NIRCam Instrument Overview

Larry Burriesci

Lockheed Martin Advanced Technology Center
Palo Alto, California
18 NIRCam Instrument Presentations

5904-01 Marcia Rieke; Overview of James Webb Space Telescope and NIRCam’s Role
5904-02 Bruce Steakley; NIRCam systems engineering: the recipe
5904-03 Larry Burriesci; NIRCam instrument overview
5904-04 Lynn Huff; NIRCam Instrument optics
5904-05 Yalan Mao; NIRCam optical analysis
5904-06 Alison Nordt; Optical bench assembly for the near-infrared camera
5904-07 Steve Somerstein; NIRCam optical calibration sources
5904-08 Gopal Vasudevan; Some performance results from NIRCam’s coronographic prototype masks
5904-09 Leigh Ann Ryder; Lens design for the Near Infrared Camera for the James Webb Space Telescope
5904-10 Paul Mammini; Cryogenic mirror mounts for use on JWST’s NIRCam instrument
5904-11 Sean McCully; NIRCam filter wheels
5904-12 Charles S. Clark; NIRCam pupil imaging lens mechanism and optical design
5904-13 Liz Osborne; NIRCam thermal subsystem
5904-14 David L. Mason; NIRCam integration and test
5904-24 E. Todd Kvamme; Lithium fluoride material properties as applied on the NIRCam instrument
5868-35 Edinger & Nordt; Selection of I-220H Beryllium for the NIRCam Optical Bench
5877-29 Edinger, Mammini & Osborne; Compact, lightweight, and athermalized mirror and mount for use on JWST’s NIRCam instrument
5877-33 E. Todd Kvamme; A low stress cryogenic mount for mounting of large lithium fluoride space-based optics
Two Imagers in each of two Modules

Two adjacent fields of view (2.2 arcminute)2
- Both fields in SW and LW bands

Two back-to-back imagers
NIRCam Module-A Layout

One module images in two wave bands:
(0.6 to 2.3 microns and 2.4 to 5.0 microns)
Short wave and long wave science-mode imaging as well as SW metrology* capability are included in both of the modules.

* "metrology" includes wavefront sensing and alignment of the 18 segments of the JWST primary mirror
SW and LW imaging optical paths

- SW Camera Group ($\lambda = 0.6 - 2.3$ microns)
- Collimator Group ($\lambda = 0.6 - 5.0$ microns)
- LW Camera Group ($\lambda = 2.4 - 5.0$ microns)

Bandpass Filters
Pupil Elements
Dichroic Beamsplitter

Starlight from POM
To SW FPA
To LW FPA
RefRACTive Triplets: Three Types

Collimator Group

Direction of Light

ZnSe \[\text{BaF}_2\] LiF

90 mm

SW Camera Group

Direction of Light

ZnSe \[\text{BaF}_2\] LiF

56 mm

LW Camera Group

Direction of Light

LiF \[\text{ZnSe}\]

56 mm
Mechanisms

Filter Wheel Assembly

Pupil Imaging Lens Assembly

Focus and Alignment Mechanism
Supplemental Slides
Selection of I-220H Beryllium for NIRCam Optical Bench

Derek Edinger
Alison Nordt
Lockheed Martin Advanced Technology Center
Outline

• Introduction
• Trade Studies
• Design Issues
• Heat Treating and Microyield Issues
• Current Status
• Conclusion
Introduction

- Driving Requirements for Optical Bench:
 - Low mass to support tight NIRCam’s tight overall mass budget.
 - High stiffness to meet minimum launch frequency and minimize gravity sag distortions during optic integration and alignment.
 - Adequate strength to survive launch loads.
 - High dimensional stability to maintain optical alignments during cool down from room temperature to 35K and during operation at 35K.
 - High thermal conductivity to minimize thermal gradients during operation which cause thermal distortions.
Material Trade Study

