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ABSTRACT

Plane mirrors are commonly used to steer, rotate, and stabilize the image and
line-of-sight (LOS) of optical systems. Plane-mirror optical kinematics is the
study of fixed, flexured, and gimbaled mirrors in this application. LOS
pointing, stabilization, image mapping, image derotation, boresight
coefficient determination and mechanical tolerance analysis are all areas of
plane—mirror optical kinematics. Specific problems in these areas have been
addressed in the literature by a wide variety of analytical techniques. None
of these techniques, however, have been generalized for application across
the field. A unified analytical framework for plane-mirror optical kinematics
is presented in this paper. This methodology is based on a new optical
kinematic construction, the line-of—sight reference frame. An LOS reference
frame is a unit vector triad that defines the LOS and the associated image
plane. The use of optical and basis transformations is central to LOS
reference frame analysis. These transformations often look similar, but are
conceptually unrelated. A thorough understanding of each is required. Both are
discussed in detail, and a direct comparison is made. Use of LOS reference
frames as a general optical kinematics tool is outlined. The pertinent LOS
reference frames of an aerial photography system are constructed as an
example.

1. INTRODUCTION

Vector methods have been used in the analysis of gimbaled plane mirror systems
for over twenty-five years. The optical line-of-sight (LOS) is represented as
a vector, and the reflection properties of the mirror are represented as a
matrix. The reflected, outgoing LOS is found by operating on the incoming LOS
with the mirror matrix. Such an operation represents an optical
transformation. Vector methods can also be applied to kinematic analysis of
gimbals. Unit vector sets that define kinematic reference frames are attached
to the gimbals. The relative orientations of the gimbals are then described by
the basis transformations between the unit vector sets. Optical
transformations and vector basis transformations must be combined to determine
the relation between the direction of the LOS and orientations of the gimbals.

An analytical method for the analysis of gimbaled plane-mirror systems is
presented that makes use of a new optical kinematic construction, the line-of-
sight reference frame. LOS reference frames can be used in image mapping,
rotation and derotation analysis, boresight coefficient determination,
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stabilization analysis, and mechanical tolerance analysis. Basis and optical
transformations are both used with LOS reference frames. A thorough discussion
of each is presented, with an eye toward their application to LOS reference
frames. Their similarities and differences are demonstrated by a description
of an example system.

2. HISTORICAL PERSPECTIVE

To the optical designer, the term "matrix method" generally implies the use of
matrices, as opposed to the use of geometric "ynv" ray-tracing, to design and
analyze paraxial lens systems. Sinclair provides a summary of the use of
paraxial transfer matrices1, which is also discussed in most introductory
optics textbooks2. Matrix analysis of plane-mirror systems has often been
considered a subset of this field. Brouwer devotes a brief first chapter of
his book to plane-mirror systems3. However, a substantial body of literature
exists that refers specifically to problems associated with plane-mirror
systems. Many of the papers that treat plane-mirror problems were written, not
by optical designers, but by controls, design, system, and structural
engineers. Their publications address certain areas of the system-level
performance of optical instruments that are generally outside the realm of the

optical designer, such as pointing control, line-of-sight stabilization, and
structural interaction. The methodology discussed herein is of general
application to these areas, and, as such, this paper is directed to the
engineering side of the optics community.

Analytical, as opposed to geometric, treatment of plane-mirror kinematics
first appeared in the literature during the years following World War I, with
Smith first outlining the matrix approach in 192846. The dramatic increase in
instrument complexity that occurred after World War II spawned further
progress in analytical development714. Much of this work discussed the
mirror-equivalent, internal-reflection prism. Levi's summary is typical15.
Polasek directly addressed gimbaled mirror systems in 196716, with Royalty
adding to this work as late as 199017. Redding and Breckenridges's work last
year is in response to the growing interest in wavefront control, segmented
optics, deformable optical elements, and active structural control18.

Most of the references above discuss the transformation of light rays, modeled
as vectors, by plane-mirror elements. The foundation of image transformation,
as opposed to light ray, or line-of-sight transformation, is found in the
works of Hopkins, who uses "rotated coordinate axes" to discuss image
orientation19'20. Sitsov uses a vector triad throughout his series of aers
on the properties and synthesis of certain fixed plane-mirror systems2 -25•
These techniques have not been extended to movable-component, vehicle-mounted

systems.

