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Abstract

This paper presents a method for allocating tolerances to dimensions in kinematic couplings, which are exact constraint devices used to
locate one object with respect to another. The objective is to reduce the manufacturing cost without exceeding limits on the variation of the
coupled position and orientation. The allocation procedure uses parametric models of the contacting surfaces and a solution for the resting
position of the coupled body. A multivariate error analysis provides a relation between variation in manufactured dimensions and variation
in the position and orientation of the coupled body. Optimal tolerances are then determined using a non-linear constrained optimization algo-
rithm that minimizes the manufacturing cost while satisfying constraints on the variation of the coupled position and orientation. The method
provides a useful tool when designing mass-produced kinematic couplings intended for applications where coupled bodies are exchanged.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Kinematic couplings, illustrated inFig. 1, are widely used
for positioning one rigid body with respect to another. Con-
tact between a ball body and a groove body occurs at six
points, which is the minimum necessary for static equilib-
rium. Hence, kinematic couplings exactly constrain[1] all six
degrees of freedom without over-constraint and are therefore
extremely repeatable techniques for positioning two bodies
[2,3]. However, the relative position and orientation of the
two bodies are not necessarily accurate. Accuracy must be at-
tained with either mechanical adjustments or tight production
tolerances, both of which increase the manufacturing cost of
the kinematic coupling.

As kinematic couplings increasingly find applications in
manufacturing, fixturing, and material handling, it is neces-
sary to consider the effect of inaccurate kinematic couplings.
For instance, Vallance et al.[4] described the use of kine-
matic couplings for positioning pallets in flexible assembly
systems. In this application, kinematically coupled pallets are
routinely exchanged at multiple machine stations, and hence
manufacturing errors in each pallet and station contribute to
system-wide manufacturing variation.

∗ Corresponding author. Tel.:+1 202 994 9830; fax:+1 202 994 0238.
E-mail address: vallance@gwu.edu (R.R. Vallance).

This paper presents a method for allocating tolerances to
the dimensions of kinematic couplings so that variation in
the position and orientation of kinematically coupled bod-
ies is less than a set of design constraints. The geometry of
the contacting surfaces is modeled using parametric func-
tions of dimensions that include manufacturing errors. The
variation in the kinematic couplings’ position and orientation
errors are expressed as a function of the tolerances using a
multivariate error analysis[5]. The tolerances of the coupled
bodies are related to manufacturing costs via cost–tolerance
relations for common processes (milling, drilling, grinding,
etc.) published by Chase[6]. Finally, a constrained nonlinear
optimization problem returns dimensional tolerances for the
kinematic coupling that minimize manufacturing costs but
satisfy constraints on variation in position and orientation.

2. Background and prior work

Kinematic couplings have been used in precision instru-
ments for many years[7,8], and their utility in precision ma-
chines is widely recognized[9]. In traditional applications,
often a single ball body and a single groove body are cou-
pled together, and so the principal functions of the kinematic
coupling are

1. to minimize variation in the position and orientation of the
ball body after removing and replacing the ball body, and
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Fig. 1. Three-groove kinematic coupling.

2. to minimize elastic deformation induced in the ball body
due to excessive constraints.

The success of similar anti-distortion mountings and kine-
matic couplings with regard to these two functions was stud-
ied and demonstrated by designers of precision instruments
and machines[3,10,11]. As a result, they found increasing
application within precision manufacturing equipment and
processes[4,12,13]. For some of these applications, multiple
ball bodies are coupled with a single or several groove bod-
ies. This introduces system-level variation due to inaccurate
production of the mating surfaces within the kinematic cou-
pling, which was described and analyzed by Vallance[5]. To
increase the accuracy of each coupling and thereby reduce
the system-wide variation, the dimensional variation within
the set of ball and groove bodies must be specified and con-
trolled.

Limits on the dimensional variation within the ball and
groove bodies can be specified on drawings using standard
techniques for dimensional and geometric tolerances[14].
Early tolerancing research resulted in approaches for toler-
ance analysis that predict the effect of multiple tolerances
on the dimensions and geometry of mechanical components
[15,16]. The most common approaches use worst-case anal-
yses[17], root-sum-square (RSS) analyses[18], statistical
techniques[19], or Monte Carlo simulation[20]. More recent
research extended tolerance analysis techniques to assem-
blies of components[21,22], and some of these techniques
are available in tolerance analysis software and may even be
integrated with CAD software[23].

