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I have chosen a paper by D.A. Thomas and J.C. Wyant from 1976 that presents the theory and 
implementation of a method for measuring the errors in the as-built dihedral angle errors of corner cube 
reflectors.   
 

Determination of the dihedral angle errors of a corner cube from its 
Twyman-Green interferogram 

 
David A. Thomas and J. C. Wyant 

Optical Sciences Center, University of Arizona, Tucson, Arizona 85721   
(Received 20 September 1976) 

J. Opt. Soc. Am., Vol. 67, No. 4, April 1977 
 

A technique is devised for calculating the magnitudes of the dihedral angle errors of a corner cube from a single Twyman-
Green interferogram.  Experimental examples are given in which the dihedral angles of two corner cubes are determined to 
within 2 arcsec by this procedure.  These values are shown to be in good agreement with independent goniometer 
measurements. 

 
The key results reported in the paper are these five: 
(1) This method allows the calculation of the magnitudes of the errors in the dihedral angles from a single 

Twyman-Green interferogram. 
(2) Such interferograms are routinely supplied by manufacturers as evidence of the quality of their 

product. 
(3) When a perfect cube is tested in this fashion, the prism aperture is covered by a single sinusoidal 

fringe pattern. Imperfect prisms with planar reflecting surf sinusoidal fringe patterns over their 
apertures. The patterns are usually inclined at various angles with respect to one another, and each one 
generally has a different spatial frequency.  When the prism is illuminated with a plane wave, a 
component plane wave will emerge from each of these segments. It is the interference between these 
emerging beams and a common reference plane wave that gives the fringe patterns.  

(4) This method employs the same vector matrix approach used in an earlier work by P.R. Yoder, Jr.  
from 1958 when laser interferometry was not used, but a pinhole illuminator and readout as “dot 
patterns”.  Yoder’s method had to rely on independent measurements of the dihedral angles on a 
goniometer for the input values of his calculations.  

(5) Intermediate work in 1972 by Joseph and Donohue used the dot pattern data to compute the relative 
sign and magnitude of all three dihedral angle errors. 
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Usefulness and Applications: 
This information is useful to someone who needs to understand how to employ the theory and practice 
involved in characterizing prism errors.  It is a template paper that can serve to baseline associated work in 
designing a measurement program for similar optical elements.  Because the paper provides good 
connections to other related work, it allows the reader to research some good options through comparing 
and contrasting them.   
 
Relationship between this paper and other similar papers: 
 
Yoder  P. R. Yoder, Jr., "Study of the light deviation errors in triple mirrors and tetrahedral prisms," J. Opt. Soc. 
Am. 48, 496-499 (1958).: Defines the theoretical approach and codifies the mathematical analysis for determining 
the dihedral angle errors; also demonstrates “dot pattern” tests; uses a pinhole, a light bulb and an optical 
autocollimator.   
 
Joseph and Donohue  B. W. Joseph and R. J. Donohue, "Dot patterns from imperfect angle. cube-corner 
reflections," J. Opt. Soc. Am. 62, 727 (A) (1972).:  used the pattern data to compute the relative sign and magnitude 
of all three dihedral angle errors. 
 
Thomas and Wyant  A. Thomas and J. C. Wyant, "Determination of the dihedral angle errors of a corner cube 
from its Twyman-Green interferogram," J. Opt. Soc. Am. 67, 467-472 (1977).: Adds T-G laser interferogram 
analysis to characterize dihedral angle error magnitudes; uses Yoder’s vector analysis mathematics and labeling 
conventions for dihedral surfaces. 
 
Ai and Smith  Chiayu Ai and Kenneth L. Smith  “Accurate measurement of the dihedral angle of a corner cube” 
APPLIED OPTICS 1 February 1992 / Vol. 31, No. 4 / :  Extends the analysis to tilted corner cubes; also employs 
Yoder’s math and labeling. 
 
Scholl, Marija S. Scholl  “Ray trace through a corner-cube retroreflector with complex reflection coefficients”  
J. Opt. Soc. Am. A   Vol. 12, No. 7/ July 1995/: Extends the analysis to include complex coefficients of reflectivity 
and phase conjugation. 

                  
 
               Yoder, 1958                Thomas and Wyant, 1976              Ai and Smith, 1992 
         (dot pattern with  
         specification circle) 

 
Synopsis: 
When the Thomas and Wyant paper was submitted for publication in 1976, several authors had already 
used the dot patterns produced by the reflection of a pencil of light from imperfect corner cubes to 
quantify their imperfections.  P. R. Yoder, Jr. developed relationships that gave the deviation angles of the 
emerging beams with respect to the illuminating beam as a function of the three dihedral angle errors for 
the cube.  Yoder was able to favorably compare his calculated deviation angle values to the figures 
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obtained directly from the dot patterns, but he had to rely on independent measurements of the dihedral 
angles for the input values of his calculations.   
 