While the literature is rich in specific analytical techniques for particular
plane-mirror systems, this paper provides a new methodology that is applicable
to a broad class of problems in plane-mirror optical kinematics. Further, the
technique directly produces the algebraic equations relating the system
states. These equations are easily programmed if numerical data is desired. In
addition, the method is based on modern vector analysis techniques. Thus, the
analyst need not be familiar with classical optical constructions such as
image and object space to solve problems. Finally, the clear distinction
described herein between optical and basis transformations allows the
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technique to be discussed and applied algorithmically. That is, formulas and
procedures can be derived for general application to the field. It is the
authors' hope that the methodology of this paper goes a long way in changing
the analysis of plane-mirror systems from an art to a science.

Much of kinematic construction of this paper is based on the work of Kane in
his landmark textbook on rigid-body dynamics26. Specifically, the concept of a
vector triad, especially a non-physical vector triad, as a reference frame for
the purposes of modeling and analysis is core to the method. While the reader
is certainly encouraged to read the first chapter of the reference,
fami 1 ian ty wi th "Kane' s Method , " which is usual ly taught in a one-year
graduate course, is certainly not required for application of the method.

3. LINE-OF-SIGHT VECTORS

Most pointed optical systems contain an imaging system. The imaging components
are generally radially symmetric and coaxially mounted with respect to a
central optical axis. This axis forms the line-of-sight of the system. The
system reticle (the crosshairs) is aligned with, and thus designates, the
line—of-sight. A unit vector is used to model the direction of the optical
axis. Though light energy enters the primary aperture and travels through the
system to the imaging focal plane, we choose for modeling purposes the
opposite convention. Thus, the LOS vector r is pointed outward, as in the
simple system shown in Figure 1.

The direction of the optical axis, and thus its LOS vector, is unaffected by
purely imaging elements. Only those elements that change the direction of the
optical axis affect the LOS vector. A new LOS vector is designated every time
the optical axis changes direction. The LOS vector leaving the focal plane
in Figure 1 is unchanged by the lens. The optical axis is reflected (or
folded) by the mirror, however, and a new LOS vector is required to
describe the new orientation. By this convention, a system with one optical
axis could have several LOS vectors.

Nearly all modern optical systems have mirrors, prisms, or other elements to
fold the optical axis. Imaging elements that are mounted symmetrically to a
folded optical axis are considered optically coaxial for the purposes of
imaging system design. Since only two dimensions are required to design a
radially-symmetric imaging system, a system with folds in the optical axis can
be unfolded to simplify element layout and design. Note, however, that optical
kinematics is generally a three-dimensional problem. All the folds in a system
must be considered during optical kinematic analysis.

4. IMAGE VECTORS

Imaging systems are designed to create an image of the optical scene on a
curved or flat surface. The image is converted to useful information on this
surface, either by exposing film or by stimulating an electronic detector.
Whether this surface be curved or flat, the tangent plane at the optical axis
is always perpendicular to the axis. For modeling purposes then, we assume the
imaging surface to be planar and will refer to it generically as a focal
plane.
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The orientation of the focal plane is defined by its normal, the LOS vector.
However, optical kinematics is also concerned with the orientation of the
image as projected onto the focal plane. To aid in the analysis of image
orientation, image vectors are introduced. Image vectors are defined to be
perpendicular to the LOS and of unit magnitude. Note that one image vector is
sufficient to determine the rotational orientation of an image. However,
two-nonparallel image vectors are required to track the image inversion of
folded optical systems. For convenience, we select these two image vectors to
be at right angles to each other. Further, we align the image vectors with the
natural orientation of the focal plane, which is usually rectangular. Thus,
the image vectors r2 and shown in Figure 1 are aligned respectively with
the horizontal and vertical directions of the focal plane. Though image
vectors do not represent outgoing rays of the system, they none the less are
transformed by the optical system. This process, as described in the next
section, is fundamental to the analytical methodology of this paper.

