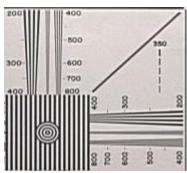
Image Motion Compensation

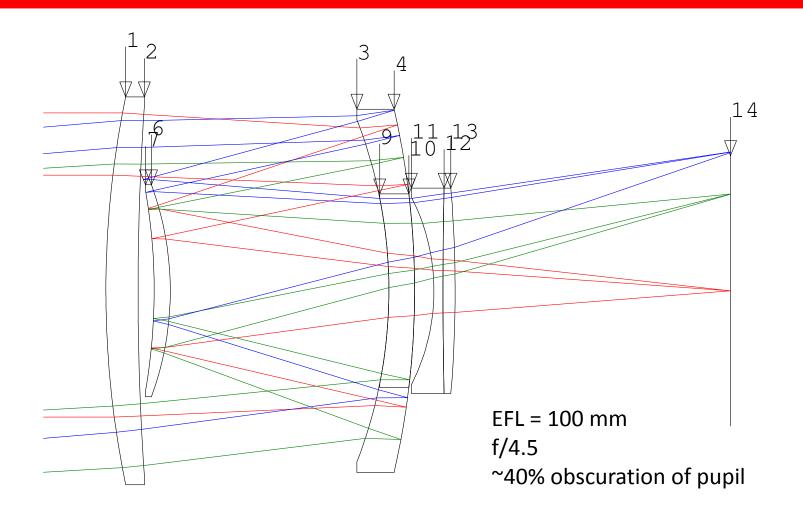
A tutorial including analysis of a catadioptric ultra-telephoto lens

Ernest D. Fasse 29 November, 2008



- Imaging systems are subject to mechanical disturbances including vibration
- This results in a motion-induced blurring of the image called *smear*

E.D. Fasse, 11/29/2008 Slide 2 of 32

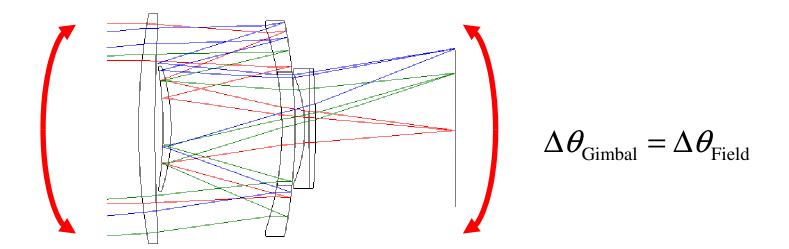

- Image motion compensation (IMC) refers to the active control of something to stabilize the object space line-of-sight (LOS) of the focal plane array
- Goal is to eliminate smear and thus have a sharper image

E.D. Fasse, 11/29/2008 Slide 3 of 32

- The example used in this tutorial is a catadioptric ultra-telephoto lens
- US Patent 4,264,136 (Ogino 1981) assigned to Minolta Corporation
- Original Japanese patent 61-48132

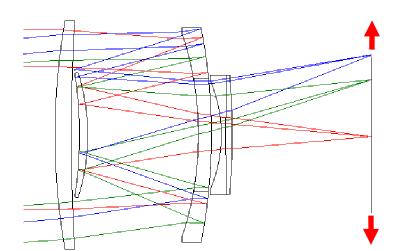
E.D. Fasse, 11/29/2008 Slide 4 of 32

E.D. Fasse, 11/29/2008 Slide 5 of 32


- Optical elements of system
 - Positive meniscus lens
 - Surfaces 1 and 2
 - Multiple-pass, primary negative meniscus lens/mirror
 - Surfaces 3—5, 9—10
 - Second-surface, secondary negative meniscus lens/mirror
 - Surfaces 6—8
 - Lens doublet
 - Surfaces 11—13