Candidate Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Stiffness (GPa)</th>
<th>Density (g/cm³)</th>
<th>Specific Stiffness</th>
<th>Tensile Yield Strength (MPa)</th>
<th>Specific Strength</th>
<th>Fracture Toughness (MPa mm¹/²)</th>
<th>Thermal Conductivity at 30K (W/mK)</th>
<th>CTE at 30K (ppm/K)</th>
<th>CTE at 293K (ppm/K)</th>
<th>dL/L between RT and 30K (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6061 T651 Aluminum</td>
<td>69</td>
<td>2.7</td>
<td>25</td>
<td>276</td>
<td>102</td>
<td>938</td>
<td>41</td>
<td>1</td>
<td>23.6</td>
<td>-4150</td>
</tr>
<tr>
<td>AlBeMet 162H</td>
<td>200</td>
<td>2.1</td>
<td>95</td>
<td>193</td>
<td>92</td>
<td>316</td>
<td>210</td>
<td>0.2 (long)</td>
<td>0.7 (trans)</td>
<td>13.91</td>
</tr>
<tr>
<td>SiC</td>
<td>450</td>
<td>3.2</td>
<td>140</td>
<td>307</td>
<td>96</td>
<td>126</td>
<td><50</td>
<td>0.1</td>
<td>4.3-4.5</td>
<td>-320</td>
</tr>
<tr>
<td>I-220H Beryllium</td>
<td>300</td>
<td>1.86</td>
<td>161</td>
<td>345</td>
<td>185</td>
<td>348</td>
<td>85.6</td>
<td>0.04</td>
<td>11.38</td>
<td>-1298</td>
</tr>
<tr>
<td>M55J/954-3 Graphite/Cyanate</td>
<td>107</td>
<td>1.63</td>
<td>65</td>
<td>159</td>
<td>98</td>
<td>0.82</td>
<td>0.04</td>
<td>-0.36</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>6AL-4V Titanium</td>
<td>112</td>
<td>4.43</td>
<td>25</td>
<td>827</td>
<td>187</td>
<td>1700</td>
<td>1.7</td>
<td>6.3</td>
<td>8.8</td>
<td>-2076</td>
</tr>
</tbody>
</table>

Beryllium performs the best against driving requirements and only material that will meet mass budget.
Beryllium Grade Trade Study

Candidate Grades

<table>
<thead>
<tr>
<th>Grade</th>
<th>Tensile Yield Strength (MPa)</th>
<th>Microyield Strength (MPa)</th>
<th>Fracture Toughness (Mpa mm^1/2)</th>
<th>% Elongation</th>
<th>Isotropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-220H Grade 1</td>
<td>345</td>
<td>41</td>
<td>~348</td>
<td>1</td>
<td>Good</td>
</tr>
<tr>
<td>I-220H Grade 2</td>
<td>345</td>
<td>69</td>
<td>~348</td>
<td>1</td>
<td>Good</td>
</tr>
<tr>
<td>S-200FH</td>
<td>296</td>
<td>-</td>
<td>~348</td>
<td>3</td>
<td>Fair</td>
</tr>
<tr>
<td>O-30H</td>
<td>207</td>
<td>21</td>
<td>~348</td>
<td>2</td>
<td>Very Good</td>
</tr>
<tr>
<td>I-70H</td>
<td>207</td>
<td>21</td>
<td>~348</td>
<td>2</td>
<td>Good</td>
</tr>
</tbody>
</table>

- Only hot isostatically pressed (HIP) material considered for isotropic properties.
- Rolled sheet is efficient form for sandwich structures, but properties are anisotropic.

I-220H has highest strength and good isotropy.
Surface Preparation Trade Study

• Three surface preparation techniques tested were:
 - Black anodized (only)
 - Black anodized and primed
 - Etched and primed

• Surface preparation tested by double lap shear (ASTM D3528):
 - S-200F substrates (shouldn’t affect bond if grade isn’t I-220H).
 - Bonded with Epibond 1210A/9615-10.
 - Thermal cycled 3 times from 313K to 77K (LN2). Prior experience with Epibond at Lockheed Martin shows no degradation in properties from 77K down to 4K.
 - 3 coupons (one of each surface prep) were ultimately thermal cycled to 4K (LHe) and show no visible cracks. Coupons may eventually be shear tested.
Bond Test Results

