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ABSTRACT

Image rotation is an inherent part of plane—mirror optical systems. The amount
of rotation caused by any one mirror is a function of its relative orientation
within the system. Fixed mirrors introduce a fixed amount of rotation, while
gimbaled and flexured mirrors introduce a variable amount. Further, in
vehicle-mounted systems, additional image rotation can be introduced by
changes in vehicle orientation. Derotation devices are added to optical
systems when a stable image orientation is required. A digital controller with
a feed-forward algorithm can be used advantageously to control these devices.
Control of a derotation device requires knowledge of the image rotation angle
as a function of the mirror and vehicle orientation angles. Three methods of

calculating image rotation for any plane-mirror optical system are presented.
These methods are based on a new optical kinematic construction, the line-of-
sight (LOS) reference frame. Using LOS reference frames, image rotation due to
fixed mirrors, movable mirrors, derotation prisms, and vehicle orientation is
calculated exactly. The first two methods give the total image rotation angle
without regard to the source of the rotation. The last method gives the
amount of rotation imparted into the system by each component. Total image
rotation is the sum of these individual rotation angles. All methods produce
equations for the real-time calculation of the derotation prism command
signal. Image rotation within an aerial photography system is calculated as an

example.

1. INTRODUCTION

The existence of image rotation within plane—mirror optical systems is well
known and generally undesired. For human observers, non-upright images are
confusing at best and disconcerting or even nauseating at worst. While not
prone to vestibular disruptions, computer-imaged systems can none the less be
adversely affected by the image processing complications of image rotation.

Image rotation is introduced in plane-mirror systems from four possible
sources: fixed components, movable components (such as gimbaled or flexured
mirrors), vehicle orientation, and derotation devices. The last item, a
derotation device, is usually added to the system to remove the unwanted
rotation imparted by the first three items. The amount of image rotation due
to the fixed components of a system is constant and a function only of their
relative orientation. If movable optics are present, the amount of image
rotation in the system will be a function of the state variables (such as
gimbal angles) that describe the orientations of the movable components. If

0-8194-086 1-1/92/$4.00 SPIE Vol. 1696 Controls for Optical Systems (1992)141



the system is vehicle mounted, then an additional amount of rotation is
imparted due to the general motions of the vehicle. Note that this last effect
is not unique to plane-mirror systems.

As mentioned, derotation devices are added to systems when a controlled-
orientation image is desired. The vast majority of these are prisms, and the
term "derotation prism" is ubiquitous. There are many different derotation
prism configurations, but most 1) do not change the direction of the optical
axis, 2) are mounted to physically rotate about the optical axis, and 3)
impart an amount of image rotation that is twice that of prism rotation. In
systems with variable image rotation, the derotation prism is servo-driven to
maintain correct image orientation. In the past, very complex analog circuits
were often required for control of these devices. Today's microprocessors
allow greatly simplified digital controllers and feed-forward algorithms. To
accurately control a derotation prism, the exact amount of unwanted image
rotation associated with the vehicle and mirror orientation states must be
calculated. This image rotation angle, correctly scaled, is used as the
command signal to the derotation prism. Three general methods of deriving the
equations relating vehicle and mirror orientations to image rotation are
presented herein. The first two methods (back projection and outgoing LOS
reference frame) both yield a single equation for the total system rotation.
The third method (multi-angle formulation) can be used to calculate the image
rotation associated with the individual system components.

The methodology presented in this paper makes extensive use of line-of--sight
(LOS) reference frames. An LOS reference frame is defined by a vector triad.
One of the three vectors is parallel to the optical axis, while the other two
lie in the perpendicular image plane. An LOS reference frame, which is
transformed through an optical system by its components, provides orientation
information for the optical axis as well as the optical image. The general
properties of LOS reference frames are described in detail in a companion
paper by the authors1. Application of LOS reference frames to LOS
stabilization is detailed by DeBruin2.