Software for tolerance allocation[24], which is the prob-
lem of assigning values to the tolerances, is less available.
Therefore, tolerance allocation is less common, but it has
been demonstrated for particular mechanical systems[25].
Tolerance allocation often uses optimization techniques[26]
that minimize cost[27,28]subject to constraints on variation
using cost–tolerance relations[24,27,29].

This paper contributes a formulation and solution to toler-
ance allocation for kinematic couplings, which compliments
other analytical tools that assist during design[30,31,32]. The
technique for assigning tolerances is statistical, and it uses

multivariate error analysis[33] and nonlinear constrained op-
timization [34] to minimize cost. The technique has been
implemented and verified using a set of scripts that execute
within Matlab1. An additional set of Matlab scripts verifies
the results of the allocation using random Monte Carlo sim-
ulations.

3. Tolerance allocation

Rigorously allocating tolerances to the dimensions of kine-
matic couplings, requires an algorithm that incorporates the
four aspects described below.

3.1. Describe the geometry and dimensional variation in a
mathematical form

Both bodies of the kinematic coupling should be repre-
sented parametrically, with respect to their nominal dimen-
sions and their dimensional errors. The contact points be-
tween the two bodies are of primary interest for defining the
assembly variations of the kinematic coupling, so the para-
metric representation should concentrate on contacting sur-
faces in terms of the dimension schemes for modeling the
ball and groove bodies.

3.2. Combine dimensional variation in the ball body and
groove body to estimate variation in the resting position and
orientation of the ball body

The limits to dimensional variation in the ball and groove
bodies are defined by tolerances. When a ball body and
groove body with particular dimensional errors are assem-
bled together, the ball body is positioned and oriented with
errors in its resting position (xr, yr, zr, γr, βr, αr). A re-
lation between dimensional variation and variation in the
resting position and orientation is provided by multivariate
error analysis. This approach requires a robust method for
determining the resting location of the ball body.

3.3. Relate assembly variation to the performance
requirements of the kinematic coupling

The acceptable errors in the resting position and location
are defined by the assembly tolerances specified by the de-
signer. If the designer uses error budgeting techniques[35],
then the limits on position and orientation errors associated
with the kinematic coupling are known. However, these limits
are usually specified atoperating points, where manufactur-
ing operations are performed, rather than at a reference co-
ordinate system. The performance of the kinematic coupling
should therefore be assessed using variation in the position
and orientation of operating points.

1 Matlab for Windows is software from The MathWorks Inc., 24 Prime
Park Way, Natick, MA.
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Fig. 2. Flowchart of the tolerance allocation.

3.4. Relate dimensional tolerances to
manufacturing costs

The objective of the tolerance allocation is to minimize the
manufacturing cost of the kinematic coupling, while satisfy-
ing tolerances on the assembly errors. It is then necessary to
establish cost–tolerance functions relevant to the manufac-
turing operations used to produce the ball and groove bodies.

These four aspects are incorporated into the algorithm il-
lustrated inFig. 2. The multivariate error analysis is an itera-
tive process in which one dimension is perturbed at a time. It

returns the variation of the resting location and the manufac-
turing cost. This process is nested in an optimization loop.

4. Parametric representation of contacting surfaces

We require an analytical representation of the contacting
surfaces within a kinematic coupling containing manufac-
turing errors. A common style of kinematic couplings uses
three balls resting in three vee-grooves, as illustrated inFig. 1
[30], and so we use the parametric equations for a sphere and
flat surface. Our current limitation to spheres and flats can
be generalized in future work with toroids having two radii;
this improvement would accommodate other contacting sur-
faces like canoe balls and gothic-arch grooves. We distin-
guish six spherical surfaces since the effective diameter of
the ball near the contact point may be slightly different due
to out-of-roundness in the ball. The arrangement of the six
spherical and flat surfaces is illustrated inFig. 3. For com-
putational convenience, coordinate systems are attached to
each surface. The 12 surfaces are described in reference co-
ordinate systems located at the coupling centroid of the ball
body (BC) and groove body (GC).