<table>
<thead>
<tr>
<th>Coupon</th>
<th>Anodized Strength (MPa)</th>
<th>Anodized and Primed Strength (MPa)</th>
<th>Etched and Primed Strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>27</td>
<td>AP1, 34</td>
<td>EP1, 34</td>
</tr>
<tr>
<td>A2</td>
<td>24</td>
<td>AP2, 32</td>
<td>EP2, 33</td>
</tr>
<tr>
<td>A3</td>
<td>31</td>
<td>AP3, 33</td>
<td>EP3, 32</td>
</tr>
<tr>
<td>A4</td>
<td>25</td>
<td>AP4, 33</td>
<td>EP4, 35</td>
</tr>
<tr>
<td>A5</td>
<td>24</td>
<td>AP5, 35</td>
<td>EP5, 31</td>
</tr>
<tr>
<td>A6</td>
<td>31</td>
<td>AP6, 35</td>
<td>EP6, 32</td>
</tr>
<tr>
<td>A7</td>
<td>27</td>
<td>AP7, 34</td>
<td>EP7, 35</td>
</tr>
<tr>
<td>Average</td>
<td>27</td>
<td>Average: 34</td>
<td>Average: 33</td>
</tr>
<tr>
<td>Std. Dev:</td>
<td>3</td>
<td>Std. Dev: 1</td>
<td>Std. Dev: 1</td>
</tr>
<tr>
<td>B-Basis Allow able:</td>
<td>18</td>
<td>B-Basis Allow able: 30</td>
<td>B-Basis Allow able: 29</td>
</tr>
</tbody>
</table>

- Anodized only performed surprisingly well.
- Anodized and primed performed better than etched and primed.

Anodized and primed has best shear strength and minimizes cleaning and contamination risk.
Design Issues

- **Reworkability:**
 - Optical bench has large number of threaded inserts for optical components, thermal straps, harness tie downs, lift baffles, etc. which are difficult to define up front due to long lead time for beryllium and may change at a later point.
 - Due to toxicity, beryllium can’t be reworked at Lockheed Martin. Material has to be returned to supplier for rework.

- **Fracture Toughness:**
 - Optical bench is mostly stiffness driven, but there are some high stress areas.
 - “Safe Life” fracture analysis required to ensure minimally detectable crack in high stress area won’t grow large enough to fail part over all load cycles in life of part.
 - Although I-220H has a yield strength of 345 MPa, the equivalent allowable in some circumstances to meet safe life is only 95 MPa.
Heat Treating Issue

- I-220H material failed to meet Grade 2 microyield strength (aka Precision Elastic Limit) specification.

- Root causes believed to be:
 - Increase in consolidation temperature from 830C to 1000C after Gran Canary Telescope mirror failure. Higher temperature improves elongation to reduce machining risk, but degrades microyield.
 - Low iron/aluminum ratio. This is property of raw powder which is difficult to control and was at bottom of acceptable limits.

- Additional heat treatments with slower cooling rate (< 20C/hour) attempted to improve microyield. Original microyield was 61 MPa. After heat treatment there was no significant change:

<table>
<thead>
<tr>
<th>X1</th>
<th>Z1</th>
<th>X2</th>
<th>Z2</th>
<th>X3</th>
<th>Z3</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 MPa</td>
<td>57 MPa</td>
<td>64 MPa</td>
<td>63 MPa</td>
<td>59 MPa</td>
<td>63 MPa</td>
</tr>
</tbody>
</table>
Heat Treating Issue

- Material also processed to simulate expected heat treatments during machining to make sure other properties are not degraded:

<table>
<thead>
<tr>
<th>Property</th>
<th>Original Results</th>
<th>Results after Heat Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Strength, MPa (X/Z)</td>
<td>576/582</td>
<td>579/567</td>
</tr>
<tr>
<td>Ultimate Strength, MPa (X/Z)</td>
<td>493/495</td>
<td>487/483</td>
</tr>
<tr>
<td>Elongation (X/Z)</td>
<td>3.8%/4.0%</td>
<td>4.2%/3.5%</td>
</tr>
<tr>
<td>Microyield, MPa</td>
<td>57/64</td>
<td>58.6</td>
</tr>
</tbody>
</table>

- Material was procured to vendor specification which includes microyield. However, microyield is not an issue for an optical bench.
Current Status

- I-220H has been successfully HIPed, heat treated, and is being machined.
Current Status

I-220H Set up for Machining

I-220H After Rough Machining
Conclusion

- I-220H beryllium chosen for the optical bench on NIRCam.
- Trade studies performed to pick the best materials and construction methods.
- Adhesively bonded, rib sandwich structure was selected.
- Adhesive and surface preparation qualified to survive launch loads and cryogenic operational temperatures.
- Minor design issues of reworkability and fracture toughness were encountered and overcome.
- Minor manufacturing issue of heat treating and micro-yield strength was dealt with.
Lithium Fluoride material properties as applied on the NIRCam instrument

