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Introduction

• Imaging systems are subject to mechanical 

disturbances including vibration

• This results in a motion-induced blurring of the 

image called smear
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Introduction

• Image motion compensation (IMC) refers to the 

active control of something to stabilize the object 

space line-of-sight (LOS) of the focal plane array

• Goal is to eliminate smear and thus have a sharper 

image
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Introduction

• The example used in this tutorial is a catadioptric 

ultra-telephoto lens

• US Patent 4,264,136 (Ogino 1981) assigned to 

Minolta Corporation

• Original Japanese patent 61-48132

E.D. Fasse, 11/29/2008 Slide 4 of 32



Introduction

1   
2   3   

4   

6   
7   9   

10  
11  

12  
13  

14  

E.D. Fasse, 11/29/2008

EFL = 100 mm

f/4.5

~40% obscuration of pupil
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Introduction

• Optical elements of system

– Positive meniscus lens

• Surfaces 1 and 2

– Multiple-pass, primary negative meniscus lens/mirror

• Surfaces 3—5, 9—10• Surfaces 3—5, 9—10

– Second-surface, secondary negative meniscus lens/mirror

• Surfaces 6—8

– Lens doublet

• Surfaces 11—13
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Common IMC methods

• There are four more-or-less common methods of 

compensating for image motion

– Moving the entire optical system

– Moving the focal plane array

– Adding a flat, fast steering mirror (FSM)

– Moving optical groups

• More exotic methods are possible in theory

– Deformable optical surfaces

– Variable index material
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Common IMC methods

• Moving the entire optical system

– Typically done with a serial gimbal mechanism

– Bandwidth and thus performance is fundamentally limited
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FieldGimbal
θθ ∆=∆
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Common IMC methods

• Moving the focal plane array

– Consumer camera manufacturers using this technique 

include Sony, Pentax, Olympus, Fujifilm, Samsung, Sasio, 

and Ricoh Capilio (Wikipedia, 2008)
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FieldFPA
θε ∆⋅=∆ f
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Common IMC methods

• Adding a flat, fast steering mirror

FieldFSM

/#2
θθ ∆⋅

⋅⋅
=∆

Bf

f

• f/# is the (working) focal ratio

• BFSM is the marginal ray bundle diameter at the FSM
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FSM
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Common IMC methods

• Moving optical groups

– Used by Canon and Nikon

• For example system, three possibilities are

– Tilt primary mirror (multi-pass, catadioptric element)– Tilt primary mirror (multi-pass, catadioptric element)

– Decenter primary mirror

– Decenter doublet
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Analysis of catadioptric ultra-telephoto system

Surface # Radius Thickness Index Abbe # Semi-Aperture

Object Infinity Infinity

Stop 60.5720 2.0000 1.5176 53 11.1372

2 173.8170 15.6000 11.0649

3 -29.8250 1.6000 1.5168 64 10.2000

4 -51.1740 -1.6000 1.5168 64 10.4000

• Prescription

4 -51.1740 -1.6000 1.5168 64 10.4000

5 -29.8250 -13.6000 9.6902

6 -19.3730 -1.0000 1.5168 64 5.9000

7 -36.9270 1.0000 1.5168 64 5.7641

8 -19.3730 13.6000 5.8103

9 -29.8250 1.6000 1.5168 54 5.2979

10 -51.1740 1.2000 5.3649

11 -13.0150 0.5600 1.5168 81 5.3657

12 266.6470 0.7600 1.7400 62 5.6363

13 -77.9790 17.0322 5.7000

Image Infinity 0.0981 8.6788
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Analysis of catadioptric, ultra-telephoto system

• Performance metrics

– Image location:  Image height yimage (mm) of the ray going 

through the yp = 0.65 pupil position for a 589 nm 

wavelength

• Due to obscuration, 0.65 pupil position is “central”• Due to obscuration, 0.65 pupil position is “central”

– Image quality: Weighted RMS of RMS wavefront error 

(waves)

• RMS wavefront error across pupil computed for 656, 589, and 434 

nm wavelengths

• RMS across wavelengths computed thereafter
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Analysis of catadioptric, ultra-telephoto system

• Comparison of performance for nominal system and 

with fields rotated by 0.1 deg due to system motion

Field Weighted ΔΔΔΔWRMS yImage of W2, yp = 0.65

0.00 0.092406 -0.00169

0.71 0.630788 6.06034
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1.00 0.832963 8.67177

AVE: 0.580905

Field Weighted ΔΔΔΔWRMS yImage of W2, yp = 0.65

0.00 0.094484 -0.17703

0.71 0.609964 5.87943 

1.00 0.820255 8.48489

AVE: 0.568817

Reference system without field rotation

Disturbed system with 0.1 deg field rotation
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IMC via tilt of primary mirror groups

• First strategy:  Tilt the primary mirror

• “Mirror” is really a multi-pass, catadioptric element

• Most image motion comes from rotation of surface 4

• Must consider surfaces 3, 5, 9 and 10 as well• Must consider surfaces 3, 5, 9 and 10 as well
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IMC via tilt of primary mirror groups