2. HISTORICAL PERSPECTIVE

Much has been written about image derotators and their application. Hopkins3'4
summarizes the properties of several common prisms, as does Swift5, who also
covers other, non-prismatic, derotation devices. Dune6 and Walker7 each
discuss in detail one particular prism configuration. A tyical application
example is provided by Boot8, while Stetson and Elkins and Fagan and
Waddell10 both outline the use of image rotators in the observation of
rotating machinery. The image processing complications of not derotating an
image is detailed by Freitag and MacLeod11.

Image rotation was analyzed in early optical instruments with a manual,
graphical ray trace of the optical system. Computers have long supplanted
pencil-and-paper in this regard, and are essential for application of the
ray-trace technique to modern, movable-element systems. Dolan12 lists image
rotation analysis among the features of a particular ray—tracing computer
program. It should be noted, however, that this method provides only numerical
information on image rotation. The algebraic equations relating image rotation
to the system state variables (gimble angles, etc) are not provided by ray
tracing.
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The method described herein is based on the matrix-vector approach to plane-
mirror analysis. Hopkins3'4 and Walles and Hopkins13 describe the orientation
of an image in terms of the coordinate transformation properties of the system
mirror matrices. Sitsov1418 uses vector triad transformations throughout his
series on plane—mirror system design. Royalty19 discusses transforming the
gravity vector through the optical system to provide an error signal for
derotation prism control. The authors extend these previous works by
providing 1) a definition and general equation for image rotation, 2) a method
of directly calculating the derotation servo command signal from the system
states, and 3) a technique for possibly increasing the efficiency of such
calculations when implemented in real time. Further, these methods are based
on an analytical framework that is of general applicability to kinematic
analysis of vehicle-mounted, plane-mirror optical systems.

3 . ANALYTICAL DEFIN IT ION OF IMAGE ROTATION

The subject of image rotation is biased by the experience of the human
observer. Most "viewing" optical systems are designed to provide an upright
image to the observer. As such, image rotation is defined as the amount an
image is skewed from that seen by a human standing erect and looking along the
same line-of-sight. This definition, which implies natural "up" and "level"
directions, becomes insufficient in circumstances where up and level aren't
defined. For example, in aerial mapping, a camera looking directly down images
a scene with no "up" direction. In this circumstance, the image derotation
requirement may be to keep the "north" direction at the top of the image.

The methods described in this paper require that the desired image orientation
be analytically defined in vector terms. To do this, an "orientation vector"
must be specified by its vector components in one of the vector bases of the
system model. Image rotation is then defined by the orientation of the
projection of this vector onto the image plane of the optical system. Care
should be taken in defining this vector. For instance, if the local north
vector is specified as the orientation vector, one must take into account that
the direction of this vector changes relative to the earth as the earth is
traversed.

4. METHOD ONE: CALCULATING IMAGE ROTATION BY BACK PROJECTION

The "human standing erect" definition of image rotation is the most common and
will be used herein. One, but not the only, way of specifying this in vector
terms is shown in Figure 1. A generic optical system is represented as a
simple lens and imaging focal plane. The system is viewing a scene in which up
is defined by a local gravity vector g, which is designated as the orientation
vector. Vector g images onto the focal plane as vector . Note that the system
outgoing line-of-sight will not, in general, be perpendicular to g. As such,
vector f will be foreshortened.

A line v is shown on the focal plane to designate the vertical direction as
seen by a human observer. Note that the observer can be looking directly,
viewing on a remote video monitor, or reviewing a later-developed photograph.
The image rotation angle is defined as the angle between and v. A suitable
means of defining a positive direction of rotation is required, and to this
end an LOS vector set R(r1,r2,r3) is fixed in the optical system and aligned
with the focal plane as shown. Vector is parallel to the optical axis and
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£2 IS aligned with line v. Vector completes the right-handed triad.
Following the right-hand rule, a positive is defined as taking from
toward