Todd Kvamme
Lockheed Martin Advanced Technology Center
Palo Alto, California
LiF General Overview

Lithium Fluoride:

- Crystal Structure: Cubic FCC (NaCl)
- Density: 2.64 gm/cm³
- CTE at 300K: 37 ppm/K
- Cleavage: (100)
- Anisotropic

- Grown via Bridgman-Stockbarger method in vacuum (for best quality)
- A soft material in its pure state, LiF will deform plastically under relatively low load due to dislocation movement in the material
- It can be hardened by way of exposure to radiation (not an option optically due to color center generation) or doping with Mg (unknown optical effect)
Anisotropy

- LiF is not isotropic. Several of its properties vary with crystal direction

\[A = \frac{2c_{44}}{c_{11} - c_{12}} \]

Anisotropy as a function of temperature for LiF

Variation of elastic modulus in Pa with crystallographic loading direction for LiF
Dislocations & Plasticity

- This is a broad topic
- Crystals can behave in a brittle fashion if inter-atomic forces are strong
- If these forces are weak however, edge and screw dislocations in a material can migrate.

Edge dislocation motion under a shear load. Adapted from [6]
Resolved Critical Shear Stress

- Resolved shear stress given as:
 \[\tau = \frac{(F \cos \lambda)}{(A/cos \phi)} \]

- Critical resolved shear stress, \(\tau_c \), defined as the stress which causes material to slip
- Values from literature suggest a \(\tau_c \) of \(~5\text{MPa}\) for LiF. We are using 2MPa max on NIRCam.
- Ultimately, \(\tau_c \) will be highly dependent of processing and surface finish
Creep

- 10mm diameter by 20mm long test specimens under constant load
- These specimens were not polished on their cylindrical radii
- Secondary creep rate is an upper limit, and was decreasing. Values are still large however.

Creep rate after six hours as a function of constant load in LiF oriented specimens. This rate was considered a conservative upper limit for the secondary creep rate.
Index of Refraction

Variation of refraction index over temperature for LiF at a wavelength of 1µm (the dotted line represent the Tropf model, the solid line is measured data) from Leviton & Frye
Thermal Characteristics

- Thermal shock defined as: \(R' = \frac{S(1 - \nu)k}{\alpha E} \)

- Boule processing is important and can have a large effect on material critical shear stress.

<table>
<thead>
<tr>
<th>Material</th>
<th>Expansion Coefficient (\alpha) E-6/K</th>
<th>Young's Modulus E GPa</th>
<th>Thermal Conductivity k W/mK</th>
<th>Poisson's Ratio (\nu)</th>
<th>Mean Strength S Mpa</th>
<th>R' W/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiF</td>
<td>37.0</td>
<td>85</td>
<td>14.2</td>
<td>0.27</td>
<td>11</td>
<td>37</td>
</tr>
<tr>
<td>BaF2</td>
<td>17.0</td>
<td>65</td>
<td>7.1</td>
<td>0.31</td>
<td>27</td>
<td>120</td>
</tr>
<tr>
<td>CaF2 (Hot Forged)</td>
<td>18.9</td>
<td>76</td>
<td>10</td>
<td>0.28</td>
<td>55</td>
<td>276</td>
</tr>
<tr>
<td>Ge</td>
<td>6.1</td>
<td>103</td>
<td>59</td>
<td>0.28</td>
<td>90</td>
<td>6085</td>
</tr>
<tr>
<td>Sapphire</td>
<td>5.3</td>
<td>344</td>
<td>36</td>
<td>0.27</td>
<td>300</td>
<td>4324</td>
</tr>
<tr>
<td>ZnSe</td>
<td>7.6</td>
<td>70</td>
<td>16</td>
<td>0.28</td>
<td>50</td>
<td>1083</td>
</tr>
<tr>
<td>ZnS (standard)</td>
<td>7.0</td>
<td>74</td>
<td>19</td>
<td>0.29</td>
<td>100</td>
<td>2604</td>
</tr>
</tbody>
</table>

Hasselman figures of merit for thermal shock. E for LiF is in the 100 direction. [12]
Mounting

• This material demands a unique mount for space launch.
• The stresses in the material needed to be kept to a minimum (below our 2MPa limit) and accommodate centration requirements
• For more info, see paper 5877-33 “A low stress cryogenic mount for space-borne lithium fluoride optics“.