 
                                            Yoder’s conventions 

 
In this article by Thomas and Wyant, the authors first draw several parallels to the previous works on 
characterization of errors in the dihedral angles, and then they extend the discussion to characterization 
using Twyman-Green interferograms.  In their first section on theoretical development the propagation 
vectors for six distinct emergent beams are baselined.  Very importantly, Yoder’s system of grouping the 
vectors into pairs is presented in which a pair is defined as those two emergent beams that share a 
common face for their third and final reflection.  In this manner of grouping, each corner cube dihedral 
angle error can be isolated by comparing the fringe patterns in one of these three pairs of aperture 
segments.   
 
Thomas and Wyant next present combinatorial relationships for the corner cube faces by successively 
applying the vector law of reflection, where they reference MIL-HDBK-141, pages 13-1 through 13-9 on 
mirror and prism system reflection vector matrices.  The vector law of reflection is written as: 

S1 = S0 -2(S0 M)M     
 

where S0 is the unit propagation vector for the incident beam, S1 the unit propagation vector for the 
reflected beam, and M the outward pointing unit normal to the reflecting surface.  
Examples are given to show that a three-by-three reflection matrix [R] characteristic of the reflector can 
be used to map an incident ray into its conjugate reflected ray 

  [1] 
 

For a series of three reflections,       

       [2]  
 

 
 

Once the direction cosines of the unit normals to the three reflecting surfaces of a corner cube are known, 
system reflection matrices can be calculated for each of the six possible sequences of reflections that can 
be used to map the illuminating ray into each of the final exiting rays.   

S1x

S1y

S1z

=
H1 − 2 Mx

2L −2 Mx My −2 Mx Mz

−2 Mx My H1 − 2 My
2L −2 Mx Mz

−2 Mx Mz −2 My Mz H1 − 2 Mz
2L

 
S0x

S0y

S0z

where i, j, k = 1, 2, 3 and i ≠ j ≠ k

HS'Lijk = HRLk HRLj HRLi HS0L = HRLijk HS0L
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Next, it is postulated that if the errors in the dihedral angles are small, they can be written as (π/2 + ε), 
and that if the angle between a pair of surface normals is θ, then cos θ = sin ε.  Then, one can write the 
various values for θ as: cos θ12 = M1x M2x + M1y M2y + M1z M2z = sin ε12 

    cos θ13 = M1x M3x + M1y M3y + M1z M3z = sin ε13  [3] 

    cos θ23 = M2x M3x + M2y M3y + M2z M2z = sin ε23 
 
Thomas and Wyant then adopt the same specific orientation for the corner cube with respect to Cartesian 
coordinate axes originally introduced by Yoder in the referenced 1958 paper.  Namely, let M1 coincide 
with the i-direction and let the dihedral edge between surfaces 1 and 2 be parallel to the k-direction.  Since 
the surface normals must have unit length, the M values become: 
M1x = 1,  M2x = sin ε12 , M3x  = sin ε13, 
M1y  = 0,    M2y =  cos ε12 M3y  = (sin ε23 - sin ε12 sin ε13) / cos ε12, [4] 
M1z  = 0,  M2z  =  0  M3z  = (1 - M3x

2 - M3y
2)1/2 

 
To a first-order small angle approximation, cos ε = 1 and sin ε = ε, a familiar rule of thumb used in 
simplification of reflection matrices.  The surface normal coordinates then reduce to: 

M1x = 1,  M2x = ε12,  M3x  = ε13, 
   M1y  = 0,    M2y =  1,  M3y  = ε23,    [5] 
   M1z  = 0,  M2z  =  0,  M3z  = 1 

 
By substituting these surface normal coordinates into the example reflection matrix of equation [1], the 
resulting reflection matrices become: 

          [6] 
 
The system reflection matrix for each of the six possible sequences of corner cube reflections can now be 
obtained by multiplying these three reflection matrices together in the appropriate order.  For example:  
 

[7] 
 

The remaining reflection sequences are the reverse of the three sequences just listed as examples.   

