Tutorial
Use of Composites in Optical Systems

Anoopoma P. Bhowmik
Introduction to Opto-Mechanical Engineering
OPTI 521
November 30, 2009

College of Optical Sciences - University of Arizona
Overview

- Introduction
- Composite basics
- Some case studies
- Failure modes
- Conclusion
Introduction

- Purpose: Provide general familiarity and resources for consideration of composites in optical systems
- Complements: A more detailed and thorough paper on the class website

http://www.optics.arizona.edu//optomech/Fall09/...
Basics

- Main components
 - Reinforcement material: typically fibers/particles
 - Matrix material: typically resin or epoxy
- Common forms: pultrusion, laminate, and foam-core
Calculations

- Simple geometry allows for approximation of composite density and Young’s modulus

\[
\rho_m = \frac{1}{\left[\frac{W_f}{\rho_f} + \frac{1-W_f}{\rho_r} \right] (1 + H_m)}
\]

\[
E_m = n \frac{E_f A_f}{A_m} + E_r \left[1 - n \frac{A_f}{A_m} \right]
\]

- Fiberglass-resin example (pultrusion):
 Fiber specific stiffness = 16 GPa g/cm³
 Composite specific stiffness = 68 GPa g/cm³
 This is the primary reason we use composites!
Tailoring mechanical properties

- Also, additional design degrees of freedom in manufacturing process
Case Study: SXA Mirror

- SXA = 2024 aluminum alloy/ 30% silicon carbide particulate metal matrix composite
- Chosen over glass and Beryllium
 - High specific strength, stiffness, stability, moderate machining cost
- Beam footprint = 25 cm
- Final weight = 806 grams

Fabrication process
- Machining, thermal stabilization, electroless nickel plating, polishing, and coating

Final performance
- Surface figure was flat to within $\sim \lambda/8$ power
- $\sim \lambda/6$ irregularity over any 120mm diameter area

Thermal performance
- “no change” for exposure to temperatures $\sim 160^\circ C$
Case Study: Carbon Fiber Mirror

- Conical mirror 1.3m diameter, 0.5m height, polished surface area 2m², total weight 8 kg
- M46J/EX-1515= ~ 70% high modulus carbon fiber, ~30% cyanate ester resin matrix
- For use in ISS experiment: space-qualified materials
- The specific stiffness of CFRP ~ 5 times greater than steel.
- The coefficient of thermal expansion for CFRP is very low at 1-2 ppm. This is ~ 20 times lower than for aluminum.
Case Study: Cesic Mount

- Cesic = carbon-fiber-reinforced silicon carbide composite
- Very close CTE to that of silicon foam-core element
- Very useful material properties
- Good material for mounting a silicon foam-core element
Failure Modes

- Three types: laminar/plate uniform stress, stress concentration, and sharp cracks

Comparison of laminar failure to isotropic plate failure

Resulting incremental failure

Figure 4-33 Load-Deflection Behavior of Metal Plates

A. P. Bhowmik
Failure Modes (2)

- Failure due to sharp cracks: Use fracture mechanics in same way as for isotropic glass
 - Failure = $K_I > k_{IC}$

Stress Intensity Factor

\[K_I = Y\sigma \sqrt{\pi a} \]

Fracture toughness geometry

- Average stress failure criterion
 \[k_{IC,1} = F_0 \sqrt{\frac{\pi a a_0}{a_0 + 2a}} \]

- Stress concentration failure criterion
 \[k_{IC,2} = F_0 \sqrt{\pi a} \sqrt{1 - \left(\frac{a}{a + d_0}\right)^2} \]

A. P. Bhowmik
Ways to fight failure

- Thermal stability
 - Proper volumetric balance of high-modulus, reinforcing fiber with negative CTE, and matrix resin with positive CTE

- Moisture-induced stability
 - For <1ppm strain change: Use high modulus fiber, low moisture absorbing resin partially pre-saturated with moisture, and have a metal seal with low flaw density (0.1-0.01%), and seal thickness such that the net CTE is 0.00 ± 0.05ppm/°C.
Comparison of Composite Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Typical Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal Matrix Composites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiC/AL (Discontinuous SiC particles)</td>
<td>• Isotropic
• Large database
• 1.5 x modulus and strength of aluminum alloys with the same density</td>
<td>• Most not weldable
• Machinable, but results in high tool wear
• Lower ductility than aluminum alloys
• Limited flight heritage</td>
<td>• Truss fittings
• Brackets
• Mirrors and optical benches</td>
</tr>
<tr>
<td>B/Al (Continuous boron fiber)</td>
<td>• High strength vs. weight
• Low CTE</td>
<td>• Anisotropic
• Expensive</td>
<td>• Truss members
• Shuttle payload doors</td>
</tr>
<tr>
<td>Polymer Matrix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aramid/Epox (e.g. Kevlar or Spectra fibers with epoxy matrix)</td>
<td>• Impact resistant
• Lower density than graphite/epoxy
• High strength vs. weight</td>
<td>• Absorbs water
• Outgases
• Low compressive strength
• Negative CTE</td>
<td>• Solar array structures
• Radio frequency (RF) antenna covers</td>
</tr>
<tr>
<td>Carbon/Epox (High-strength fiber)</td>
<td>• Very high strength vs. weight
• High modulus vs. weight
• Low CTE
• Flight heritage</td>
<td>• Outgasses (matrix-dependent)
• Absorbs water (matrix-dependent)</td>
<td>• Truss members
• Face sheets for sandwich panels
• Optical benches
• Monocoque cylinders</td>
</tr>
<tr>
<td>Graphite/Epox (high-modulus fiber)</td>
<td>• Very high modulus vs. weight
• High strength vs. weight
• Low CTE
• High thermal conductivity</td>
<td>• Low compressive strength
• Ruptures at low strain
• Absorbs water and outgasses (matrix-dependent)</td>
<td>• Truss members
• Antenna booms
• Face sheets for sandwich panels
• Optical benches
• Monocoque cylinders</td>
</tr>
<tr>
<td>Glass/Epox (Continuous glass fiber)</td>
<td>• Low electrical conductivity
• Well-established manufacturing processes</td>
<td>• Higher density than graphite/epoxy
• Lower strength and modulus than graphite/epoxy</td>
<td>• Printed circuit boards
• Radomes</td>
</tr>
</tbody>
</table>
Conclusion

- There are many design degrees of freedom made available with composites
- Over 60 years of US participation in the composite industry: many lessons learned
- Further research
 - Will drive product cost down
 - Will create new developments
Some Interesting References

- “CFRP Mirror” http://www.compositemirrors.com
- “Athermal telescope” http://www.cesic.de/...html
- “Cesic Mirror” http://spiedl.aip.org/...
- “Failure” http://www.emba.uvm.edu/.../me257/
Questions?

Please contact the author at:
abhowmik@optics.arizona.edu