Unlike the LOS vector, image vectors are affected by optical lenses. For
instance, the simple lens system shown in Figure 1 rotates the image 180
about the optical axis. The transformations of lens systems are not covered in
this paper. The focusing lenses and focal planes of most systems are housed
together as a camera. Since the orientation of the focal plane relative to the
camera housing is usually known and fixed, the LOS and image vectors
(L1,L2'L3) can be fixed to the camera LOS as shown in Figure 2 without loss of

generality.

5. LINE-OF-SIGHT REFERENCE FRAMES

The combination of a line-of-sight vector and two mutually-normal image plane
vectors collectively forms a line-of-sight vector set. An LOS vector set
kinematically defines a line-of-sight reference frame, and the two terms will
be considered interchangeable. For example, the line-of-sight vector r. and
the horizontal and vertical image vectors and r3 of the camera in Figure 2
together define LOS reference frame R. LOS vector set (t1't2't3) forms an
orthonormal, right-handed triad.

If the incoming LOS vector and the outgoing LOS vector are both
expressed in terms of a set of mutually normal unit vectors , 112, and 113 as

r =r u +r u +r u s=s u + u + u
1 111 122 1T3 1 111 122 133

then the optical transformation of r1 into s1 by the mirror can be represented
by the matrix equation

[]T =
EM]EL11T

(1)

where EM] is the mirror transformation matrix and

m m m
11 12 13

[s]=Es s si [r]=[r r r ] [M]= m m m
11 12 13 1 11 12 13 21 22 23

m m m
31 32 33
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The incoming image vectors L2 and j are also optically transformed by the
mirror into outgoing image vectors 2 and . Consequently, the incoming
line-of--sight vector set (t1t2,t3) which defines LOS reference frame R is
optically transformed by the mirror into the outgoing LOS vector set
(1 '2 '3) which def ines LOS reference frame S . Eq . 1 appi ies to the image
vectors as well as the LOS vectors, so that the optical transformation between
LOS vector sets (r1,r2,r3) and (s1,s2,s3) can be expressed as

5 5 5 m m m r r r
11 21 31 11 12 13 11 21 31
5 5 5 = m m m r r r (2)12 22 32 21 22 23 12 22 32
S S S m m m r r r13 23 33 31 32 33 13 23 33

where

S = S U + S U + S U r = r U + r u + r u i1,2,3
—I 11—1 122 i3'3 —1 i11 i22 i33

That vectors S2 and S3 actually represent the transformation of the image can

be shown by geometric ray—tracing.

Equation 2 can be alternately expressed Using two different compact notations:

[S 5 sJ=[M][r r ri (3)1 1 2 3

[g]T [M1[R]T (4)

Comparison of Eqs. 2, 3, and 4 yield three equivalent forms for the LOS
reference frame matrices (LOS matrices) [SI and [RI:

5 5 5 5 r r r r1 11 12 13 1 11 12 13
[SI= 5 = S 5 S [R]= r = r r r

21 22 23 2 21 22 23
5 5 5 5 r r r r
___3 31 32 33 __3 31 32 33

The fully expanded notation of Eq. 2 emphasizes the scalar components of the
vectors and is used when operational details are important. The notation of
the Eq. 3 is used when the vectors within the LOS matrices are to be
considered as single entities, irrespective of their scalar components.
Finally, the notation of Eq. 4 is used to express the vector triad as a single
quantity. Equations are expressed throughout the remainder of this paper in
more than one notation if no one form is better or worse than another.

The mirror transformation matrix is discussed in detail in the next section.
For now, it suffices to state that [N] is orthogonal. This property guarantees
that orthogonality between vectors is preserved by the matrix transformation.
Further, it ensures that vector length is unchanged. Thus, if the orthonormal
LOS reference frame R(r1,r2,r3) is transformed through the mirror as in Figure
2, the resulting LOS reference frame S(s1,s2,s3) will also be orthonormal. The
vectors 2 and s3 are taken as the model of the transformed optical image.
Thus, an LOS vector set or LOS reference frame provides, in one kinematic
quantity, complete information on the pointing direction of the optical axis
and on the rotational and inversional orientation of the optical image. Note
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that the location of the origin of the LOS reference frame S along the optical
axis between optical elements has no importance, and in this sense LOS vector
sets can be thought of as free vectors. LOS reference frames provide
directional and orientational, but not positional, information.