• Define two groups of surfaces

– Group G1: Surfaces 3, 4 and 5

– Group G2:  Surfaces 9 and 10

• Properties of G1• Properties of G1

– First and second principal planes coincident, dG1 = d’G1 = 

1.0 mm to the right of S3 vertex

– Power is ϕG1 = 0.026178 mm-1, corresponding to a focal 

length of fG1 = 38.2 mm
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IMC via tilt of primary mirror groups

• Properties of G2

– First principal plane is dG2 = -1.5 mm to the right of S9 

vertex

– Second principal plane is d’G2 = -2.6 mm to the right of S10 

vertexvertex

– Distance between principal planes is PP’G2 = 1.7175 mm

– Power is ϕG2 = -0.007044 mm-1, corresponding to a focal 

length of fG2 = -142.0 mm
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IMC via tilt of primary mirror groups

• Sensitivities of image motion to element motion can 

be computed using methods described in (Burge, 

2006)

• Need following parameters

– Marginal ray bundle diameters of groups G1 and G2 are 

BG1 = 19.9 mm and BG2 = 5.2 mm

– Numerical aperture exiting groups G1 and G2 are NAG1 = 

0.0624 and NAG2 = 0.1885

– System numerical aperture is NA = 0.1114
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IMC via tilt of primary mirror groups

• Sensitivities of image motion to angle for each group

mm/rad 1.179/#2
G1

G1

G1 =⋅⋅= Bf
d

d

θ

ε

( ) mm/rad 5.2/#
G2'G2 −=−⋅⋅−⋅=

NA
PPBfdd

d
ϕ

ε

• Combined sensitivity
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IMC via tilt of primary mirror groups

• Rotation required to compensate for a field change 

of ΔθField = 0.1 deg is then

rad 14.988
Field

1

G1

G1
µθ

θ

ε
θ −=∆⋅








=

−

f
d

d

• Apply and run Code V to get
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G1
θ  d

WFE and image position given compensatory rotation of primary mirror groups

Field Weighted ΔΔΔΔWRMS yImage of W2, yp = 0.65

0.00 0.096466 -0.00015

0.71 0.617780 6.06217 

1.00 0.824420 8.67363 

AVE: 0.572908
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IMC via decenter of primary mirror groups

• Second strategy:  Displace the primary mirror 

laterally (decenter)
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IMC via decenter of primary mirror groups

• Sensitivities of image motion to decenter for each 

group
mm/mm 34.2/#

G1G1

G1

G1 =⋅⋅= Bf
ds

d
ϕ

ε

−=⋅⋅=
d

ϕ
ε

• Combined sensitivity
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IMC via decenter of primary mirror groups

• Displacement required to compensate for a field 

change of ΔθField = 0.1 deg is then

mmf
ds

d
s  0801.0

Field

1

G1

G1
=∆⋅








=

−

θ
ε

• Apply and run Code V to get
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ds
G1 

WFE and image position given compensatory displacement of primary mirror groups

Field Weighted ΔΔΔΔWRMS yImage of W2, yp = 0.65

0.00 0.204793 -0.00624

0.71 0.523547 6.05752 

1.00 0.741858 8.66957 

AVE: 0.516871

Slide 23 of 32



IMC via decenter of lens doublet

• Third strategy:  Displace the lens doublet laterally 

(decenter)
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IMC via decenter of lens doublet

• Group G3: Surfaces 11, 12 and 13

• Properties of G3

– First principal plane is dG3 = -0.27 mm to the right of S11 

vertex

– Second principal plane is d’G3 = -1.09 mm to the right of 

S10 vertex

– Distance between principal planes is PP’G3 = 0.506 mm

– Power is ϕG3 = -0.029069 mm-1, corresponding to a focal 

length of fG3 = -34.4 mm

• Marginal ray bundle diameter BG3 = 4.0 mm
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IMC via decenter of lens doublet

• Sensitivity of image motion to decenter

mm/mm 5267.0/#
G3G3

G3

−=⋅⋅= Bf
ds

d
ϕ

ε
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IMC via decenter of primary mirror groups

• Displacement required to compensate for a field 

change of ΔθField = 0.1 deg is then

mmf
ds

d
s  3313.0

Field

1

G3
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• Apply and run Code V to get
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ds
G3 

WFE and image position given compensatory displacement of lens doublet

Field Weighted ΔΔΔΔWRMS yImage of W2, yp = 0.65

0.00 0.315091 0.01273

0.71 1.038235 6.10751

1.00 1.277895 8.74154

AVE: 0.932778
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Performance comparison

• Not enough analysis performed to make grand 

conclusions

• Still, it is interesting to compare performance
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Performance comparison

• Wavefront errors
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Performance comparison

• LOS errors

– Evidence of over-compensation for doublet displacement

500

1000  
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Conclusion

• An overview was given of four more-or-less common 

methods of compensating for image motion

– Moving the entire optical system

– Moving the focal plane array

– Adding a flat, fast steering mirror (FSM)– Adding a flat, fast steering mirror (FSM)

– Moving optical groups

• Special attention was given to the latter method of 

moving optical groups

• The optical performance (RMS WFE, LOS pointing error) 

will depend on which elements are moved and how
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