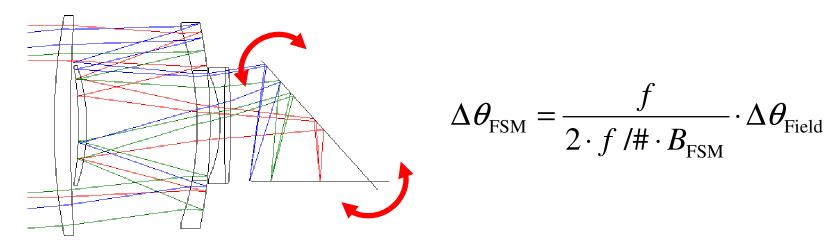
E.D. Fasse, 11/29/2008 Slide 6 of 32

- There are four more-or-less common methods of compensating for image motion
 - Moving the entire optical system
 - Moving the focal plane array
 - Adding a flat, fast steering mirror (FSM)
 - Moving optical groups
- More exotic methods are possible in theory
 - Deformable optical surfaces
 - Variable index material


E.D. Fasse, 11/29/2008 Slide 7 of 32

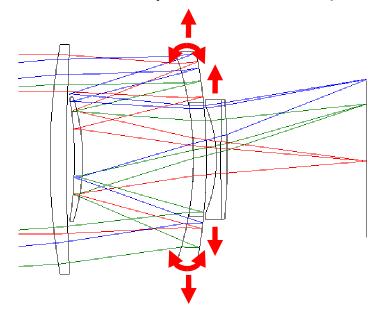
- Moving the entire optical system
 - Typically done with a serial gimbal mechanism
 - Bandwidth and thus performance is fundamentally limited

E.D. Fasse, 11/29/2008 Slide 8 of 32


- Moving the focal plane array
 - Consumer camera manufacturers using this technique include Sony, Pentax, Olympus, Fujifilm, Samsung, Sasio, and Ricoh Capilio (Wikipedia, 2008)

$$\Delta \varepsilon_{\text{FPA}} = f \cdot \Delta \theta_{\text{Field}}$$

E.D. Fasse, 11/29/2008 Slide 9 of 32


Adding a flat, fast steering mirror

- f/# is the (working) focal ratio
- B_{FSM} is the marginal ray bundle diameter at the FSM

E.D. Fasse, 11/29/2008 Slide 10 of 32

- Moving optical groups
 - Used by Canon and Nikon
- For example system, three possibilities are
 - Tilt primary mirror (multi-pass, catadioptric element)
 - Decenter primary mirror
 - Decenter doublet

E.D. Fasse, 11/29/2008 Slide 11 of 32

Analysis of catadioptric ultra-telephoto system

Prescription

Surface #	Radius	Thickness	Index	Abbe #	Semi-Aperture
Object	Infinity	Infinity			
Stop	60.5720	2.0000	1.5176	53	11.1372
2	173.8170	15.6000			11.0649
3	-29.8250	1.6000	1.5168	64	10.2000
4	-51.1740	-1.6000	1.5168	64	10.4000
5	-29.8250	-13.6000			9.6902
6	-19.3730	-1.0000	1.5168	64	5.9000
7	-36.9270	1.0000	1.5168	64	5.7641
8	-19.3730	13.6000			5.8103
9	-29.8250	1.6000	1.5168	54	5.2979
10	-51.1740	1.2000			5.3649
11	-13.0150	0.5600	1.5168	81	5.3657
12	266.6470	0.7600	1.7400	62	5.6363
13	-77.9790	17.0322			5.7000
Image	Infinity	0.0981			8.6788