6 . THE MIRROR TRANSFORMAT ION MATRIX

The mirror transformation matrix EM] is assembled from the scalar components
(n1,n2,n3) of the mirror normal vector n as follows:

1-2n n -2n n -2n n11 12 13
EM] = -2n n 1-2n n -2n n (5)21 22 23

-2n n -2n n 1-2n n31 32 33

Matrix EM] , as expressed by Eq. 5 , is wel 1 known. Detai ls of the development
of Eq. 5 can be found in references 15 and 16. Matrix EM] can be shown to be
orthogonal by noting that the transpose of EM] is identical to its inverse.
Since EM] is also symmetric, the following relations apply:

EM] = EM]T = EM] (6)

Though orthogonal i ty is preserved by EM] , handedness i s not . As seen in
Figure 2, the outgoing LOS vector set 5 left-handed. Dextrality
can be restored by transforming S through another mirror. The change in
handedness of the LOS reference frame is indicative of the inversion/reversion
property of mirrors.

Note from Eq. 5 that EM] is insensitive to a sign reversal of the mirror
normal. Therefore, both sides of a double-sided mirror are represented by the
same mirror matrix. This fact and Eq. 6 can be used with the concepts
presented in the next section to show that a LOS vector set passing through a
parallel mirror pair is unchanged. This is another way of saying that a mirror
is self-inverting.

7 . THE OPT I CAL TRANSFORMAT ION MATRIX

The overall optical transformation matrix associated with multiple mirrors is
obtained by post-multiplying the individual mirror transformation matrices in

sequence. Thus, the matrix product EM2] EM1] represents the optical
transformation matrix for the parallel mirror pair of Figure 3. Optical
transformation matrices model the transformation of an LOS reference frame
through an optical system or instrument. Optical transformation matrices,
which are orthogonal but not generally symmetric, will be designated by the
letter EO].

Consider the two-mirror optical instrument shown in Figure 3. The incoming
camera LOS vector set (g1,g2,g3) is transformed by the mirror M1 into LOS
vector set (r1,r2,r3), which is then transformed by mirror M2 into the
outgoing LOS vector set Operationally, the optical transformation
matrix gives the outgoing LOS set in terms of the incoming set
(g,g2,q3) as
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[; 2 = [0]
[g g2 g3]

[S]T [0] [Q]T (7)

where

[0] = [M2][M1] (8)

and [M1] and EM2] are the transformation matrices of the first and second
mirrors respectively. For instance, the optical transformation matrix [0] for
the mirror pair shown in Figure 3 is equal to the identity matrix (a general
result only for parallel mirror pairs). For systems with ri elements, Eq. 8
expands to

[0] = [M][M_1]... [M2][M1] (9)

Note that the mirror matrix EM] of Eq. 5 is the optical transformation matrix
for a simple optical instrument that consists of a single plane mirror.

8 . VECTOR BASES

Eq. 5 gives the mirror matrix in terms of the scalar components (n1,n2,n3) of
the mirror normal vector n. Implicit in this statement is the existence of a
vector basis to which the components are referred. A vector basis is an
orthonormal triad that can be used to define any three dimensional vector. For
example, if the components of n are referred to the vector basis
then can be expressed as the sum of vector components

n=na +na +na (10)— 11 22 33

For the matrix in Eq. 5 to be valid in Eqs. 1 and 3, the mirror normal must
be a unit vector and must be expressed in the same unit vector basis as the
vector to be transformed. This rule can be extended to include all optical
transformations. Basis consistency is a fundamental requirement of the
methodology of this paper.

Vector triads are also used to analytically describe the orientation of one
rigid body or reference frame relative to another. For instance, let the
vector set (a1,a2,a3) be attached to the base of the instrument shown in
Figure 4. Let set (b1,b2,b3) be attached to the mirror, which can rotate with
respect to the instrument base. The orientation of the mirror with respect to
the base is defined by the relative orientation of the two vector sets

a3) and (b1 ,b2,b3). Orthonormal triads that are used to define the
orientations of the kinematic reference frames corresponding to the various
rigid bodies within a system are also useful as vector bases for the
expression of LOS vectors, image vectors, and optical transformations.