@RD1 =

i

k

jjjjjjj

−1 0 0

0 1 0

0 0 1

y

{

zzzzzzz
; @RD2 =

i

k

jjjjjjj

1 −2 ε12 0

−2 ε12 −1 0

0 0 1

y

{

zzzzzzz
; @RD3 =

i

k
jjjjj

1 0 −2 ε13

0 1 −2 ε23

−2 ε13 −2 ε23 −1

y

{
zzzzz

@RD123 =
i

k
jjjjj

−1 −2 ε12 −2 ε13

2 ε12 −1 −2 ε23

2 ε13 2 ε23 −1

y

{
zzzzz; @RD123 =

i

k
jjjjj

−1 −2 ε12 −2 ε13

2 ε12 −1 −2 ε23

2 ε13 2 ε23 −1

y

{
zzzzz;

@RD231 =
i

k
jjjjj

−1 2 ε12 2 ε13

−2 ε12 −1 −2 ε23

−2 ε13 2 ε23 −1

y

{
zzzzz; @RD312 =

i

k
jjjjj

−1 −2 ε12 2 ε13

2 ε12 −1 2 ε23

−2 ε13 −2 ε23 −1

y

{
zzzzz
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Their system reflection matrices may be obtained from the corresponding forward sequence 
matrices above by reversing the signs on the matrix elements in the upper right and lower left 
quadrants while leaving the main diagonal elements unchanged.  Once an illuminating beam is 
specified, one can find the reflected beam vectors [S]ijk for the corner cube by substituting each 
of the six system reflection matrices into equation [2]. The prism is typically illuminated along 
its nominal axis of symmetry so that the aperture segments will have the same apparent size in 
the resulting interferogram. The direction cosines in this case are all equal to (3)1/2/3 = 0.577, and 
the corresponding [S]ijk components are: 
 

@S'Dx123 = −
è!!!!

3
3 H1 + 2 ε12 + 2 ε13L; @S'Dx213

= −
è!!!!

3
3 H1 + 2 ε13 − 2 ε12L ;

@S'Dy123 = −
è!!!!

3
3 H1 + 2 ε23 − 2 ε12L; @S'Dy213

= −
è!!!!

3
3 H1 + 2 ε12 + 2 ε23L ; @8D

@S'Dz123 = −
è!!!!

3
3 H1 − 2 ε13 − 2 ε23L; @S'Dz213

= −
è!!!!

3
3 H1 − 2 ε13 − 2 ε23L

and so on ...
 

The six beams that emerge from the corner cube are interfered with a common reference beam to 
obtain a Twyman-Green interferogram. The cross product between reference beam and emergent 
beam not only points in the direction that the fringes resulting from the interference of these two 
beams would have, but also has a magnitude equal to the sine of the angle between the two 
vectors. This magnitude is also equal to the wavelength of light times the spatial frequency of the 
fringes.   
Thomas and Wyant de-convolve the completed set of error contributions into the net dihedral 
angle errors δ1, δ2  δ3 associated with surfaces 1,2 3 to arrive at the result: 
 

(δ1 + δ2 + δ3) = (3)1/2/2(λF)2,    
 
where F is the spatial frequency of the fringes that would be observed with a perfect corner cube.  
The fringe patterns associated with imperfect cubes will have spatial frequencies of the same 
order of magnitude as F since the various emergent beams make small angles with the 
illuminating beam in such cases provided the dihedral angle errors are small. 
 
The fringes that are recorded in a Twyman-Green interferogram are the projections of the actual 
fringes onto a plane that is nearly normal to the beam used to illuminate the corner cube. If the 
results obtained by the technique just described are to be accurate, we must be sure that the 
actual fringe vectors always lie sufficiently close to the interferogram plane to neglect their 
deviation from that plane.   
 

Finally, it should be noted that the εij values calculated by the above technique should be divided 
by the refractive index to obtain the actual values when a glass prism is being tested 
interferometrically to compensate for refraction at the air-glass interface at the front of the corner 
cube.  
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"See also M. S. Zubairy and E. Wolf, "Exact Equations for
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tromagnetic Fields," Optics Commun. (in press).

Determination of the dihedral angle errors of a corner cube from its
Twyman-Green interferogram

David A. Thomas and J. C. Wyant
Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

(Received 20 September 1976)

A technique is devised for calculating the magnitudes of the dihedral angle errors of a corner cube from a
single Twyman-Green interferogram. Experimental examples are given in which the dihedral angles of two
corner cubes are determined to within 2 arcsec by this procedure. These values are also shown to be in good
agreement with independent goniometer measurements.

INTRODUCTION

Several authors have used the dot patterns produced by
the reflection of a pencil of light from imperfect corner
cubes to quantify their imperfections. Yoder' developed
relationships that gave the deviation angles of the
emerging beams with respect to the illuminating beam
as a function of the three dihedral angle errors for the
cube. He was able to favorably compare his calculated
deviation angle values to the figures obtained directly
from the dot patterns, but had to rely on independent
measurements of the dihedral errors for the input val-
ues of his calculations. Joseph and Donohue2 used the
pattern data to compute the relative sign and magnitude
of all three dihedral angle errors.