Vector i: can be found by use of g and [Os] , the optical transformation of the
system. This transformation is defined from the focal plane to the outgoing
optical axis. The inverse of [Os] is used to project g back through the
system. Note that the vector , the projection of g through [Os], will not, in
general , 1 ie in the focal plane . Making use of the orthogonal ity of [Os]:

[h] = [O5J1Eg] = [0]T[} (1)

Vector £ is found as the projection of onto the focal plane:

f = (h•r )r + (h•r )r (2)-

The angle follows directly:

f•r

' = arctan (3)

Vector £ can be eliminated using Eq. 2:

h'r

' = arctan
h.:

(4)

Vector £ can likewise be eliminated using Eq. 1. Note that, following the
notation of Reference 1, Eq. 1 is a matrix equation. Whenever the matrix form
of vectors are substituted into dot (inner) product equations, the matrix form
of the inner product will be used (e.g., h•L3 [h]T[r3]).

[ [05]T[g] ]T[rJ
0 = arctan (5)

[ [05]T[g] }T[]

Eq. 5 provides a nice compact formula for calculation of image rotation. It
should be noted, however, that for Eq. 5 to be operational the components must
be expressed in a consistent vector basis. For example, say that [Os] is
expressed in the vehicle basis P (and thus written as [Ofl]), g is expressed in
the local-level basis N, and and r3 are expressed in their own basis R. The
basis transformations [PTN] and [T would then be required to perform the
calculations of Eq. 5:

[gN] IT[P.rRI [r]
= arctan (6)

[N] ]T[P.rR] [R]

5. METHOD TWO: USE OF THE OUTGOING LOS REFERENCE FRAME

Method two is presented as an alternative to calculating image rotation by
back projection. This second method makes use of the system outgoing LOS
reference frame. As shown for the simple one-mirror system of Figure 2,
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outgoing LOS reference frame S(s1,s2,s3) is the projection of camera set
R(r1,r2,r3) through the optical system (The camera set is substituted for the
focal plane set without loss of generality as explained in Reference 1):

2 31 = [05]Et1 £2 £3] [SIT =[05][RIT (7)

Set S can be calculated early in the analysis of an optical system and then
used for the calculation of image rotation. The following equation follows
from Eq. 4 based on the orthogonality of [Os] and the preservation of inner
products in orthogonal transformations:

[ [Os] ]T[0] [1:31
4 = arctan (8)

[ [ii] ]T[0] [j]

Eq. 1 can be used to eliminate [Os][h]. Likewise Eq. 7 can be used to
eliminate [Os] [1:21 and [Os] [1:31:

4, = arctan (9)
g•s

Eq. 9 states mathematically that the orientation of scene in the outgoing LOS
reference frame is identical to the orientation of the scene image in the
camera LOS reference frame. This fact is important not only in image rotation
calculations but also in the determination of structural dynamics boresight
coefficients and error and alignment analyses. Again, note that Eq. 9 must be
expressed in a consistent vector basis to be operational.

6. THE DEROTATION COMMAND SIGNAL

As a component of the optical system, the optical transformation [OD] of a
derotation prism is included in the system transformation [Os] . As such, the
image rotation given by Eqs. 3 through 9 includes the image rotation A
imparted by the derotation prism as well as the unwanted system-imparted image
rotation V:

=A+v (10)

The validity of Eq. 10 follows the arguments for the multi-angle formulation
developed later in Section 7. The derotation prism is added to the system to
eliminate image rotation. Inspection of Eq. 9 reveals that image rotation is
equal to zero provided that:

(11)

Eq. 11 represents the root form of the derotation control equation. The
variables A and ij', however, are optical kinematic variables, which generally
cannot be directly measured or controlled. It is true, however, that both
variables are related to physical kinematic states of the system which can be
directly measured and controlled.

