used.  It was manufactured with <25μm mismatch between the axis of 
symmetry of any ball and mated groove and it included lubricated joints.  A repeatability 
of 0.25-μm was measured after an initial wear-in of 5 mates.  In the event that this wear-
in time is impractical, preloads have been shown to eliminate the wear-in period and the 
mismatch between ball and groove patterns. 
 
Coupling Costs: 
Ball-groove sets cost ~$1 in volumes >100k per year or ~$60 in volumes <500 per year.  
This is much less than the several hundred dollar price tag on high performance KC’s.  
When the whole-life cycle cost is considered, not only are the initial savings included, but 
so are the replacement savings/costs. 
 
Appendices (Steps to Model the Performance Characteristics of QKC’s): 
Culpepper provides two appendices in support the article.  Appendix B, which is a 
MathCAD model, will not be summarized here, but it can be seen at the end of the paper.  
Appendix A, which are the steps to model the performance characteristics of QKC’s, will 
be briefly summarized, but the full version is available in Culpepper’s article. 
 
Step 1: Material and geometry characteristics.  Material data, such as Young’s modulus 
and Poisson’s ratio, are needed for the ball and groove materials.  The geometry is 
defined by creating a coupling coordinate system (CCS), a displaced coordinate system 
(DCS), and a joint coordinate system (JCS).  Each of the three joints (i = 1–3) and each of 
the six contact arcs (j = 1–6) are identified.  Each JCSi measures position in ri, θri, and zi, 
and the contact half-cone angle is defined as θi. 
 
Step 2: Imposed error motions.  The coupling stiffness depends upon the ball-groove 
reaction force, which is a function of the compression of materials.  This depends upon 
the error in the ball’s far field displacement from its preloaded position.  This 
displacement can be expressed as a combination of translation, cδ , and rotation, ε . 
 
Step 3: Distance of approach between far field points in ball-groove joints.  With multiple 
couplings of a ball to a cone, the compression forces about the arc will begin to vary 
about this contact.  A common metric to describe material compression is δn, the distance 
of approach between two far field points.  It is a function of the axial and radial 
displacements. 
 
Step 4: Modeling interfaces as a function of δn.  Relating δn to the force per unit length, 

nf , though simple with elastic-contact-only joints, requires more consideration for joints 
with some integral compliance or plastic deformation.  FEA or other analytic methods 

can relate nf to δn in the following form: [ ]
∧

= n)(θδK)(θf b
rinrin , where K is a stiffness 
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constant and b reflects the rate of change in contact stiffness with changes in δn.  K and b 
are functions of ball-groove geometry. 
 
Step 5: Reactive force on an arc contact.  The reaction forces of all six contact arcs are 
summed to get a resultant reaction force.  Each force for the contact arcs is determined by 
integrating crin R)(θf ⋅ along the arc of contact where Rc is the radius of the cone on the 
contact line.  The sum of torques is determined from each ball-groove reaction force and 
moment arm between the CCS and the ball’s far field displacement. 
 
Step 6: Stiffness calculation.  The resulting coupling stiffness is determined as 

nt)DisplacemeError  d(Imposed
)d(Reactionk = .  When linear displacements are imposed, the 

reaction force is given by ∑
=

=
6

1j
jReaction FF  (from Step 5).  When rotation displacements are 

imposed, the reaction torque is given by ∑
=

×=
3

1i
iReaction FT iSIr  (from Step 5). 

 
Conclusions: 
Culpepper has developed a method to design QKC’s with minimal over-constraint while 
optimizing performance.  Experimental results show comparable performance to KC’s 
can be achieved with much lower cost QKC’s.  The ease of manufacturing, low cost, and 
ability to form sealed joints make this an enabling technology particularly important for 
high precision, high volume assemblies in automotive, photonics, and optical 
applications. 
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