E.D. Fasse, 11/29/2008 Slide 12 of 32

Analysis of catadioptric, ultra-telephoto system

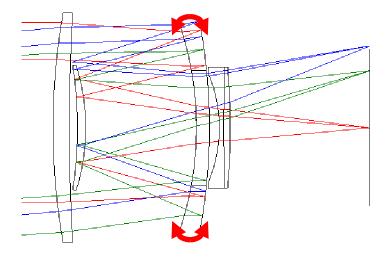
- Performance metrics
 - Image location: Image height y_{image} (mm) of the ray going through the y_p = 0.65 pupil position for a 589 nm wavelength
 - Due to obscuration, 0.65 pupil position is "central"
 - Image quality: Weighted RMS of RMS wavefront error (waves)
 - RMS wavefront error across pupil computed for 656, 589, and 434 nm wavelengths
 - RMS across wavelengths computed thereafter

E.D. Fasse, 11/29/2008 Slide 13 of 32

Analysis of catadioptric, ultra-telephoto system

 Comparison of performance for nominal system and with fields rotated by 0.1 deg due to system motion

Field	Weighted ΔW _{RMS}	y_{lmage} of W2, $y_p = 0.65$
0.00	0.092406	-0.00169
0.71	0.630788	6.06034
1.00	0.832963	8.67177
AVE:	0.580905	


Reference system without field rotation

Field	Weighted ΔW_{RMS}	y_{image} of W2, $y_p = 0.65$
0.00	0.094484	-0.17703
0.71	0.609964	5.87943
1.00	0.820255	8.48489
AVE:	0.568817	

Disturbed system with 0.1 deg field rotation

E.D. Fasse, 11/29/2008 Slide 14 of 32

- First strategy: Tilt the primary mirror
- "Mirror" is really a multi-pass, catadioptric element
- Most image motion comes from rotation of surface 4
- Must consider surfaces 3, 5, 9 and 10 as well

E.D. Fasse, 11/29/2008 Slide 15 of 32

- Define two groups of surfaces
 - Group G1: Surfaces 3, 4 and 5
 - Group G2: Surfaces 9 and 10
- Properties of G1
 - First and second principal planes coincident, $d_{G1} = d'_{G1} = 1.0$ mm to the right of S3 vertex
 - Power is ϕ_{G1} = 0.026178 mm⁻¹, corresponding to a focal length of f_{G1} = 38.2 mm

E.D. Fasse, 11/29/2008 Slide 16 of 32

Properties of G2

- First principal plane is $d_{G2} = -1.5$ mm to the right of S9 vertex
- Second principal plane is $d'_{G2} = -2.6$ mm to the right of S10 vertex
- Distance between principal planes is $PP'_{G2} = 1.7175 \text{ mm}$
- Power is $φ_{G2}$ = -0.007044 mm⁻¹, corresponding to a focal length of f_{G2} = -142.0 mm

E.D. Fasse, 11/29/2008 Slide 17 of 32

- Sensitivities of image motion to element motion can be computed using methods described in (Burge, 2006)
- Need following parameters
 - Marginal ray bundle diameters of groups G1 and G2 are $B_{G1} = 19.9 \text{ mm}$ and $B_{G2} = 5.2 \text{ mm}$
 - Numerical aperture exiting groups G1 and G2 are $NA_{G1} = 0.0624$ and $NA_{G2} = 0.1885$
 - System numerical aperture is NA = 0.1114

E.D. Fasse, 11/29/2008 Slide 18 of 32

Sensitivities of image motion to angle for each group

$$\frac{d\varepsilon_{G1}}{d\theta_{G1}} = 2 \cdot f / \# \cdot B_{G1} = 179.1 \text{ mm/rad}$$

$$\frac{d\varepsilon_{\rm G2}}{d\theta_{\rm G1}} = \varphi_{\rm G2} \cdot (d_{\rm G2} - d_{\rm G1}) \cdot f / \# \cdot B_{\rm G2} - PP_{\rm G2}' \frac{NA_{\rm G2}}{\rm NA} = -2.5 \text{ mm/rad}$$