Eq. (1)describes all points [xBi, yBi , zBi ] that lie within a
spherical surface with diameter,DBi , and center located by

the position vector,BC⇀P Bi =
[

BCPxBi,
BCP

y
Bi
, BCPzBi

]
. The

subscript,Bi, indicates that the points are associated with
the ith spherical ball surface, and the prescript, BC, denotes
that the position vector is measured in the coordinate system
located at the centroid of a triangle defined by the centers
of the three balls. The sub-subscripti indicates a particular
contact surface and varies between 1 and 6.

(xBi − BCPxBi)
2 + (yBi − BCP

y
Bi
)2 + (zBi − BCPzBi)

2

−1
4DBi

2 = 0 for i = 1, . . . ,6 (1)

Eq. (2) describes all points [xFi, yFi , zFi ] that lie within
the flat plane in one of the coupling’s vee-grooves. The
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Fig. 3. Parametric representation of spherical and flat contacting surfaces.
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subscript,Fi, indicates that the variables are associated
with the ith flat surface. The plane is defined by a position
vector that locates a point in the vee-groove,GC⇀P Fi =
[GCPxFi,

GCP
y
Fi
,GCPzFi ], and a vector normal to the plane,

GC⇀n
Fi

= [GCnxFi ,
GCn

y
Fi
,GCnzFi ]. The prescript, GC, indi-

cates that the vectors are measured in a coordinate system
located at the grooves’ coupling centroid.

GCnxFi(xFi − GCPxFi)+ GCn
y
Fi
(yFi − GCP

y
Fi
)

+GCnzFi(zFi − GCPzFi) = 0 for i = 1, . . . ,6 (2)

The components of the position and normal vectors used
in Eqs. (1) and (2)depend upon the manufactured dimen-
sions of the kinematic coupling. Two sets of dimensions,
(dB1, dB2, . . . , dBm) and(dF1, dF2, . . . , dFn), define the ge-
ometry of the ball body and groove body, respectively. The
dimensions are measured with respect to two sets of metrol-
ogy datum frames that define a coordinate system in the ball
body denoted with a prescript, BD, and a coordinate system
in the groove body denoted with a prescript, GD. The form of
these relations depends upon the dimension scheme specified
by the designer, but they are expressed generally as shown in
Eqs. (3)–(5).

BD ⇀P Bi = fBi(dB1, dB2, . . . , dBm) (3)

GD⇀P Fi = fFi(dF1, dF2, . . . , dFn) (4)

GD⇀n
Fi

= fni(dF1, dF2, . . . , dFn) (5)

The position vectors that locate the spherical and flat surfaces
are transformed from the coordinate systems determined by
the manufacturing datums (BD and GD) to the centroidal co-
ordinate systems (BC and GC) using homogeneous transfor-
mation matrices (HTMs),BC

BDT andGC
GDT , as shown inEqs. (6)

and (7).

BC⇀P Bi = BC
BDT

BD ⇀P Bi (6)

GC⇀P Fi = GC
GDT

GD⇀P Fi (7)

The HTMs BC
BDT and GC

GDT are determined using a triangle
defined by the centers of the balls. The origin of the cen-
troidal coordinate system is located at the intersection of the
triangle’s bisectors[36]. Itsx-axis points towards the ball that
contains contacting surfaces 5 and 6, and the three apices lie
in thexy-plane. An algorithm for determiningBC

BDT andGC
GDT

is presented inAppendix A.

5. Resting position and orientation

When rigid ball and groove bodies are kinematically cou-
pled, the ball body rests in a location that minimizes energy.
If friction at the contact points and elastic deformation is ne-
glected (these are only weakly dependent on variability of
dimensions), the resting location is determined solely from

the manufactured geometry of the bodies. The solution de-
scribed here uses the geometric model presented in the pre-
vious section to calculate the relative position and orienta-
tion between kinematically coupled bodies that contain man-
ufacturing errors. By avoiding assumptions such as a lin-
ear relation between manufacturing errors and resting posi-
tion, the method remains valid for even large manufacturing
errors.