Corner cubes can also be readily tested with a Twy-
man-Green interferometer. Such interferograms are,
in fact, often supplied by manufacturers as evidence of
the quality of their product. When a perfect cube is
tested in this fashion, the prism aperture is covered
by a single sinusoidal fringe pattern. Imperfect prisms
with planar reflecting surfaces generally have six dis-
tinct sinusoidal fringe patterns over their apertures.
The patterns are usually inclined at various angles with
respect to one another, and each one generally has a
different spatial frequency. This paper describes the
use of such an interferogram to determine the magni-
tudes of the dihedral angle errors of a corner cube.
The derivation follows Yoder's basic matrix algebra
approach.

THEORETICAL DEVELOPMENT

When a corner cube is viewed along its nominal axis
of symmetry, its aperture is seen to be divided into six

467 J. Opt. Soc. Am., Vol. 67, No. 4, April 1977

equal triangular segments. When the prism is illumi-
nated with a plane wave, a component plane wave will
emerge from each of these segments. It is the inter-
ference between these emerging beams and a common
reference plane wave that gives the fringe patterns
mentioned in the introduction. An incident ray must
undergo a sequence of three reflections in passing
through the prism, and each of the six possible reflec-
tion sequences is associated with one of the aperture
segments. If the three prism faces are numbered in a
counterclockwise sequence starting with the lower face,
the aperture segments would be associated with the re-
flection sequences indicated in Fig. 1. It is important
to note that these segments can be grouped in pairs
such that each member of a pair has a common face
for its final reflection. This fact suggests that each
corner cube dihedral angle error can be isolated by
comparing the fringe patterns in one of these three
pairs of aperture segments.

Since the angular orientations and spatial frequencies
of the fringe patterns being examined depend on the
angular relationships between the interfering beams,
the theoretical treatment must be vectorial in nature.
The propagation vectors for the six beams that emerge
from a corner cube when it is illuminated by a single
plane wave can be obtained by successively applying
the vector law of reflection to the three reflecting sur-
faces. This law is derived in one of the references3

and can be written

S, =S,-2(S, M) M, (1)

where S0 is the unit propagation vector for the incident
beam, S, the unit propagation vector for the reflected
beam, and M the outward pointing unit normal to the

Copyright i 1977 by the Optical Society of America 467



CsS013 =M1xM 3 x +M 1,M 3 , +M 12 M3 z = sinE13,

COSO23 =1iI2.jt13, +iVI2-iV 3v +AM2zVI3 z = sinE23.

The prism must now be given a specific orientation with
respect to the Cartesian coordinate axes in order to
specify the components of the three surface normals.
We assume for computational convenience and without
loss of generality that M1 coincides with i and that the
dihedral edge between surfaces 1 and 2 is parallel to k.
This scheme was originally introduced by Yoder and can
be used in conjunction with the fact that the surface nor-
mals must have unit length to show that

Mix= 1, M2 x = sinE12 , M3, = sinE13,

M1 = 0, M2y = cos E12, M3y = (sin E23 - sin 'E2sin El3 )/cosE12,

M 1z = 0, M 2 g = 0, M3Z = (1 -M2X-M2y)/2. (6)

To a first-order small angle approximation, cos E = 1
and sinE = E, and the surface normal coordinates reduce
to

M 1x = 1, M 2X = E1 2, M3x = E13 1

M 1 =00 M 2y=1, M 3 - = E23 ,

(b)

FIG. 1. Corner cube reflections. (a) Coordinate system and
numbering sequence for reflecting surfaces. (b) Prism aper-
ture with associated reflection sequences.

reflecting surface. This vector equation may be re-
written in matrix form as

Six -2M X) - 2mxm -2Mxm Sox

S = -2MXMy (1-2M2) -2MyM2  Soy * (2)

L e 2MxM 2  - 2MyMz (1- 2I1 2) LSoz

In this form the equation shows that a three-by-three
reflection matrix [R] characteristic of the reflector can
be used to map an incident ray into its conjugate re-
flected ray. For a series of three reflections, we have

IS] Lk, =[R]h [R]b [R]h IS]b (3

or

[S] 'j = [R]ijk [SO] (4

where i, j, k=1, 2, 3 and i j *k. Once the direction
cosines of the unit normals to the three reflecting sur-
faces of a corner cube are known, system reflection
matrices can be calculated for each of the six possible
sequences of reflections that can be used to map the
illuminating ray into each of the final exciting rays.