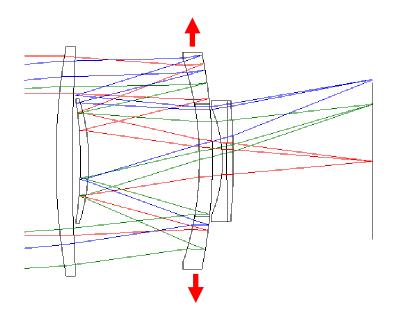
Combined sensitivity

$$\frac{d\varepsilon}{d\theta_{G1}} = \frac{d\varepsilon_{G1}}{d\theta_{G1}} + \frac{d\varepsilon_{G2}}{d\theta_{G1}} = 176.6 \text{ mm/rad}$$

E.D. Fasse, 11/29/2008 Slide 19 of 32

• Rotation required to compensate for a field change of $\Delta\theta_{\rm Field}=0.1~deg$ is then

$$\theta_{G1} = \left(\frac{d\varepsilon}{d\theta_{G1}}\right)^{-1} f \cdot \Delta\theta_{Field} = -988.14 \,\mu\text{rad}$$


Apply and run Code V to get

Field	Weighted ∆W _{RMS}	y_{lmage} of W2, $y_p = 0.65$
0.00	0.096466	-0.00015
0.71	0.617780	6.06217
1.00	0.824420	8.67363
AVE:	0.572908	

WFE and image position given compensatory rotation of primary mirror groups

E.D. Fasse, 11/29/2008 Slide 20 of 32

 Second strategy: Displace the primary mirror laterally (decenter)

E.D. Fasse, 11/29/2008 Slide 21 of 32

• Sensitivities of image motion to decenter for each group $d\varepsilon$

$$\frac{d\varepsilon_{G1}}{ds_{G1}} = \varphi_{G1} \cdot f / \# \cdot B_{G1} = 2.34 \text{ mm/mm}$$

$$\frac{d\mathcal{E}_{G2}}{ds_{G1}} = \varphi_{G2} \cdot f / \# \cdot B_{G2} = -0.17 \text{ mm/mm}$$

Combined sensitivity

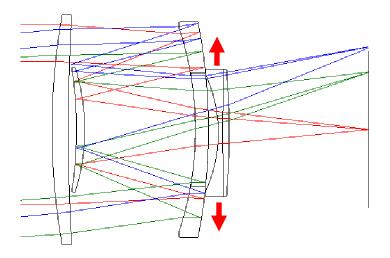
$$\frac{d\varepsilon}{ds_{G1}} = \frac{d\varepsilon_{G1}}{ds_{G1}} + \frac{d\varepsilon_{G2}}{ds_{G1}} = 2.18 \text{ mm/mm}$$

E.D. Fasse, 11/29/2008 Slide 22 of 32

• Displacement required to compensate for a field change of $\Delta\theta_{\rm Field}=0.1~deg$ is then

$$s_{G1} = \left(\frac{d\varepsilon}{ds_{G1}}\right)^{-1} f \cdot \Delta \theta_{Field} = 0.0801 \, mm$$

Apply and run Code V to get


Field	Weighted ΔW_{RMS}	y_{lmage} of W2, $y_p = 0.65$
0.00	0.204793	-0.00624
0.71	0.523547	6.05752
1.00	0.741858	8.66957
AVE:	0.516871	

WFE and image position given compensatory displacement of primary mirror groups

E.D. Fasse, 11/29/2008 Slide 23 of 32

IMC via decenter of lens doublet

 Third strategy: Displace the lens doublet laterally (decenter)

E.D. Fasse, 11/29/2008 Slide 24 of 32

IMC via decenter of lens doublet

- Group G3: Surfaces 11, 12 and 13
- Properties of G3
 - First principal plane is $d_{G3} = -0.27$ mm to the right of S11 vertex
 - Second principal plane is $d'_{G3} = -1.09$ mm to the right of S10 vertex
 - Distance between principal planes is $PP'_{G3} = 0.506 \text{ mm}$
 - Power is $φ_{G3}$ = -0.029069 mm⁻¹, corresponding to a focal length of f_{G3} = -34.4 mm
- Marginal ray bundle diameter $B_{G3} = 4.0 \text{ mm}$