Specification of the resting position and orientation re-
quires that three translationsxr, yr, andzr, and three rotations
αr = rot(BCZ), βr = rot(BCY ), andγr = rot(BCX) be deter-
mined (order of rotation isαr, βr, andγr). These degrees of
freedom are expressed in a transformation matrix,GC

BCT , be-
tween the centroid coordinate systems in the ball body (BC)
and groove body (GC). The objective is to determine the un-
knowns (xr, yr, zr, γr, βr, αr) and henceGC

BCT , but this cannot
be done without also determining the position vectors that
locate the six contact points,GC⇀P Ci .

As illustrated inFig. 4, the solution employs a system of
24 equations and unknowns that are solved iteratively using
a nonlinear numerical technique. The inputs to the solver in-
clude the diameters of the spherical contacting surfaces,DBi ,
the position vectors that locate the balls in the BC coordi-
nates,BC⇀P Bi , the position vectors that locate the flat sur-
faces in the GC coordinates,GC⇀P Fi , and the normal vectors
at the flat surfaces,GC⇀n

Fi
. The outputs of the algorithm in-

clude the translations and rotations of the resting position,xr,

Fig. 4. Solution for resting position and orientation of kinematically coupled
body.
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Fig. 5. Vector loop between ball and flat surface.

yr, zr, γr, βr, αr and the positions vectors that locate the six
contact points in the GC coordinate system,GC⇀P Ci .

The system of 24 equations is obtained in two sets. The first
set of six equations is obtained by requiring that the contact
points lie in the plane defined by the flat surfaces. As shown in
Eq. (8), this is accomplished by substituting the coordinates
of the contact points intoEq. (2), which is done for each of
the six contact points.

GCnxFi(xCi − GCPxFi)+ GCn
y
Fi
(yCi − GCP

y
Fi
)

+GCnzFi(zCi − GCPzFi) = 0 for i = 1, . . . ,6 (8)

The second set of 18 equations is obtained from six equations
that express a closed loop of vectors between the contacting
balls and flat surfaces. The vector loop is illustrated inFig. 5
for one ball and flat surface. One path in the loop originates
at the GC coordinate system and includes the unknown trans-
formation,GC

BCT , and the position of the ball center,BC⇀P Bi .
The second path in the loop also originates at the GC coor-
dinate system, but it proceeds to the unknown position of the
contact point,GC⇀P Ci , and through a vector normal to the
flat surface of magnitudeDBi/2. The closed vector loop is
expressed mathematically inEq. (9), and may be written six
times for each contact point. This produces 18 independent
equations since the vectors used inEq. (9)have three com-
ponents.

GC
BCT

BC⇀P Bi − GC⇀P Ci = DBi

2
GC⇀n

Fi
for i = 1, . . . ,6

(9)

After the iterative solver returns values for the unknown vari-
ables, the HTM between the GC and BC coordinate systems
is computed as shown inEq. (10). If the tolerances are tight
and the rotations are small, then the matrix form could be
simplified using small angles approximations or second or-
der approximations as described by Hale[37].

GC
BCT =




cos(αr)cos(βr) cos(αr)sin(βr)sin(γr)− sin(αr)cos(γr) cos(αr)sin(βr)cos(γr)− sin(αr)sin(γr) xr

sin(αr)cos(βr) sin(αr)sin(βr)sin(γr)− cos(αr)cos(γr) sin(αr)sin(βr)cos(γr)− cos(αr)sin(γr) yr

−sin(βr) cos(βr)sin(γr) cos(βr)cos(γr) zr

0 0 0 1


 (10)

6. Multivariate error analysis of variation in resting
location

Tolerance allocation requires a relation between dimen-
sional variation and system-wide variability in the resting
position and orientation. This can be accomplished using a
Monte Carlo simulation, but multivariate error analysis pro-
vides a more computationally efficient approach[5]. After
allocating tolerances, a Monte Carlo simulation is an effec-
tive means for verifying the results.

Multivariate error analyses use linear approximations de-
rived from Taylor series expansion. For instance, there exists
a function,xr = X(d1, d2, . . . , dm+n), that gives the resting
position in the x-direction in terms of the dimensions of the
kinematic coupling. As shown inEq. (11), an estimate of the
deviation in thex-coordinate,δxr , is expressed using a Tay-
lor series expansion toX that includes only first-order terms
consisting of partial derivatives and differential errors in the
dimensions,�dj.