As mentioned, the image rotation A imparted by the derotation prism is twice
that of the physical rotation p of the derotation prism:
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A=2p (12)

Eq. 12 is derived from the optical transformation of a derotation prism, which
is discussed in detail in the Appendix. Using Eq. 11 in Eq. 12, the desired
derotation prism angle, and thus the derotation servo-control command signal,
can be solved in terms of the unwanted system image rotation:

1p =-—v (13)
cmd 2

It can be seen from Eq. 10 that if A is zero that v is equal to 0, that is,

that all of the system rotation is unwanted. Angle v can be calculated then by
positioning the derotation prism in its home position (pO), calculating the
system transformation, and then using any of Eqs. 3 through 9 as appropriate.
The derotation command signal pcm follows by substituting v into Eq. 13.

Signal pcm as calculated by use of Eq. 13 is a function of the geometry
constants, movable mirrors states, and vehicle orientation angles. Attempting
to write Eq. 13 directly in terms of these variables can be unwieldy for
complex systems. Of course, numerically there is no reason to do this. The
components of Eqs. 3 through 9 can be calculated separately first, and the
intermediate answers subsequently carried forward into the final equation.
Even so, the processing load associated with this task can add an undesirable
time delay to the control loop (Remember, pcmd is calculated from measured
system states in real time and subsequently used as the input to the
derotat ion control loop) . System performance , then, can be improved by
reducing the processing load associated with calculating pcmd. The third
method of this paper, as outlined in the next section, produces a set of image
rotation equations that has been found to reduce the derotation command
computational load for some systems.

7 . METHOD THREE : MULT I -ANGLE FORMIJLAT ION

As mentioned, the system image rotation is due to four sources: 1) the
derotation prism, 2) the fixed system components, 3) the movable system
components, and 4) vehicle orientation. In the multi-angle formulation, each
of these effects is considered separately. In fact, angle is explicitly
expressed as the sum of four component angles:

(14)

Angles A, ', o', and r represent respectively the image rotation imparted by
items 1 through 4 above. Angle A is the same as in Eq. 10. Comparison of
Eqs. 10 and 14 indicates that the unwanted system rotation v is the sum of ',
o, and t. Eq. 13 can be modified appropriately:

(15)

Four concepts are introduced to aid in the construction of the multi-angle
formulation: 1) the home-position optical transformation, 2) the home-position
LOS reference frame, 3) the orientation reference frame, and 4) the
preservation of relative position law.
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1. Home-Position Optical Transformation: An "H" is added to the subscript
of a movable component optical transformation to indicate that the
transformation is to be evaluated with the component in its home position,
that is, with the component state variable(s) set to zero. For instance,
with the derotation prism angle p set to zero, the optical transformation
matrix of Eq. Al (Eq. 1 of the appendix) evaluates to:

1 0 0
0R —1 0 (16)
DH

0 0 1

2. Home-Position LOS Reference Frame: Let LOS reference frame S(s1,s2,s3) be
the transformation of R(L1,r2,r3) through optical transformation [Ox]
corresponding to movable-component X. Home-position LOS reference frame
T(t1,t2,t3) is the transformation of R through home-position optical
transformation [OxHI . Set T is fixed relative to R and is independent of the
orientation of X. Note that if the motions of X change the direction of the
outgoing LOS, then r and t will not stay aligned (that is, T does not
follow the LOS).

3. Orientation Reference Frame: For a system with outgoing LOS reference
frame S(s1,s2,s3) and defined orientation vector g, the orientation
reference frame V(v1,v2,v3) is attached to the LOS and aligned as follows:
1 is aligned with V2 aligned with the projection of g onto the image
plane of the outgoing LOS (this plane is perpendicular to ); completes
the vector triad. Reference frame V represents the desired orientation of S,
and as such, the derotation prism is driven to align S with V. Note that set
V must be defined with the same handedness as S. The orientation reference
frame is an extension of the "orientation matrix" defined by Hopkins4.

4. Preservation of Relative Position: The rotation angle between two LOS
reference frames on a common line—of-sight is preserved by any subsequent
optical transformation. This is a direct consequence of the preservation of
inner product rule.