E.D. Fasse, 11/29/2008 Slide 25 of 32

IMC via decenter of lens doublet

Sensitivity of image motion to decenter

$$\frac{d\varepsilon}{ds_{G3}} = \varphi_{G3} \cdot f / \# \cdot B_{G3} = -0.5267 \text{ mm/mm}$$

E.D. Fasse, 11/29/2008 Slide 26 of 32

• Displacement required to compensate for a field change of $\Delta\theta_{\rm Field}=0.1~deg$ is then

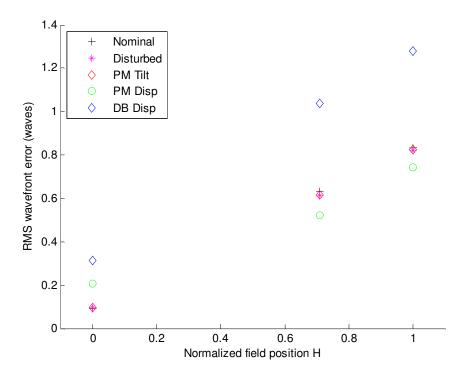
$$s_{G3} = \left(\frac{d\varepsilon}{ds_{G3}}\right)^{-1} f \cdot \Delta \theta_{Field} = -0.3313 \, mm$$

Apply and run Code V to get

Field	Weighted ΔW _{RMS}	y_{Image} of W2, $y_p = 0.65$
0.00	0.315091	0.01273
0.71	1.038235	6.10751
1.00	1.277895	8.74154
AVE:	0.932778	

WFE and image position given compensatory displacement of lens doublet

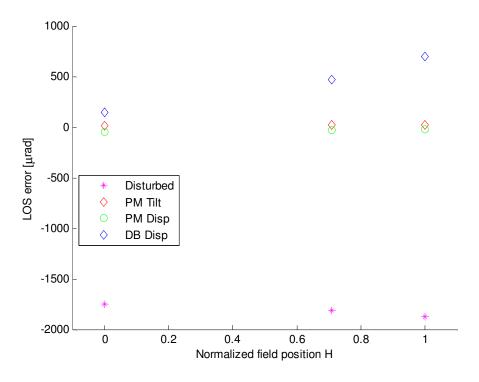
E.D. Fasse, 11/29/2008 Slide 27 of 32


Performance comparison

- Not enough analysis performed to make grand conclusions
- Still, it is interesting to compare performance

E.D. Fasse, 11/29/2008 Slide 28 of 32

Performance comparison


Wavefront errors

E.D. Fasse, 11/29/2008 Slide 29 of 32

Performance comparison

- LOS errors
 - Evidence of over-compensation for doublet displacement

E.D. Fasse, 11/29/2008 Slide 30 of 32

Conclusion

- An overview was given of four more-or-less common methods of compensating for image motion
 - Moving the entire optical system
 - Moving the focal plane array
 - Adding a flat, fast steering mirror (FSM)
 - Moving optical groups
- Special attention was given to the latter method of moving optical groups
- The optical performance (RMS WFE, LOS pointing error)
 will depend on which elements are moved and how

E.D. Fasse, 11/29/2008 Slide 31 of 32

Bibliography

- Burge, J. (2006). An easy way to relate optical element motion to system pointing stability. *Current Developments in Lens Design and Optical Engineering VII. 6288*, pp. 62880I-1--12. San Diego: SPIE.
- Ogino, S. (1981). *Patent No. 4,264,136.* United States of America.
- Wikipedia. (2008). Image stabilization. Retrieved November 23, 2008, from Wikepedia: http://en.wikipedia.org/wiki/Image_stabilization

E.D. Fasse, 11/29/2008 Slide 32 of 32