A vector, such as the mirror normal n, can be expressed in any vector basis
defined in the system. To avoid ambiguity, a superscript is added to a vector
if a particular vector basis is intended. Thus and B indicate vector j
expressed in the A and B bases as follows:
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B B B Bn =nb +nb +nb— 11 22 33

Note that
equivalent
general be

while A and B represent the same vector and can be considered
(A=B) their components (nt, n, n) and (n, n, n) will not in
equal (n n, i=1,2,3).

9. THE BASIS TRANSFORMATION MATRIX

A
n

=

[BTA]{A]

a1
a

a
-3

A A A Ab =b a +b a +b a
—i il—i i22 i33

LOS vector sets,
define reference
system vectors.
transformations.

while not necessarily attached to rigid bodies, none the less
frames, and serve as suitable vector bases for expressions of
Basis transformations should not be confused with optical
A basis transformation of a vector does not change the
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A A A An =na +na +na— 11 22 33
(11)

A basis transformation matrix is used to
from one basis to another. For instance,
can be found by a transformation of the
basis transformation [BTA] according to

change the representation of a vector
the vector components of n in basis B
components of n in basis A using the

B
n
1

B
n
2

Bn
3

(12)

The same transformation used to transfer the components of a vector from one
basis to another can also be used to transfer the basis vectors themselves:

[

as

(13)

Eq. 13, rather than Eq. 12, is generally regarded as the defining equation for
a basis transformation. In fact, basis transformation matrices are usually
developed from observations of the relative orientations of the basis vectors.
That is, the vectors and b3 are expressed in terms of 2' and

Inspection of Eqs. 13 and 14 reveals that the components of EBTA] can be
identified as

i=1,3 (14)

BTA BTA BTA bA bA bA
11 21 31 11 12 13

[BfA] = BTA BTA BTA = b" bA bA
12 22 32 21 22 23

BTA BTA BTA bA bA bA
13 23 33 31 32 33

(15)



magnitude or direction of that vector, but merely redescribes it in a
different reference frame. An optical transformation of a vector, however,
produces a new vector. A more detailed discussion of basis and optical
transformations is provided in the next section.

10. RELATION BETWEEN OPTICAL AND BASIS TRANSFORMATIONS

As previously mentioned, the vector set associated with an LOS reference frame
can be used a vector basis. Therefore, basis transformation matrices that
involve LOS vector sets are of interest. How these basis transformations are
related to the optical transformations that produce the LOS vector sets is the
subject of this section. The optical transformation given by Eq. 7 and the
basis transformation given by Eq. 13 are repeated below for convenience:

Optical Transformation: [s ; ;] = [01 [g ;

[S]T [0][Q]T

b a1 1
Basis Transformation: b = [B1A] a2

b a
_3

Note that the optical transformation of Eq. 7 is different in form than the
basis transformation of Eq. 13. In Eq. 7, each of the vectors on the left-hand
side is a function of only one vector on the right. For example, is
dependent on but independent of and g3. In Eq. 13, however, each of the
left—hand vectors is expressed as a combination of all three vectors on the
right. Further, note that both equations are notationally compact. The
transformations represented as a single letter are actually 3-by-3 matrices.
Eq. 13 is made explicit by simply expanding the matrix [BTAI:

BTA BTA BTA
b 11 21 31 a1 1
b = BTA BTA BTA a (16)

12 22 32 2

b BA BA BA a
T T T —3
13 23 33

For Eq. 7 to be explicit, however, the matrix and the vectors must be
expanded, the latter as columns of their components referred to an appropriate
vector basis. For instance, expanding with repect to basis yields

A A A A A A A A A
s s s 000 q q q11 21 31 11 21 31 11 21 31

A A A A A A A A A
s s s = 0 0 0 q q q (17)12 22 32 12 22 32 12 22 32
A A A A A A A A As ss 000 q q q13 23 33 13 23 33 13 23 33

where

A A A A A A A As=s u +s u +s u g =q u +q u +q u i=123—i 111 122 i33 I il—i 122 133
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To further stress the difference between basis and optical transformations, we
reiterate that Eq. 12 is used to change the components of a single vector from
one vector basis to another. Eq. 16 describes one set of vectors in the basis
of a second set. Finally, Eq. 17 represents the optical transformation of a
set of vectors into a different set of vectors, both sets of which are
described in the same vector basis.