The diamond flexure lens cell design and manufactured titanium lens cell hub
Summary

- LiF is a single crystal material with non-scalar mechanical properties. It is anisotropic.
- LiF deforms plastically under load. These deformations can be macroscopic in scale.
- For mounting purposes it is important to know what the resolved stress along the slip planes of the material are.
- Material processing and finishing have a direct impact on critical shear stress.
A low stress cryogenic mount for space-borne lithium fluoride optics

SPIE Annual Meeting
San Diego
August 4, 2005

E. Todd Kvamme
Lockheed Martin Advanced Technology Center
Palo Alto, California, USA
Lithium Fluoride General Overview (1)

Lithium Fluoride:
- Crystal Structure: Cubic FCC
- Density: 2.64 gm/cm³
- CTE at 300K: 37 ppm/K
- Cleavage: (100)
- Anisotropic

- A soft material in its pure state, LiF will deform plastically under relatively low load due to dislocation movement in the material.
- It can be hardened by way of exposure to radiation (not an option optically due to color center generation) or doping with Mg (unknown optical effect - investigating)
LiF is fully defined by 3 compliance/stiffness matrix values (c_{11}, c_{12}, c_{44} or s_{11}, s_{12}, s_{44}), but moduli and Poisson ratio will vary significantly depending on the orientation of the crystal.

- LiF can be grown in air or vacuum. The material is slightly hydroscopic (0.27g/100g of H$_2$O).

LiF is a tricky material to mount due to low yield stress and "plastic" behavior.

Anisotropy Factor given by:

$$\frac{2c_{44}}{c_{11} - c_{12}}$$
Resolved Critical Shear Stress

- Resolved shear stress given as:
 \[\tau = \frac{(F \cos \lambda)}{(A/cos \phi)} \]

- Critical resolved shear stress, \(\tau_c \), defined as the stress which causes material to slip
- Values from literature suggest a \(\tau_c \) of \(~5\)MPa for LiF. We are using \(2\)MPa max on NIRCam.
- Ultimately, \(\tau_c \) will be highly dependent of processing and surface finish

Temperature variation of critical resolved shear stress for several classes of crystalline materials (from [6]).

Schematic of the method for calculating resolved shear stress (from [6])
Original Mount

- Three point mount with 1 DOF flexures at each mounting point
- Axial seating accomplished with a multi-fingered flexure

In the left image, a ZYGO surface map of the LiF optic as received by the vendor. Total rms WFE = 0.012 waves at $\lambda=633\text{nm}$; 0.186 wave P-V. The middle image shows the optic after having been mounted, and then removed from the mount. Clearly there is already distortion evident in the optic with rms WFE = 0.073 wave; 0.822 P-V. The right image shows the optic un-mounted after vibration. Many waves of distortion (off-scale) are evident at the radial mount points.
Redesigned Mount – Diamond Flexure

- 12 diamond shaped flexures in the radial direction
- Pad geometry altered from previous to avoid punch loads
- Compliant material (Neoflon) in between the Ti pads and the lens
- This design accommodates desire for

The diamond flexure lens cell design and manufactured titanium lens cell hub
Redesigned Mount - Assembly

- Axial pads are made of Ti-6Al-4V and act in 12 places
- Compliant material (Neoflon) between axial flexures and lens
- Retaining ring pre-loads the axial flexures into the lens

Lens cell cutaway and detail of axial and radial flexures and pads
Mechanical Analysis

- Lens mount analyzed to meet Qualification levels from the GEVS and mass acceleration curve from JWST requirements.
- Worst case – 5 of 12 pads carrying load in the 54g launch environment. This gives 16.24N at the worst case pad resulting in a 0.5 MPa load.

- Titanium Flexure Maximum Stress due to Applied F = 16.24 Newtons
- Lithium Fluoride Lens Max Stress due to Applied F = 16.24 Newtons
Vibration Testing

- Vibe test was conducted in the mount to test for survivability.
- Mount shaken to GEVS qualification values
- Mount did not distort the optic

Comparison of the surface maps for the LiF optic pre and post vibration in the 12-pad diamond flexure mount. The pre-vibration plot is on the right; rms WFE was 0.128 waves, 1.644 waves P-V (λ=633nm). The post vibration plot is on the right; rms WFE value was 0.134 waves, 1.572 P-V.
Centration Testing - Vibration

- Key requirement for the mount was centration.
- Test set-up using differential KAMAN sensors was used to determine lens motion in the cell during vibe.
- Dummy aluminum lens was utilized.
- Vibration served to seat the optic.
- Overall decentration during second vibe was below 1 micron.

