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Abstract

During turn-around a scanning mirror may be subjected to
severe angular acceleration which can cause surface deflec-
tion of sufficient magnitude to distort the image significant-
ly. In this paper a solution is developed for a circular mirror
for a particular method of application of the direction-
reversing forces. Parametric curves are presented which allow
computation of the deflection as a function of mirror size
and point of load application. An example is computed in
which the deflection is a significant fraction of the optical
wave length.

1. Introduction

Many optical systems contain a scanning mirror which
oscillates about an axis in the plane of the mirror, thereby
causing the optical image to scan across a set of detectors
located at the focal plane. When great precision and sensi-
tivity are required, the optics become quite large and the
mirror consequently becomes more flexible, especially when
very light weight is required for airborne or spaceborne
applications.

The effect of mirror bending is to distort the shape and
increase the size of the optical blur function. The result is
a decrease in precision in locating objects within the field
of view. A lower limit to the blur circle (in radians) is the
diffraction limit given by 2.44 A\/D, where A is the wave-
length and D is the aperture diameter. If distortion is to be
negligible, the change in slope of the mirror surface must be
small compared to this value. Depending on the deflection
of the surface, the maximum slope will be 4 to 8 times w/D,
where w is the maximum deflection and D is the diameter

of the mirror (which is usually about the size of the aperture).

Therefore, the requirement is 8 w/D << 2.44 A/D or

w << 0.3 A. A rule of thumb for designing optical systems
is that the surface must be true to within 1/20 wavelength,
or w <A/20. For a system operating at A = 3um the allow-
able deflection is 3 X 10-6/20=0.15 um or about 6u
inches. It will be seen that for large lightweight mirrors,

this requirement may be a controlling element in the system
design.

The situation treated here is that of steady angular accel-
eration about a diameter under the action of a moment '
applied by two concentrated forces of constant magnitude.
This approximates the situation during the time the mirror
is reversing direction at the end of a scan. The situation is
pseudo-static; i.e.. the system is assumed to be in steady
state such that the applied forces are equilibrated by inertia

forces due to the accelerating mass of the plate. Since angular

velocities are low, the effects of centrifugal forces are
neglected. Also neglected is the transient motion due to the
impulsive application of the forces. Depending on the
internal damping of the material, this effect can increase the
instantaneous deflection by as much as a factor of 2.

The system is, of course, not operating during the time
the mirror is changing direction. However, immediately upon
release of the applied forces, the system must begin to oper-
ate. At that instant the deflections will be from one to two
times those given by the pseudo-static analysis. The subse-
quent oscillation of the mirror is not treated here, but it
can be expected to persist for several cycles at the natural
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frequency of the plate. For this reason the results obtained
here must be viewed as upper limits to the deflection that
can be expected during the usable portion of the scan.

2. Problem Formulation
Consider a circular plate, as shown in Fig. 1, free to rotate
about the x axis and acted upon by forces P, at positions
defined by the polar coordinates b, 7y, and causing an angular
acceleration ¥ about the x axis. The force is related to the
angular acceleration by

J¥ = 2Pb sin v (1)

where J is the moment of inertia of the plate about the x
axis. In terms of polar coordinates r, 6(f measured positive
counterclockwise from the x axis),*

2n a ”
I = Oh/ f (r sin 0)2 - rdrdf = Y oha®. )
(4] 6]

In a state of steady angular acceleration, each element of
the plate is acted upon by an “inertia pressure” q equal to
the negative of the linear acceleration of the element times
oh, the mass of the plate per unit area.

q(r,0) = —ohyr sin 6. (3)

This is the ramp function sketched above. It is the combined
effect of the forces P and the counteracting inertia pressure
q which causes the mirror to bend.

The plate is assumed to be free at the boundary (r = a);
i.e., the radial component of the bending moment and effec-
tive shear force must vanish at r = a.

3. Solution

Timoshenko! presents a series solution for a circular plate,
clamped at the edge, with a concentrated load a distance b
from the center. To satisfy the free boundary conditions, it
is necessary to take additional solutions of the homogeneous
plate equations of the form A, rm + By, rm*2 The general
solution also contains some terms which are singular at the
origin (r = 0); however, in our case there is no force singu-
larity applied there, hence these terms are not applicable.

Defining dimensionless variables p = r/a, § = b/a, and
w =192 Dw/ohaS{/, the solution takes the form2

o0

w=p5 sin6+62 [App™ + Bmoem*2 — Rp,] -

m=1

sin my

- sin m@ (4)
sin

*0 is the mass density of the plate.

'Ref. 1, pp. 290, 291.

2In the remainder of the paper, D is the plate stiffness Eh3/12(] - 112).
h is the thickness of the plate, 0 its density. E the modulus of elas-
ticity and » is Poisson’s ratio.
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Fig. 1. Mirror geometry and nomenclature.
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Fig. 2. Deflection under edge load vs point of load application.
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Fig. 4. Edge deflection at 8 = 71/2 as function of load point.
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Fig. 5. Deflection along loaded radius for edge loading.

where the Ry, terms correspond to the solution for the
clamped plate subjected to opposing concentrated forces of
magnitude given by Eq. (1) at p = § and § = %v; the first
term is the particular solution for the inertia loading given by
Eq. (3).3 A, and By, are chosen to make the solution satisfy
the boundary conditions and also the condition that the
deflection and slope at the center are zero. These latter con-
ditions are arbitrary, but are easily changed by a rigid body
displacement (w = const) or a rigid rotation (w = A sin 8 C
cos 0) to correspond to the actual method of bearing support.
The complete solution is given in Table 1. An APL computer
program has been written to evaluate these expressions and
the derivatives 0w/0p, 0w/pdf as functions of B, 7, p, 6. Note
that if values at the edgefof the plate (p = 1) are desired, Ry,
and dR,/0p need not be computed since they are zero, corre-
spending to the clamped support condition.