We now seek the basis transformation matrix between two reference frames
related by an optical transformation. In other words, given the optical
transformation matrix [0] and the two LOS vector sets (g1,g,g3) and

of Eqs. 7 and 15, what is the basis transformation matrix [T1?

We begin by transposing Eq. 7, using both forms of compact notation:

;
2 =

g2 [0]T ES] = [Q] [0]T (18)

5
_3 3

We seek a transformation of the form of Eq. 13:

;; = [STQ]
g2

ES] = ESTQ][QI (19)

5
-3

Equating the right-hand sides of Eqs. 18 and 19 and solving for [5T0] leads to

[STQ] =
g2 [0]T[g1 ; ;] [5T}= [Q][0]T[Q]T (20)

As mentioned, Eq. 20 is compact. To expand the equation, a consistent basis
must be chosen for [0] and g1. For instance, if [0] is expressed in the
A-basis, then the vector would have components r1, r2, and r3. When the
A-basis is used, the expanded, or explicit , form of Eq. 20 is

SQ SQ SQ A A A A A A A A A
T T T q q q 000 q q q
11 21 31 11 12 13 11 21 31 11 21 31

SQ SQ SQ A A A A A A A A A
T T T = q q q 000 q q q (21)
12 22 32 21 22 23 12 22 32 12 22 32

SQ SQ SQ A A A A A A A A A
T T T q q q 000 q q q13 23 33 31 32 33 13 23 33 13 23 33

The first matrix on the right is the basis transformation matrix [QTA] between
the vector bases (g1,g2'g3) and written in the form of Eq. 15. The
last matrix is the transpose (and, since the matrix is orthogonal, the
inverse) of the first. Thus, returning to compact form, Eq. 21, which
represents the desired basis transformation [ Ta], can be written as

[STQ] = [Q.A] [OA]T[ATQ] (22)
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Transformation matrix [01 is superscripted in Eq. 22 to indicate that this

matrix must be expressed in the A-basis for the equation to be valid. Note,

however, that reference frame A serves only as an intermediate reference

frame. As the equation is valid for any intermediate reference frame, the

A—basis can be regarded as a dummy parameter.

An alternative to Eqs. 20, 21, and 22 can be found by solving Eq. 19 for

[SQ]:
5

[5T0] =

[

_
I [g1

; ;1 [5T0]= [SI [Q]T (23)

The following two equations can be derived from Eq. 23 in the same manner that

Eqs. 21 and 22 were derived from Eq. 20:

SQ SQ SQ A A A A A A
T T T s s s q q q
11 21 31 11 12 13 11 21 31

SQ SQ SQ A A A A A A
T T T = s s s q q q (24)
12 22 32 21 22 23 12 22 32

SQ SQ SQ A A A A A A
T T T s s s q q q
13 23 33 31 32 33 13 23 33

[5Ti = [SA][ATQ] (25)

If the Q-basis is used in Eq. 22, the result is

[5T01 = [QTQ][OQ]T[QTQI = [0Q]T (26)

since [T°] is simply the identity matrix. Note that Eq. 26 is valid only if
optical transformation is expressed in the basis of the incoming LOS reference

frame.