The geometry and construction of the multi-angle formulation is shown in
Figure 3. A vehicle-mounted, movable-element (gimbaled-mirror) optical system
is shown with its elements symbolically depicted for simplicity. Focal plane
(camera) reference frame A passes sequentially through derotation prism D,
fixed components F, and gimbaled mirror G. Transformation matrices [Of] are
defined for i D, F, and G. The vehicle P moves within reference frame N, in
which the gravity vector g is fixed. The outgoing LOS reference frame, which
is not showri is oriented within the vehicle as it leaves [Ocl. The
orientation of the vehicle and the outgoing LOS reference frame within N is
depicted by the basis transformation [IITI']. The vehicle orientation vector k
is fixed in the vehicle in the "down" direction and aligned with g when the
vehicle is flat and level. The multi-angle formulation is outlined as follows:

1. Derotation prism D and gimbaled mirror G are placed in their home
positions and home-position optical transformations [ODH] and [OGH] are
calculated.
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2. LOS reference frame B(b1,b2,b3) is the transformation of focal—plane LOS
reference frame A(a1,a2,a3) through [ODI. Home-position LOS reference frame
C(c1,c2,c3) is the transformation of A through [ODH]. The derotation prism
image rotation angle A is found as follows:

c •b
A = arctan

[
2

)

(17)

Eq. 17 is in agreement with Eq. 12, which indicates that a positive prism
rotation p produces a positive image rotation A.

3. LOS reference frame D(d1,d2,d3) is the transformation of C through [OF].
Both C and D are fixed within the optical system.

4. Orientation LOS reference frame U(u1,u2,u3) is constructed as follows:

Line-of-sight u is found by transforming through [Os]. Vector 2' the
projection of the vehicle orientation vector onto the outgoing image
plane, is found as follows:

k - (k•u )u— 11u = (18)2
I!

-

Vector set U must match the handedness of the outgoing LOS reference frame.
Vector 1:13 5 added, therefore, as either plus or minus u1xu2 depending on
whether there are an even (+) or odd (-) number of inversions in the optical
path. As (arbitrarily) drawn, the system in Figure 3 shows inversion through
the derotation prism and the gimbaled-mirror but not through the fixed
components.

5. Combination orientation/home-position LOS reference frame V(1,2,3)
(not shown) is aligned with U when G is in its home position. Vector set V
is fixed in the optical system.

6. Home-position LOS reference frame E(e1,e2,e3) is the transformation of V
back through [OGH] . The fixed-component image rotation angle ' is found as
follows:

e •d
= arctan

[

23
(19)

As both D and E are fixed within the optical system, angle ' will be
constant.

7. LOS reference frame F(f'1,f2,f3) is the transformation of E through [OG].
The gimbaled-mirror image rotation angle o is found as follows:

u •f
= arctan J (20)

u •f22
An alternate form of Eq. 20, which can greatly simplify the evaluation of o',
can be found by using Eq. 18 to eliminate
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k•f
o = arctan

[ )
(21)

8. Orientation LOS reference frame W(w1,w2,w3) is constructed as follows:

Line-of-sight is aligned with . Vector 2' the projection of the
gravity vector g onto the outgoing image plane, is found as follows:

g - (.kL1);w = (22)

(";);I
Vector W3 ]5 added as +/-(w1xw2) to match the handedness of U.

9. The vehicle-orientation rotation angle t is calculated as follows:

w •u
-U = arctan J (23)

w •u

Eq. 22 can be used to eliminate

g•u
r = arctan (24)

g•u

10. The derotation command signal is generated by substituting Eqs. 19,
21, and 24 into Eq. 15.

Note that the multi-angle formulation does not always produce a computational-
ly shorter set of equations than the first two methods of this paper. Other
factors, however, such as sensor and vehicle bandwidth, the existence of
previously calculated terms, and the computationaL characteristics of the
microprocessor, must be considered in deciding which set is better to use.
Note also that the formulation presented here can be readily adapted to
systems in which the components are configured differently from the system
shown in Figure 3.