If we assume that the dihedral angles are only slightly
in error, we can write them as (X/2 + E). If we also
designate the angle between a pair of surface normals
by 0, then cos0 = sinE, and we can now write the various
values of 0 as

COSG12 =M1,M 2 , +M1 I,'[ 2 , +M1 iVIM22 = sinE 12 ,

(7)

MiU=0, M2.=°, M3 = 1.

By substituting these coordinates into the reflection
matrix given in Eq. (2), the reflection matrices ob-
tained for the three corner cube faces are

- 1

[R]1 = O

[Rh2 = - 2,E12

[ 1
[R]3 = 0

L2'E13

0

Io s1 0 I

0 1

-2E12

- 1 . 0 I

0 1

1 -2E 2 3

-2E23 -1 j

(8)

The system reflection matrix for each of the six pos-
sible sequences of corner cube reflections can now be
obtained by multiplying the component matrices given
in Eq. (8) in the appropriate order. For example,

1 0 - 2E1 3

[R]123 = L0 1 -2 E23

- 2 E13 - 2 E2 - 11

001
1 0 1

0 1

(9)

or
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3 12

(
(a)

k

(5)

3)
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I 1 - 2 E12 O_ - 1

x -2E,2 - 1 0 0

0 0 1 0
L J L



-F1

[Rb12 3 = 2 E12

2 E13

Similarly,

-1
[R12 31 = - 2 E 12

2 E1 3

ing [S]Jk components are-2E 1 2  -2E13

-1 -2E23

2 E23 - 1

2 E12

-1

2E2 3

2 E131
-2 E2 3-ij

(10)

and

S123 =-j3/3(1 + 2 E1 2 +2 E 13 ),
x 1 2

SX213 =-V/3 (1 + 2 E13 -2 E 12)

St23 =-J/3(1 +2E23 -2E12)

SI2l3 = - /3 (1 + 2 E1 2 + 2 E 2 3 )

s 1 23 =-V/3 (1-2 E1 3 -2 E2 3 )

SZ213 =-J /3(1-2 E13 -2 E 23)

and so on.

-1 -2E12  
2 E13

[R] 312 = 2E1 2  - 1 2E23  . (11)

- 2 E13 -2 E2 3 - 1

The remaining reflection sequences are the reverse of
the three sequences indicated in Eqs. (10) and (11).
Their system reflection matrices may be obtained from
the corresponding forward sequence matrices above by
reversing the signs on the matrix elements in the upper
right and lower left quadrants while leaving the main
diagonal elements unchanged.

Once an illuminating beam [S0] is specified, we can
now find the reflected beam vectors [S]tjk for the corner
cube by substituting each of our six system reflection
matrices into Eq. (4). The prism is typically illumi-
nated along its nominal axis of symmetry so that the
aperture segments will have the same apparent size in
the resulting interferogram. The [SO] direction cosines
in this case are all equal to 4J3/3, and the correspond-

The six beams that emerge from the corner cube are
interfered with a common reference beam to obtain a
Twyman-Green interferogram. In order for the fringe
patterns to be visually resolvable, their spatial fre-
quencies must be low and the reference beam must in
turn be nearly, but not exactly, coincident with the
illuminating beam. This will guarantee that a small
number of fringes will appear across the prism aper-
ture even in the event that the prism is perfect. We
can represent the direction cosines of such a reference
vector [0] as [- (1/VF) + 61, - (1/J) + 62, - (1/f3) + 63].
To first order, both the reference beam vector just
mentioned and the emergent beam vectors, such as
those given in Eq. (12), are of unit length. Hence the
cross product between reference beam and emergent
beam not only points in the direction that the fringes
resulting from the interference of these two beams
would have, but also has a magnitude equal to the sine
of the angle between the two vectors. This magnitude
is, of course, also equal to the wavelength of light
times the spatial frequency of the fringes.

Using the two rays given in Eq. (12) we can show that

[S]1 2 3 x[O] =z [1/3(4E 23 -2E 12 +2E 13 ) -1/J(1 +2E2 3 -2E1 2 )63 +1/J3(1 -2E 1 3 -2E2 3 )6 2 ]

+):[1/3(-2E2 3 - 2E12-4E13)-1//(1- 2E1-2E-2E23)61 +11/(1 +2E12 +2E1 3)63]

+k [1/3(- 2E23 +4E 12 +2E1 3) - 1/J3(1 +2E12 +2E13 )62 +1/J3(l +2E23 - 2E12)61]

and

[S]213 X[O] = [1/3(4E 2 3 +2E1 2 + 2E1 3 ) - 1/J3(1 +2E2 3 +2E1 2 )63 +1/,FT(1 - 2E13 - 2E2 3 )62 ]

+1[1/3(-2E2 3 +2E1 2 -4E1 3 )-1/. W(1-2E 1 3 -2E2 3 )61 +1/1F(1-2E1 2 +2E1 3 )63]

+ k[1/3(-2E 2 3 -4E 1 2 +2E1 3 ) -1/'(1 -2E 1 2 +2E1 3 )6 2 +1/3(1 +2E2 3 +2El 2 )61 ].