Now, the right-hand sides of Eqs. 22 and 26 can be equated and then transposed
to provide a formula to transfer an optical transformation matrix from one
basis to another (in this case, from basis A to basis Q):

[0Q] = [QTA][OA]T[ATQ] (27)

Eq. 26 indicates that for certain cases an optical transformation matrix can
be related to a basis transformation matrix by a simple transpose. It is
important, then, to clearly delineate which function is intended when using
these transformations. This is especially true if an optical transformation
matrix is symmetric, as is always the case for single mirrors, double—mirror
pairs, and any prism used as an image rotator. For symmetric transformations,
Eq. 26 and its inverse can be used to show that

[5T] = [T5] = [0Q] = [Os] (28)

Eq. 28 indicates that, if the optical transformation matrix from Q to S is
symmetric, then the forward and backward optical and basis transformation
matrices are all equal, and that they are valid for vectors written in either
the Q or S basis. Eq. 22 must be used, however, if the optical transformation
matrix is not symmetric.
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1 1 . APPLICATION OF LOS REFERENCE FRAMES

LOS reference frames are an analytical tool for use in solving a wide range of

optical kinematic problems associated with plane-mirror systems. They are
especially useful in analysis of gimbaled-mirror, vehicle-mounted imaging
systems. For example, control equations for stabilizing the optical axis can
be derived by calculating the angular velocity of the outgoing LOS reference
frame27. Further, the amount of image rotation and the resulting command
signal to a derotation device can be ascertained by analysis of the LOS
reference frame orientation28. The methodology introduced in this paper is
also of use in mechanical tolerance and alignment analysis, and in determining
the boresight coefficients associated with structural dynamics. Accompanying
work on these latter topics is in progress by the authors. Finally, many of
the published solution techniques for specific LOS pointing problems are
readily adapted to the analytical framework described in this paper.

Successful application of LOS reference frames to problem solving requires
manipulation of vector triads using both optical and basis transformations.
The basic techniques of this paper are used to assemble the LOS reference
frames of the example in the next section.

12 . EXAMPLE : AN AERIAL PHOTOGRAPHY SYSTEM

A gimbaled-mirror aerial photography system is shown in Figure 5. The camera C
is mounted internally to the floor of aircraft P. The forward, right-wing, and
down directions of P are indicated. The optical axis of the camera, shown as
LOS vector g1, reflects first as off the fold mirror M1 and then as off
the gimbaled mirror M2 before leaving the aircraft through a hole in the floor
(not shown). The optical axis lies in a nominally horizontal plane until
reflected off of 142, which is brought into the desired orientation with
respect to the aircraft by rotations i/I of the outer gimbal A and 0 of the
inner gimbal B, to which 142 is rigidly attached. The following unit vector
sets are introduced to define the geometry and aid in the analysis of the
system. Each forms a right-handed orthonormal triad and is shown in Figure 6
unless otherwise indicated:

. Airframe basis set P(1,fl2,Q3) - Fixed in the aircraft and aligned in the
forward, right, and down directions respectively.

. Camera LOS set Q(g1,g2,g3) - Vector g is aligned with the optical axis
from the focal plane to mirror M1. Vectors g2 and g3 are aligned with the
horizontal and vertical direction of the focal plane. Vector is

parallel to vector 23.

• Intermediate LOS set R(r1,r2,r3) - (not shown) - The transformation of
the camera set Q through mirror M1, which is fixed such that is

aligned with Set R is left-handed.

• Outgoing LOS set S(s1,s2,s3) - (not shown) - The transformation of the
intermediate set R through mirror M2.

• Outer gimbal basis set A(a1,a2,a3) - Attached to the outer gimbal A and
aligned with the set (Q2'21'fl3) when angle O is zero. Vector is

parallel to the inner gimbal axis.
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. Inner gimbal basis set B(b1b2,b3) - Fixed to the inner gimbal (and thus
to mirror M2) and aligned with A(a1,a2,a3) when 8 is zero. Vector is
coincident with n2, the vector normal to the surface of mirror

M2.

The following basis transformations can be assembled from observation of the
system configuration. Note that C1 and S1 stand for cos(i) and sin(i)
respectively, where i is either a fixed angle (as with 135

, the angle between
and g1), or a variable angle (such as the gimbal angles i/i or 9):

2 C S 0 21 1 135 135 1

g =[T"]2 = -s C 0 (29)2 2 135 135 2

g3 23
0 0 1

0 1 0

= [Af] 2 =
Cç1j

0
Sc1, 2 (30)

a3 2
Sc1,

0
Cc1, 23

b a C 0 -s a9 9 i
b [BjA] a = 0 1 0 a (31)

b a S 0 C a—3 —3 9 9 —3

Expressions in the P-basis for the intermediate and outgoing LOS reference
frame matrices ER"] and ES"] and the system optical transformation matrix [0"]
are desired.