8 . EXAMPLE: AN AERIAL PHOTOGRAPHY SYSTEM

A gimbaled-mirror aerial photography system is shown in Figure 4. The system
is mounted internally to the floor of aircraft P and consists of camera C,
derotation prism D, fixed mirrors M1 and M2, and gimbaled mirror G. The
outgoing LOS of the system leaves through a hole in the floor of the aircraft
(not shown). Prism D is brought into alignment in the system by rotation p
about the optical axis. Gimbaled mirror G is positioned by rotations cit of the
outer gimbal A and 0 of the inner gimbal B, to which G is rigidly attached.
The following unit vector sets are introduced to define the geometry and aid
in the analysis of the system. Each set forms a right-handed orthonormal triad
and is shown in Figure 5 unless otherwise indicated:

Local-level basis set N(n1,n2,n3) — (not shown) - Aligned with the local
north, east and down directions respectively. The aircraft yaw, pitch and
roll angles Y,P,R are defined in the traditional manner with respect to
this reference frame. The gravity vector g is aligned with
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. Airframe basis set P(Q1,Q2,Q3) - Fixed in the aircraft and aligned in the
forward, right, and down directions respectively. All optical vectors and
transformations will be expressed in this reference frame. Vehicle
orientation vector k is aligned with

. Camera LOS reference frame R(r1,r2,r3) - Vector r is aligned with the
optical axis from the camera to mirror M1. Vectors £2 and are aligned
with the horizontal and vertical direction of the camera. Set
is aligned with set (fl2,3,Q1).

. Outgoing LOS reference frame S(s1,s2,s3) - (not shown) - The transforma-
tion of the camera set R through the optical system.

. Outer gimbal basis set A(1,2,3) - Attached to the outer gimbal A and
al igned wi th the set ( ,22 23) when angle ü is zero . Vector 2 is
parallel to the inner gimbal axis.

. Inner gimbal basis set B(b1,b2,b3) - Fixed to the inner gimbal (and thus
to mirror G) and aligned with A(a1,a2,a3) when 8 is zero.

Vectors ia1 and 2' the normals to mirrors M1 and M2 respectively, are defined
as follows:

I

m = -kp + k k = I.:I (25)1 3 2)

; = -kQ1 -k; (26)

The following equations, which can be assembled from observation of the system
configuration, define basis transforms [RTP] and [PTN] respectively. Note that
C1 and S stand for cos and sin of angle i respectively:

0 1 0

= 0 0 1 (27)

1 0 0

(CC) (SC) -S n
1 YP YP P

= (CSS-SC) (SSS+CC) (CS) n (28)YPR YR YPR YR PR
p (CSC+SS) (SSC-CS) (CC) nYPR YR YPR YR PR

The system component optical transformations [OD], [OM1], [OM2], and [ODI are
defined in the P-basis in Eqs. 29 through 32. The derotation transformation
[OE] is found by use of Eqs. 25 and Al in Eq. A6. The fixed mirror
transformations [Oi] and [O2] are found by use of Eqs. 25 and 26
respectively and the plane-mirror transformation matrix of Eq. 5 of
Reference 1. Development of the gimbaled mirror transformation [Os] also
follows the methods of Reference 1 and is outlined in the example problem of
Reference 2.

50 / SPIE Vol. 1696 Controls for Optical Systems (1992)



C 0 -S2 2
[O]= 0 1 0 (29)

-S 0 -C2 2
1 0 0

[0P] 0 0 1 (30)
Ml

0 1 0

0 0 -1

[021 = 0 1 0 (31)

-1 0 0

1-2C 2Sç,S9C9 2C,1,S9C9

[01 =
-2SS8C8 12SS 2Sçj,Cçj,S

(32)

2Cç1jS0C9 2S1,C1,S 1-2CS

8.1 Image rotation by use of the outgoing LOS reference frame

The derotation prism is set to its home position to calculate the unwanted
system image rotation v. With p (and thus A) equal to zero, v becomes equal to
0' and Eq. 9 can be used to find the unwanted system image rotation. Expanding
Eq. 9 into a consistent basis yields:

P_.N N T P
I ] [g 1] [s I

p = arctan _3
(33)

[ [PfN] [gN] }T[P]

With the derotation prism in its home position, the outgoing LOS vector set S
is formed by passing the camera set R through the system transformation matrix
as follows. Note that the matrix of column vectors [r1,r2,r3I expressed in the
P-basis is the transpose of the basis transformation of Eq. 25:

P P
Es s s I = [0 1 Er r r I ES] = [0 ] [RI123 S 123 S

-1+2C 2SSeCe 2CS0C0

[SI = [0]
[0M2] [0] [OH] [RTP]T

=
2SJS0C0 1-2SS _2Sç0CS

(34)

2Cç1S9C0 2S111C,1S 1i2CS

Eq. 33 can now be expanded by use of Eqs. 28 and 34 to give the unwanted
system image rotation in terms of the system state variables (pitch, roll, i/l,
0):

Sp(_2Cç11S0C0) - CPSR (2S,1CS) + CpCR(_1+2CS)
= arctan (35)

_Sp(2Sçj,S0C0) + CS(-1+2SS) + CpCR(_2S(,C(,S)
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Note that, as expected, image rotation is independent of the aircraft yaw
angle. Note also that when the system is in its home position, angle A is
equal to —90 . Eq. 13 then indicates that the derotation prism must be
positioned to 45 to erect the image.

8.2 Image rotation by use of the multi-angle formulation

The example system matches the configuration shown in Figure 3. As such the
formulation proceeds as outlined in Section 7:

1. The home-position optical transformations are found from Eqs. 29 and 32:

1 0 0

[0P] 1 o (36)
DH

0 0 -1

-1 0 0
{0P] 1 0 (37)

GH

0 0 1

2. Set A is equivalent to set R, and sets B and C follow directly.
Derotation prism image rotation angle A is found by use of Eq. 17.

0 0 1

I p p'a a a 1= 1 0 0 (38L1J
0 1 0

0 -5 C
r 2 2
I b b b" I = 1 0 0 (39)
L

2 3 J
0 -c -S2 2
0 0 1

I p p'ccc 1= 0-1 0 (40)L13J
1 0 0

c•b S23 2A = arctan
c •b

= arctan = 2p (41)

22 2
3. The fixed-component optical transformation and LOS reference frame D are
calculated by use of Eqs. 30, 31, and 40:

-1 0 0
Ed" d di'] =[0P] [c c1' c'] = [C)" ] [oP I [c" c' c"] = 0 —1 0 (42)123 F 123 M2 Ml 123

0 0 -1

4. Vector iii, the transformation of d1 through the gimbaled mirror, can be
calculated by use of Eqs 32 and 42:
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1-2C -2SS8C9 2CSeCe i -1+2C

!: = [O] = -2SS9C8 1-2SS 2SJC11S 0 =
2SSeCe

(43)

2Cç1jS9C 2S1,CS 12CS
0

2Ci,SeCe

Vectors 2 and 113 can be written in terms of the three components u11 of
by using Eq. 18 (The values of u1 are found in the last column of Eq. 43).
There are an even number of reflections between the camera and the outgoing
LOS, so set U is right-handed.

u -u u u
11 11 13 12

Eu" u1' u = u -u u -u (44)1 12 12 13 11

U13 1-u u 0
13 13

5. Reference frame V is formed by setting ,Li and 0 equal to zero in Eq. 43
and substituting for u1 in Eq. 44:

I 00.
I p piv v v 1= 0 0-1 (45)L12J

0 1 0

6. Reference frame E is calculated using Eqs. 37 and 45. The image rotation
due to the fixed components is found by using Eqs. 42 and 45 in Eq. 19.