These two fringe vectors, though complicated in form,
differ only in the sign of their E12 contributions. Sub-
tracting Eq. (13) from (14) yields the difference vector

[S]a13 x [O] - [S] 2 3 x [O] = (4/,/3) El2 [(1/1_3- 63) z

+ (1/,F - 63) J + (- 2/_3 + 61 + 6,) k ]. (15)
If the quadratic factors in 6 are neglected, the length
of this resultant is given by

Iresultant = (4/13) E12 [2- 4/13(6l + 62 + 63)] / (16)

By looking at the interference between the reference
beam [0] and the beam [I] that would be reflected by a

469 J. Opt. Soc. Am., Vol. 67, No. 4, April 1977

perfect corner cube, we can
the above (61 + 62 + 63) factor

(14)

evaluate the magnitude of

[I] . [0] = 1-1/43(61 + 62 + 63) = COS0 1 _ 02/2, (17)

where 0 =the angle between the two beams. The ap-
proximation given in the final step should be a good one
since 0 must be small for reasons given earlier. Equa-
tion (17) may be rearranged to get

or
0 2 = 2/-(61 + 62 + 63)

(61 + 62 + 63) =F3/2 (AF)2 ,

D. A. Thomas and J. C. Wyant 469
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(13)

(18)

(19)



REFERENCE EMERGENT EMERGENT
BEAM BEAM 1 BEAM 2

(a)

REFERENCE EMERGENT
BEAM BEAM 1

EMERGENT
BEAM 2

(b)
FIG. 2. Relative reference and emergent beam orientations
that result in parallel fringe vectors. (a) Converging emergent
beams. (b) Diverging emergent beams.

where F =the spatial frequency of the fringes that would
be observed with a perfect corner cube. It should be
noted that the fringe patterns associated with imperfect
cubes will have spatial frequencies of the same order of
magnitude as F since the various emergent beams make
small angles with the illuminating beam in such cases
provided the dihedral angle erros are small. Using Eq.
(18) we can rewrite Eq. (16)

1resultant = 4V73 E12 [1 - (XF)2] 1/2 (20)

For visible wavelengths and fringe spacings on the or-
der of 1 mm or larger, (XF)2 is very small (_ 10-7) in
comparison to unity, and we can say that, to a good ap-
proximation,

1resultant =4,/273 E12  (21)

regardless of the particular reference beam used. If
the above procedure is applied to [Sj2 31 and [s]21, a dif-
ference vector magnitude of 4j/73 E23 is obtained while
applying it to [S]132, and [S]312 yields a length of 4,/273
E13 for the difference vector.

It is of interest to note that the above three pairs of
emergent beams correspond to the three pairs of prism
aperture segments mentioned at the beginning of this
section. The theory predicts that the magnitude of the
dihedral angle error E12 can be found by constructing
vectors parallel to the fringes covering the aperture
segments labeled "123" and "213" in Fig. 1 with lengths
equal to the spatial frequencies of those fringes and then
finding the length of the vector formed by subtracting
one of these fringe vectors from the other. It also pre-
dicts that the magnitudes of E13 and E23 can be isolated
using a similar analysis of the "132, " "312" and "231,"
"321" pairs of fringe patterns, respectively.

The fringes that are recorded in a Twyman-Green
interferogram are the projections of the actual fringes
onto a plane that is nearly normal to the beam used to
illuminate the corner cube. If the results obtained by
the technique just described are to be accurate, we

must be sure that the actual fringe vectors always lie
sufficiently close to the interferogranii plane to neglect
their deviation from that plane. We know that if the
beams reflected from the corner cube were interfered
with a reference beam parallel to the beam used to
illuminate the prism, the resulting fringes would all
lie in the interferogram plane. We have shown that,
for the reference beams that we expect to use, the
angle between the reference and illuminating beams is
equal to the product of the wavelength and fringe fre-
quency, and that this product is on the order of 10'- to
10-4 in magnitude. Thus for every case in which the
assumptions we have already made concerning spatial
frequencies of fringes are valid, the actual fringes
should lie in planes that are sufficiently close to the
interferogram plane for our above computational pro-
cedure to apply with good accuracy.