De-centration results for vibration of the dummy lens cell assembly.
• Lens was disassembled and reassembled for this test. No vibration took place prior to this testing.

• First Cryo-cycle showed significant movement in one axis of the lens.

• Most of the movement took place at maximum system gradient.

• Second cycle showed less lens motion than the first.

• Cryo-cycling had a similar effect to vibration in settling the lens into the mount.

• Centration still looks good with second cycle de-center at ~25 microns absolute and 10 microns total.
Summary

• LiF is a difficult material to mount.
• Special attention needs to be paid to crystal behavior when designing a mount for LiF.
• The 12 pad diamond flexure mount held the LiF material during a launch vibration environment without causing optical degradation.
• The 12 pad diamond flexure kept a representative lens dummy centered during vibration and cryo-cycle.
NIRCam Filter Wheel Assembly

Sean McCully

Lockheed Martin Advanced Technology Center
Palo Alto, California
Overview

Two Optical Bench Assemblies Mounted Back to Back
Filter Wheel Assembly

- Pupil Wheel, Sub-assembly
- Filter Wheel, Sub-assembly
- Wheel O.D. 295 mm
- Optic Centers 225 mm
- Flat Field Source Mount
- Light Path
- Calibration Light Source
- Base Plate

Shrouds not shown for clarity
Filter Wheel Assembly Cross Section
Clear Aperture Allocation

<table>
<thead>
<tr>
<th>Description</th>
<th>Diameter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam footprint</td>
<td>37</td>
<td>mm</td>
</tr>
<tr>
<td>Integration and Test Error Budget</td>
<td>3</td>
<td>mm</td>
</tr>
<tr>
<td>Filter Wheel Assembly Requirement</td>
<td>40</td>
<td>mm</td>
</tr>
<tr>
<td>Filter Wheel Assembly Error Budget</td>
<td>2</td>
<td>mm</td>
</tr>
<tr>
<td>Mechanical Mount</td>
<td>6</td>
<td>mm</td>
</tr>
<tr>
<td>Total Element OD</td>
<td>48</td>
<td>mm</td>
</tr>
</tbody>
</table>
Element Mount Assembly

- Mount
- Optical element
- Flexure ring
- Clamp ring
- M2 fasteners
Element Mount Installation

- Centered by bore in wheel
- Oriented by slot in wheel
- Clamped by three equally spaced M3 fasteners

Filter Wheel Sub-Assembly shown
FWA Bearing Assembly

- Clamp Nut (Titanium)
- Motor Rotor (416SS)
- Outer Race Clamp (Titanium)
- Bearing Shaft (Titanium)
- Bearing ID Race Clamp (Titanium)
- Type 103 Bearings (440C)
NIRCam Pupil Imaging Lens mechanism and optical design

Charles S. Clark and Thomas Jamieson

Lockheed Martin Advanced Technology Center
Palo Alto, California
PIL Assembly Function

• The PIL Assembly

 ➢ Rotates Pupil Imaging Optics into the Shortwave Beam of NIRCam Instrument
 ➢ The image produced by the PIL will be used for:
 ▪ Characterizing the NIRCam pupil to support phase retrieval processing
 ▪ Characterizing the DHS to OTE image alignment
 ▪ Alignment of the OTE exit pupil to the NIRCam pupil
Location of PIL within NIRCam

- Filter Wheel Assemblies (FWA)
 - Spectral Filters
 - Pupil Wheel Elements
 - Calibration Sources

- 3-DOF Focus and Alignment Mechanism (FAM)

- Focal Plane Array (FPA)

- Pupil Imaging Lens (PIL)

- Beryllium Optical Bench Assembly (OBA) 880mm x 820mm
PIL Mechanism Overview

- **PIL Optic Housing**
 - With Alignment
 - Adjustability
 - Titanium

- **Actuator Arm**
 - Titanium

- **Stowage Stop**
 - Magnets

- **Wire Harness Retainer/Strain Relief**

- **PIL Bipod Mounts to OBA with Locking Cams**

- **Counter Weight**
 - Tungsten

- **Fail-Safe Mechanism Spring Return**

- **Position Sensor Track**

- **Position Sensors**

- **Rotation Hard Stop**

- **Actuator Housing**
 - Titanium
 - Actuator: 3Phase BLDC Motor

- **Actuator Arm**

- **125 mm**

- **Ø150 mm B.C.**
NIRCam Optical Layout

Key:

1. Pick-Off Mirror Assembly
2. Coronagraph
3. First Fold Mirror
4. Collimator Lens Group
5. Dichroic Beamsplitter
6. Long Wave Filter Wheel Assembly
7. Long Wave Camera Lens Group
8. Long Wave Focal Plane Housing
9. Short Wave Filter Wheel Assembly
10. Short Wave Camera Lens Group
11. Short Wave Fold Mirror
12. Pupil Imaging Lens
13. Short Wave Focal Plane Housing
14. ICE Interface Panel
15. FPE Interface Panel

Starlight from OTE

Internal Pupil

POM: Concave spherical Mirror
PIL Design Parameters

- PIL must image the primary mirror with a single star source within 10 arc-sec half-cone of the PIL bore sight
- The lens diameter(s) to be set by the size of the unvignetted field using the PIL as aperture stop
- The PIL shall place the primary mirror image on a single-chip-array (SCA), implies a magnification of 0.0041
- PIL optics to operate over a narrow waveband only (Filter F187N)
 - No chromatic correction is required
 - PIL will use Fused Silica material
- Field of view of the PIL optics is the primary mirror segments
New PIL Baseline Design

- The three lens system with two wedged spherical lenses and the one plano cylindrical lens
- Material: Fused Silica (all lenses)

<table>
<thead>
<tr>
<th>Optic Requirement</th>
<th>Required Performance</th>
<th>Design Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral band</td>
<td>Filter F187N</td>
<td>1.87 microns</td>
</tr>
<tr>
<td>Transmission</td>
<td>80%</td>
<td>expected 80%</td>
</tr>
<tr>
<td>Boresight</td>
<td>10 arcsec</td>
<td>expected</td>
</tr>
<tr>
<td>Image Quality</td>
<td>>75% Strehl</td>
<td>88 to 98%</td>
</tr>
<tr>
<td>Distortion</td>
<td><2%</td>
<td><1.5%</td>
</tr>
<tr>
<td>Image Size</td>
<td>>1500 and <2000 pixels</td>
<td>1620 pixels</td>
</tr>
<tr>
<td>Clear Aperture</td>
<td>25 mm</td>
<td>>25 mm</td>
</tr>
<tr>
<td>Physical size</td>
<td>35 +0.0,-0.01 mm</td>
<td>in work</td>
</tr>
</tbody>
</table>
Summary

• The PIL Assembly optical requirements called for a unique optical solution
• Three lens system with two wedged spherical lenses and the one plane cylinder lens meets requirements
• The PIL Assembly team is rapidly moving forward with manufacturing the PIL optical assembly
Compact, lightweight, and athermalized mirror and mount for use on JWST's NIRCam instrument

Paul Mammini
Lockheed Martin-ATC
NIRCam Module (A) & FAM

- The Pick-off Mirror (POM) is a mounted, spherically concave mirror that reflects the starlight from the JWST OTE into the rest of the NIRCam Instrument.
Design Overview

- Nearly Athermal
- ~40% Lightweight
- Identical Mirror for Modules A & B
- Compact: 30mm thick (front surface-to-back)
- Few Components: 2 parts + fasteners, etc.
- Predictable performance via analysis

Fused Silica Spherical Mirror

Monolithic Titanium Plate w/ Flexures (x3)
Design Overview

- Mirror-to-mount clamp assembly (3 places)

- Mirror
- PCTFE Washer
- Delta Plate
- Shoulder Bolt
- Preload Sleeve
- Spring Washers (x4)
- Hex Nut
- Load Washer
Distortion Load Cases

The following load cases were evaluated for their affects on the mirror surface distortion:

- **Cool Down**: Cool down from room temperature (293K) to cryo (35K), which results in 1.4 Newton flexure force.
- **1g in X**: Lateral gravity sag.
- **1g in Y**: Lateral gravity sag.
- **1g in Z**: Axial gravity sag.
- **Fastener Preload**: 68 Newton preload in fasteners attaching mirror to delta plate flexures.
- **Flexure Preload**: 127 micron enforced displacement at flexures due for assembly tolerance that results in 4.6 Newton flexure force.
- **Side Thermal Gradient**: A side-to-side operational thermal gradient of 0.25K.
- **Top Thermal Gradient**: A top-to-bottom operational thermal gradient of 0.25K.
- **FAM Load (6 cases)**: FAM flexure induced distortion on delta plate when FAM is driven to 1 degree tilt with 4.0 N-m/rad FAM flexure stiffness.
Thermal Analysis

- **Objectives**
 - Determine max thermal gradients for thermal stress calculations
 - NIRCam operation
 - Rapid cool-down in test
 - Review thermal gradients from POM to bench during contamination prevention

- **Model Inputs**
 - POM integrated with FAM model for analyses
 - Front surface e=.02, back e=.7
 - Details on model cases in backup slides

- **Results**
 - Max gradient during NIRCam operation is 0.25K (shown)
 - Max gradient during rapid cooldown is 29K (not shown)
 - Since POM will not respond to bench contamination, prevention heaters are in current design

Temp, K

NIRCam operating

Front View

<table>
<thead>
<tr>
<th>Temp, K</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.60</td>
</tr>
<tr>
<td>33.57</td>
</tr>
<tr>
<td>33.55</td>
</tr>
<tr>
<td>33.53</td>
</tr>
<tr>
<td>33.50</td>
</tr>
<tr>
<td>33.48</td>
</tr>
<tr>
<td>33.46</td>
</tr>
<tr>
<td>33.43</td>
</tr>
<tr>
<td>33.41</td>
</tr>
<tr>
<td>33.39</td>
</tr>
<tr>
<td>33.36</td>
</tr>
</tbody>
</table>
Structural Analysis

- Requirements:
 - 54g Launch Load
 - Safety Factors:
 - 3.0 Glass Ultimate
 - 10.0 Fatigue Fracture
 - 1.4 Metallic Ultimate
 - 1.25 Metallic Yield
 - > 150 Hz First Mode (Goal)
 - 39 nm RMS Surface Distortion (Mounting & Fabrication)

- Finite Element Model
 - Parts: second order tetrahedrons
 - Front surface of mirror: shell elements
 - Interfaces: rigid bar elements
Surface Distortion Maps

- The model was meshed in I-DEAS Master Series version 9 and exported through a translator for MSC/NASTRAN version 2001. Analysis runs and model checks were performed with NX/NASTRAN version 2.0.
Predicted Performance

1st Mode Frequency: 454 Hz

1) Values are nm.
2) Includes distortion from 1G (worst case orientation). Higher symmetric gravity distortion acceptable, but distortion must not be asymmetric by 4 nm.
3) Maximum thermal gradient of 5 degrees okay across mirror surface.
4) Design residual, light scatter budget, and dynamics carried at system level.
5) Silver coating specified.
6) RT-Cryo includes effects of CTE inhomogeneity of substrate material contributing to wavefront error
7) FAM flexure induced distortion assumes articulation of 1 degree tip/tilt (which is 2x required operating range) and 4.0 N-m/rad flexure stiffness.
8) Distortion at 35K from dl/L mismatch (going from RT to Cryo) between optic and mount
9) Gravity not included in operational budget.

Budgeted mounted (worst case) 1G mirror figure V1 down, V1 horizontal, to allow subtraction of gravity effect from NIRCam WFE calibration.

Need to know NIRCam WFE to better than 20 nm on ground and on-orbit to prevent imprinting WFE on OTE.

Symmetric gravity distortion acceptable, but distortion must not be asymmetric by 4 nm.
Lessons Learned & Summary

Lessons Learned

- Strive for predictable models to reduce uncertainties
 - use flexures, not bearings for small motions to rule out hysteresis/friction
 - test critical material properties at extreme temperatures/environment to minimize uncertainty
- Small changes to the FEM mesh, boundary conditions, loads, and material properties sometimes have a large effect on the outcome

Summary

- The POMA uses geometric features, flexures, materials, and careful consideration of preloading and mount points in order to perform at or better than the required level after severe launch loading and then a dramatic cool down from room temperature to 35K.
- Manufacturing considerations and a combined optical/thermal/mechanical model all contributed to a good design that meets requirements. The design of the mirror and mount are proven through correlation between the predicted performance, through analysis, and the tested performance, via the prototype.