-1 0 0
pp PT pp P[e e e I =[O I [v v v ] = 0 0 -1 (46)
1 2 3 GH 1 2 3

0 1 0

e•d -123 °= arctan
e •d

= arctan = -90 (47)
22 0

7. Reference frame F is found by transforming E through the gimbaled mirror
using Eqs. 32 and 46. The image rotation due to the gimbaled mirror is found
as found using Eqs. 21 and 48. Note that is aligned with

-1+2C 2C,SeCe 2S1jjSC

[fP fP fP] [0P] [e e e] = 2S S C 2S C S2 —1+2S2S2 (48)123 G 123 çü98 ç&e

2C,1,S8C9 1-2CS _2S,/1C%frS

kPfP _2S,CS
a' = arctan = arctan (49)

1—2C2S2

8. Eq. 24 will be used to calculate angle r. As such, the components of set
W do not have to be explicitly calculated.
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9. Expanding Eq. 24 into a consistent reference frame yields:

P,.N N T P
I lEg ]] Eu

-U = arctan (50)

E EPTN] EgN] ]T[P}

Using subscripted component notation, Eq. 49 expands to:

T u -T u
13 12 23 11

T arctan (51)
-T u U - T u u + T (1-u u )

13 11 13 23 12 13 33 13 13

_Sp(2Sç;S9C9) — CpSR(_1+2C)
-U = arctan (52)

CpSR+2Cl/,SeCe (-si, ( -
1
+2C ) +CPSR (2SS9C0 ) +CPCR (2C,,,S9C8))

10. The derotation command signal can be generated using Eqs 47, 49, and 52
in Eq. 15. Total system image rotation can be calculated by substituting
Eqs. 41, 47, 49, and 52 into Eq. 14.

9. APPENDIX: DEROTATION PRISM OPTICAL TRANSFORMATION

A generic derotation prism D is shown in Figure Al, along with incoming and
outgoing LOS reference frames R(r1,r2,r3) and S(s1,s2,s3) respectively. The
derotation prism is mounted with its rotation axis aligned with the incoming
LOS r1. Further, the derotation prism is fixed within its rotary mount such
that the outgoing LOS is parallel to for all rotation angles p. There
are two orientations, 180 apart, in which the prism will invert an image but
not rotate it. Either of these can serve as the home position without loss of
generality. The angle p is then defined by use of vector set R and the right-
hand rule as shown.

The following optical transformation can be derived from the geometry of
Figure Al and the internal prism configuration. The result is the same for all
on-axis derotators:

1 0 0

[0R] = o —C S (Al)
D 2p 2p

O S C
2p 2p

Note that [ODI is superscripted "R" to indicate that the transformation is
expressed in the vector basis R. The outgoing LOS reference frame S is found

by transforming R through the derotation prism:

BR R R R R R
Es s s] = [0 lEr r r I123 D 123

54 / SPIE Vol. 1696 Controls for Optical Systems (1992)



1 0 0 1 0 0 1 0 0

= 0-c S 0 1 0 = 0-C S (A2)
2p 2p 2p 2p0 S C 0 0 1 0 S C
2p 2p 2p 2p

The columns of the last matrix of Eq. A2 represent the vector components of
the outgoing LOS reference frame S as expressed in the R basis:

5 1 0 0 r1 1
5 = 0-C S r (A3)2 2p 2p 2
5 0 S C r
—3 2p 2p -3

Let home-position reference frame T(t1,t2,t3) be aligned with S when the
derotation prism is in its home position (p=0):

t 1 0 0 r1 1
t = 0-1 0 r (A4)2
t 0 0 1 r
__3

Eq. 12 is derived by calculating the rotation A of image vector 2 from its
home position for a given prism angle p:

s•t S
2pA = arctan • arctan C 2p (A5)

;—2 2p

Note that if a vector basis other than R is chosen to express the system and
component optical transformations, then the matrix of Eq. Al must be
transformed. As expected, the equation for angle A is independent of the
vector basis chosen in the derivation. If needed, however, transformation [OD]
can be expressed in any other basis P by using Eq. 27 of Reference 1:

[0] = [T'] [O]TEV] (A6)
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Fig. Al. Derotation Prism Geometry
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