δxr ≈ �d1
∂X

∂d1
+�d2

∂X

∂d2
+ · · · +�dm+n

∂X

∂dm+n
(11)

Similar expressions are written for the deviations in the re-
maining degrees of freedom,δyr , δzr , δγr , δβr andδαr . All six
approximations are expressed in matrix form by the transfor-
mation shown inEq. (12). The 6× (m + n) matrix of partial
derivatives is referred to as the Jacobian matrix, [J].




δxr

δyr

δzr

δγr

δβr

δαr




=




∂X

∂d1

∂X

∂d2
. . .

∂X

∂dm+n
∂Y

∂d1

∂Y

∂d2
. . .

∂Y

∂dm+n
∂Z

∂d1

∂Z

∂d2
. . .

∂Z

∂dm+n
∂ 

∂d1

∂ 

∂d2
...

∂ 

∂dm+n
∂B

∂d1

∂B

∂d2
. . .

∂B

∂dm+n
∂A

∂d1

∂A

∂d2
. . .

∂A

∂dm+n







�d1

�d2

...

�dm+n


 (12)

Since expressions for the six degrees of freedom are not ac-
tually known, the elements of [J] are estimated numerically.
This is done by perturbing the value of each dimension from
its nominal value, calculating the resting location that gives
the six errors, and then evaluating a column in [J].

Assuming the dimensions are continuously distributed ran-
dom variables and that a tolerance is equivalent to a 3σ range,
the error analysis can be treated statistically. A covariance
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matrix organizes variances along its diagonal and covariances
in the off-diagonal terms. The diagonal elements are there-
fore squares of the standard deviations of the correspond-
ing random dimensions. The covariance matrix, [CD], of the
kinematic coupling’s dimensions is given inEq. (13). If the
dimensions are independent and therefore uncorrelated, the
off-diagonal covariance terms will equal zero. This is a com-
mon assumption during tolerance allocation.

[CD] =




σ2
d1

cov(d1, d2) . . . cov(d1, dm+n)
cov(d2, d1) σ2

d2
. . . cov(d2, dm+n)

.

.

.
.
.
.

. . .
.
.
.

cov(dm+n, d1) cov(dm+n, d2) . . . σ2
dm+n



(13)

A similar covariance matrix, [CE], for the variation in the
resting location, is defined inEq. (14).

[CE] =




σxr
2 cov(xr, yr) . . . cov(xr, αr)

cov(yr, xr) σyr
2 . . . cov(yr, αr)

...
...

. . .
...

cov(αr, xr) cov(αr, yr) . . . σ2
αr



(14)

The covariance matrix of the resting location errors, [CE], is
related to the covariance matrix of the dimensions [CD] by
Eq. (15) [33].

[CE] = [J ][CD][J ]T (15)

By extracting the diagonal elements of the matrix, [CE], the
multivariate error analysis returns the variation in the resting
position and orientation in terms of the tolerances on dimen-
sions.

7. Variation at operating points

The previous section presented a method for estimating
the variation in the position and orientation of a coordinate
system located at the coupling centroid in the ball body. Al-
though this is useful, the utility of the tolerance allocation
is greatly improved if it considers the variation at additional
points in the ball body. For instance, in kinematic couplings
intended for positioning pallets in flexible assembly opera-
tions [4], assembly operations such as insertion and joining
are performed to a product held within a fixture attached to
the ball body. Hence, the designer’s specifications on varia-
tion, as determined with an error budget, are preferably spec-
ified atoperating points.

Fig. 6illustrates the definition of a single operating point. A
coordinate system, denoted with the prescript, OPk, is defined
at thekth operation point. An HTM,BD

OPk
T , locates the oper-

ating point with respect to the manufacturing datum frame
in the ball body, BD. A set ofp operating points is similarly
defined by a set ofp HTMs.

GC x

yz

x

yz

Operating
Point

TkOP
GC

x
yz

BD TkOP
BD

TGC
BD

kOP

Fig. 6. Coupled kinematic coupling with operating point.