There is, of course, a problem involved in imple-
menting this procedure experimentally. It is not ob-
vious from examination of Twyman-Green interfero-
grams what the directions of the associated fringe vec-
tors should be. We can insure that the members of the
above three pairs of fringe vectors both point in the
same general direction for each pair by adjusting the
reference beam prior to recording the interferogram so
that it has an angular orientation outside that of the
corresponding emergent beam vectors of each pair.
Examples of this arrangement for vectors lying in one
plane are illustrated in Fig. 2. Since the sense of ro-
tation from the reference beam to each of the emergent
beams in both of the cases shown in the figure is clock-
wise, the right-hand rule for determining the orientation
of the cross product between two vectors predicts that
the reference beam - emergent beam fringe vectors
would all point into the plane of the paper in these ex-
amples. The above mentioned adjustment of the corner
cube reference beam can normally be achieved in prac-
tice by selecting a reference mirror orientation that
results in a large number of fringes over all the prism
aperture segments. If the dihedral angle errors are
all small, the emergent beams will make small angles
with respect to one another so that reference beam
orientations intermediate to any of the pairs of reflected
beams being used to isolate these errors would result
in low spatial frequency fringes over the corresponding
pair of aperture segments. If the above precautions
are taken in setting up a corner cube interferogram,
the angles between the pairs of fringe vectors being
used in the above subtraction process will always be
given by the acute angles between the corresponding
pairs of interferogram fringe patterns.

Finally, it should be noted that the Eij values calcu-
lated by the above technique should be divided by the
refractive index to obtain the actual values when a glass
prism is being tested interferometrically to compensate
for refraction at the air-glass interface at the front of
the corner cube.

EXPERIMENTAL VERIFICATION

Twyman-Green interferograms of a BK-7 glass cor-
ner cube and one consisting of front surface silvered
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(a)

(b)

FIG. 3. Twyman-Green interferograms of two corner cubes.
(a) BK-7 glass cube. (b) Front surface mirror cube.

mirrors are shown in Fig. 3. The fringe spacings and
angular orientations of the fringe patterns in both in-
terferograms were measured on a comparator. The
acute angles between the pairs of fringe patterns needed
to isolate the dihedral angle errors and the average
spatial frequencies of all fringes were then calculated,
and the results are given in Table I. The law of cosines
was applied to the data in this table to find the lengths
(in spatial frequency units) of the resultant vectors that
were shown in the theory to be proportional to the
dihedral angle errors. Finally, these errors (Eij) were
computed from the difference vector lengths (Lij) by
means of the equation

Eij=XLij/3.26mn i=1, 2, j=2, 3, iAj. (22)

The factor n stands for the prism index (1. 514 for BK-7
or 1 for the mirror cube at X =6563 i) and m stands for
the ratio of the actual prism size to the interferogram

TABLE I. Comparator data for interferograms in Fig. 3.

Glass cube Mirror cube

Aperture Frequency Relative Frequency Relative
segment (mm-1) angle (deg.) (mm-1) angle (deg.)

213 1.92 3.72 1.87 0.55
123 1.61 18

132 1.66 3.8 1.87 10
312 1.38 3.28 1.82 1.02

321 1.63 18.54 1.92 5.25
231 1.62 1.4 1.91

TABLE II. Dihedral angle error magnitudes for two corner
cubes.

Glass cube Mirror cube
Computed Goniometer Computed Goniometer
value value value value
(arc sec) (arc sec) (arc sec) (arc sec)

E12  7.59 -6.13 4.26 -3.35
E13  6.74 7.90 2.13 3.27
E23  12.03 -11.67 6.23 -5.25

size. This magnification factor is necessary because
the fringe frequencies and the value of L, which is cal-
culated in terms of them, depend on interferogram size
and so must be corrected to the size of the prism. In
our case, the values of m were 1. 16 and 1. 14 for the
glass and mirror cubes, respectively. The computed
errors are given in Table II for both corner cubes and
are estimated to be accurate to within ± 1 arc sec. The
primary cause for variation in the computed e values
about the average values given in the table was varia-
tion in the comparator line spacing measurements with-
in a single fringe pattern. This variation was greatest
for the BK-7 cube data and was due largely to fringe
curvature caused by deviation in the prism reflecting
surfaces from flatness.

The dihedral angles in both corner cubes were also
externally measured one at a time with a goniometer.
These values are given in Table II and were also re-
peatable to within about ± 1 arc sec. It was, of course,
possible to recover the signs as well as the magnitudes
of the errors with the goniometer. Comparison of- the
corresponding error magnitudes obtained by the two
methods shows agreement to within the accuracies of
the measurements.