Vector n1, the normal to mirror M1, bisects the angle between the incoming and
outgoing optical axes:

n =5 2 -c p (32)1 22.5 1 22.52

Since = b1, the mirror normal 2 can be expressed in the P-basis by use of
Eqs. 30 and 31 as

= = -S9S + C9; - S9C (33)

The mirror transformation matrices [M] and [M] can be constructed by use of
Eq. 5, with the scalar coefficients of the mirror normal vectors given in
Eqs. 32 and 33. The resulting matrices are

1-2S2 2S C 0 C S 022.5 22.5 22.5 45 45

EM"] = 2S C 1-2C2 0 = S -C 0 (34)1 22.5 22.5 22.5 45 45

0 0 1 0 0 1
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1-2SS 2SeCeSij -2SS1,C

[M] = 2S9C9S 1—2C 2S8C8C,1j
(35)

-2SSC, 2S9C8Cq 1-2SC

The intermediate LOS matrix expressed in the P-basis, [R}, is constructed by
use of Eq. 3 in combination with the expressions for the camera LOS matrix
[QP] and the mirror transformation matrix [M] found in Eqs. 29 and 34
respectively

t = [M] [g g g] [RP]T = [Mr] [QP]T

C 5 0 C -5 0
45 45 135 135 1

[R)]T= S -C 0 S C 0 k=I)2
45 45 135 135 2
O 0 1 0 0 1

k k 0 -k-k 0 0-1 0
[R)]T= k-k 0 k-k 0 = -1 0 0 (37)

0 0 1 0 0 1 0 0 1

Note that the determinant of ER"] is equal to -1, verifying that set R is
left-handed. The outgoing LOS matrix [Si'] is formed in a like manner by
multiplying ER"] by the mirror transformation matrix [112]:

pp p Y PP P PT P PT[sss ]=[n][r r r ] [SI =[n][R]
1 23 2 1 23

1-2SS 2SeCeSii 0 -1 0

[5P]T =
2S9C9S 1-2C 2S9COCVJ

-1 0 0

2SS%1C,/, 2SeCeC 1_2SC;
0 0 1

_2SeCeSii 12SS _2SSçjCç,
=

-1+2C _2SeCoSj 2SOCOCVJ
(38)

_2S9C9Cçj, 2SSç1Cj 1-2SC

The LOS transformation matrix [5P] is the result of successive optical
transformations of the camera LOS matrix ER"] by the mirrors H1 and H2, but it
can also be regarded as [ST"], the basis transformation from P to S.

The optical transformation of the system from Q to S is found by post-
multiplying the component transformations in sequence:

[0"] = [M][M]
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1-2SS 2S9C0Sç1, -2SSC,1, c5 s5 o
[0P]

2S8C9Sj 1-2C 2S9C9C, S45 -C45
0

2SSçjCç1 2S9C0C,/J 1-2SC
0 0 1

(1-2SS, + 2S0C9S,1)k (1-2SS 2SOCOSc?,)k -2SS1,C

[0P} (2SeCeS + 12C)k (2SeCOS 1-2C)k 2S0C9C
(39)

(-2SSC1, + 2S9C9C,)k (-2SS,t,C,,, _ 2S9C9C1,)k 1-2SC

Multiplying Q by the system transformation matrix [0"] will produce the
outgoing LOS matrix [Se] of Eq. 38 directly. Note that, unlike the component
transformations [M] and [M] , the system transformation matrix [0P] is not
symmetric . It can be shown that , like [M] and [M] , [0"] is orthogonal.
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Focal Plane

Mirror

Fig. 1. Line—of--Sight and Image Vectors

Fig. 2. LOS Reference Frames
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fl2 fl
[M2] = [Ml] = [Ml]'
[0] = [M2][Ml] = [I]
[S] = [D][Q] = [Q]

Fig. 3. Parallel Mirror Pair

Fig. 4. Vector Bases
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Fig. 5. Aerial Photography System
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Fig. 6. Analytical Framework