For edge loading (8 = 1), the solution at the edge (p = 1)
becomes particularly simple.

3Ref. 1, pp. 285, 286.
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Fig. 6. Edge deflection vs b/a and 0 for ¥ = 60 degrees.
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Fig. 7. Edge deflection along load radius (6 = ) vs point of
loaded application (b/a and y).
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4. Results

Equations (4) and (5) have been evaluated for various loading
situations for # = 0.3, and the results are shown in Figs. 2
through 7. The maximum deflection usually occurs at the
edge for 0 slightly less than vy. Somewhat pathological excep-
tions to this rule of thumb occur fory = 7/2 and § near 0.4
and for vy near zero. In the first case, the end deflection is
near zero and the maximum occurs elsewhere; however, the
deflection is small everywhere compared to the case of edge
loading. If this situation were practical to implement, it
would result in the optimum situation from an optical point
of view. Of course, the stress near the point of load applica-
tion would be significantly larger than in the case of edge
loading. In the second case, the solution approaches that of
a pure moment applied at the x axis, and the maximum
(w=13.1forv=0.3)occursat p=1,0=mn/2.

For comparison, results are shown in Fig. 4 based on two
beam models. The results are consistent using the various
models and serve to confirm that no gross error has occurred
in the computations.

5. Application to a Particular Mirror Design
The results in the figures are in terms of the dimensionless
deflection factor w which must be multiplied by wp =
ohaSy¥//192D 1o give the deflection in inches. In this section,
this factor will be evaluated for one proposed mirror design.
The cross section is shown in Fig. 8. The same cross section
is seéen in two orthogonal directions, i.e., the ribs form a
waffle-iron pattern. The plate is actually orthotropic, but
the effect has not been considered in this analysis.
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Fig. 8. Mirror cross-section.

The plate stiffness D = Eh3/12(1 = v2) is actually
I4/(1 — »2), the moment of inertia per unit length divided
by (1 — »2). By computing the moment of inertia of one of
the T sections and dividing by d.

—_

5

() = P4+ 2= -0 - Y (®)

1
d 3
where c is the distance of the centroid of the section from

the face of the mirror, given by

2 2

[dt] +t, (h¥ D] (7)

[y

For a particular mirror design. a=16.5 in., h = 3.5 in,,
ty =0.25in.,t3 =0.125 in,, and d = 2.1 in., which gives
¢=0.827 in. and 14 = 0.507 cu in. For a total weight W of
36 1b and v = 0.3, the deflection factor wy, becomes
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]
= 0.167X 107 % in. ~ = win. (8)

So the deflection for this example in ¢ inches is obtained
approximately by dividing w in the figures by 6.

6. Conclusions

Figure 7 shows that it is generally preferable to apply the
forces as far from the edge as is practically possible and as
near as possible toy = /2. However, as the point of load
application moves nearer to the center of the plate, the
forces required to generate a given angular acceleration
increase, causing high stresses near the center of the plate
and requiring more complex methods of load transfer from
the supporting structure. For these reasons, values of b/a
much less than 0.7 have not been proposed for implemen-
tation.

The maximum deflections for the example given range
from 2 to 10 u inches, which is of the order of X/20
(= 6 pinches for A = 3 um). For the geometry suggested
for that design (v = 60 deg, §= 1), the deflection is
5 uinches.

Note that the complete deflection surface of the mirror
is available from the solution in Table 1. This information is
necessary to evaluate the optical effects of the deformation.
A computer program is available for computing these results
as required. The program also computes the local changes in
slope necessary for optimal ray tracing. Furthermore, with

Table 1. Solution
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some additional work, the program can be extended to
compute the mirror stresses as given in the appendix.

Appendix 1. Differential Equations
and Boundary Conditions

For small deflections, the equation describing the deflection
w of the middle surface of a plate is

2
d
DV*w + ph ——; =q(x,y,t)
ot

where D is the plate stiffness [Eh3/12(1 — »2)] for a uniform
plate (for a honeycomb or a ribbed structure, an equivalent
thickness must be used), q is the load per unit area, and V2

is the Laplacian operator:
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In polar coordinates, the moments per unit length are given
by '
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and the transverse shear stress resultants are
0 R
=D = “w),
Qr 37 (V-w)

D 9 7

Qp=- 0 (V-w).

At the boundary, the moment M; and the effective shear
must vanish.

MI(r=a)=0‘

aMr(’)

1
V,r=a)=Q, - = =0. 9)

The way in which the twisting moment combines with the
transverse shear is described by Timoshenko.?

3Ref. 1, pp. 83, 84

Reference

1. Timoshenko and Woinkowsky-Krieger, Theory of Plates and
Shells, 2nd Edition, McGraw-Hill Book Co., Inc. (195 9), °

January-February 1975/Vol. 14 No, 1/OPTICAL ENGINEERING 49