CONCLUSION

The procedure presented in this paper for recovering
the magnitudes of the dihedral angle errors in a corner

EMERGENT REF- EMERGENT
BEAM 1 ERENCE BEAM 2

BEAM

(a)

EMERGENT REFERENCE EMERGENT
BEAM 1 BEAM BEAM 2

A-

(b)
FIG. 4. Relative reference and emergent beam orientations
that result in parallel fringes of equal spatial frequency. (a)
Converging emergent beams. (b) Diverging emergent beams.
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cube from its Twyman-Green interferogram is con-
venient and apparently accurate. In the absence of ad-
ditional information, it is, however, impossible to re-
cover the signs of these errors from a single interfero-
gram. A technique often used in interferometry to ob-
tain information concerning the signs of errors is to
adjust the tilt of the reference beam after the inter-
ferogram has been recorded and observe the resulting
changes in the fringe patterns. For example, if the
reference beam were oriented by appropriate adjust-
ment of the interferometer reference mirror so as to
give fringes of equal spatial frequency over one of the
pairs of aperture segments being used to evaluate one
of the dihedral angle errors, the corresponding beam
orientations would be as shown in Fig. 4. A further
clockwise rotation of the reference beam from the posi-

tion shown in the figure would result in an increase in
the spatial frequency of the fringes resulting from the in-
terference of the right-hand pair of beams if the emer-
gent beams were converging (E<0) and a decrease if
they were diverging (E>0). The same procedure ap-
plied to the other two pairs of fringe patterns would also
give the signs of their associated dihedral angle errors.
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Seventh spectrum of selenium: Se vii and the 3p53 d1 0 configuration in Se vIII
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The spectrum of selenium has been observed in the wavelength region 1200-100 A on the 10.7 m normal
incidence and 10.7 m grazing incidence vacuum spectrographs at the NBS Laboratory in Washington. A
triggered vacuum spark was used as a source. The "pole effect" exhibited by the lines on the normal incidence
spectrograms helped to discriminate different stages of ionization of the selenium spectra. All the levels
belonging to the 3d94s and 3d 94p configurations in Sevni have been located. The parametric level fitting
calculations of the energy levels agree with the experimental values. In Seviii, the 3p 53d P p'P term has been
determined.

INTRODUCTION AND EXPERIMENTAL

The six-times ionized selenium atom Sevii is isoelec-
tronic with Ni I. Its ground state configuration is
3d'0 'So and the first two excited configurations are
3d94s and 3d94p. In 1934 Kruger and Shoupp' observed
four lines in the region 170-180 A and classified three
of them as transitions between 3d'o 'So and 3d94p P1,
'P' and 3D', on the basis of the extrapolations in the
Ni i isoelectric sequence. In the same year Rao and
Murti2 published a list of 44 lines in the region 561-860
A, out of which they assigned 42 lines to the Sevii
spectrum. They also suggested the classifications for
four of these lines. Edl6n' classified many lines below
113 A as transitions to the ground state level from lev-
els of the 3d95p and 3d9nf (n =4 to 8) configurations.
Recently we published revised values4 for the resonance
lines of Sevii. From Nii isoelectronic sequence ex-
trapolation the transitions belonging to 3d94s - 3d94p
may be predicted to fall in the region 700-950 A.

The spectrum of selenium was photographed in the
region 525-1220 A on the 10. 7 m normal incidence
spectrograph in the NBS Laboratory in Washington.
This supplemented our earlier observations4 below 600
A on the 10. 7 m grazing incidence spectrograph. The
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source used was a triggered vacuum spark as described
by Feldman et al.5 Spectroscopically pure selenium
was packed into an axial cavity of an aluminum elec-
trode which was used as a cathode. The anode was a
pure aluminum electrode. Aluminum has very few
lines in the wavelength region studied and only the
strongest ones appeared on our plates. The electrode
separation was about 3 mm. The charging potential
was varied from 5 to 12 kV and the conditions of the
discharge were controlled further by inserting induction
coils in the circuit. By comparing the intensities of
the lines under different experimental conditions, the
ionization stages could be determined quite definitely.
Since the spectrograph was stigmatic, the lines showed
a pole effect6 of varying degree for the lines of different
ionization stages. The lines belonging to Se ii, Se iii,
Se iv, and Sev did not show any pole effect. The inten-
sity of Sevi lines tapered off from the top to the bottom
along the length of the lines, while for the Sevii lines
the tapering-off effect was much more enhanced. Seviii
lines appeared only as tips (about 4 to I of the length of
the line at 10 kV and shorter at lower voltages) and did
not appear on 5 kV exposures. This is shown in Fig. 1.
Thus the pole effect provided a very reliable means to
discriminate various higher ionization stages of the
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