After determiningBC
BDT between the ball body’s datums

and coupling centroid using the algorithm in theAppendix A,
the position and orientation of the operating points can be
calculated in the coordinate system at the groove body’s cou-
pling centroid using the transformations shown inEq. (16).
SinceGC

BCT contains the resting position errors resulting from
coupling the ball and groove bodies, the transformationGC

OPk
T

reveals the effect of an inaccurate coupling on the position
and orientation at the operating point. Larger position errors
usually result from amplifying small rotations by the dis-
tance separating the operating point from the coupling cen-
troid (Abbe offset).
GC
OPk

T = GC
BCT

BC
BDT

BD
OPkT (16)

The multivariate error analysis is expanded to include the op-
erating points. This is accomplished by expanding the vector
of errors and the Jacobian matrix as shown inEq. (17)so
that they incorporate error terms associated with the set of
p operating points. If all six degrees of freedom at each op-
erating point are included, then the dimensions of the error
vector become (6+ 6 × p) × 1, and the dimensions of the
Jacobian matrix become (6+ 6 × p) × (m + n). However,
most manufacturing operations have sensitive and insensitive
directions, so considering only the sensitive directions sim-
plifies the problem and requires only a subset of the degrees
of freedom at each operating point. Evaluation of the new
terms in the Jacobian matrix is still determined by perturbing
each dimension in the ball and groove body, calculating the
resting position and orientation, and subsequently extracting
changes in the values withinGC

OPk
T .



δxr
δyr
δzr
δγr
δβr
δαr
δxOP1

δyOP1
.
.
.

δαOPp




=




∂Xr

∂d1

∂Xr

∂d2
. . .

∂Xr

∂dm+n
∂Yr

∂d1

∂Yr

∂d2
. . .

∂Yr

∂dm+n
.
.
.

.

.

.
. . .

.

.

.
∂AOPp

∂d1

∂AOPp

∂d2
. . .

∂AOPp

∂dm+n







�d1

�d2

.

.

.

�dm+n


 (17)
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With the changes shown inEq. (17), the covariance ma-
trix [CE] calculated withEq. (15)takes the alternative form
shown inEq. (18). This form includes additional terms for
the variances and covariances associated with the position
and orientation at the operating points.

[CE] =




σ2
xr

cov(xr, yr) · · · cov(xr, xOPk ) · · · cov(xr, αOPp)

cov(yr, xr) σ2
yr

· · · cov(yr, xOPk ) · · · cov(yr, αOPp)

...
...

. . .
... · · · ...

cov(xOPk , xr) cov(xOPk , yr) · · · σ2
xOPk

· · · cov(xOPk , αOPp)

...
...

...
...

. . .
...

cov(αOPp, xr) cov(αOPp, yr) · · · cov(αOPp, xOPk ) · · · σ2
αOPp




(18)

8. Relative manufacturing cost and tolerances

The cost of manufactured ball and groove bodies depends
upon the selected manufacturing process (assumed capable of
producing necessary quantities) and dimensional tolerances.
Once a manufacturing process is selected, the cost depends
upon both the dimension’s nominal value and its tolerance.
The manufacturing cost generally increases if the tolerance
is tightened, and it is more expensive to hold a given tol-
erance on larger nominal dimensions. Several relationships
were proposed to relate cost and manufacturing tolerance
[24,25,27,29], we use the method recommended by Chase[6]
that expresses tolerances for a given process with reciprocal
power functions.Eq. (19)expresses the tolerance for thejth
dimension,tj, as a function of relative cost,Cj, range,Rj, and
three constantsaj, bj, andcj. The values of the three con-
stants depend upon the range and the manufacturing process;
production quantity becomes relevant only when considering
alternative processes.Eq. (19)would require adjustments to
relate tolerance with absolute cost, and it is practically dif-
ficult to evaluate such constants for a general solution. The
primary reason for using Chase’s relation was his extensive
reported data[6]. Given sufficient data, alternative relations
could also be used in the present work.

tj = cj × R
aj
j

C
bj
j

(19)

Table 1
Coefficients for cost–tolerance relations

Dimension Process aj bj cj

Thickness of the plate Milling 0.4431 2.348 0.0355
Length of a leg Grinding 0.4323 1.385 0.0217
Diameter of a ball Lapping 0.3862 1.052 0.0130
Location of a hole Milling 0.4431 2.257 0.0255
Height of a vee-groove Grinding 0.4323 1.421 0.0228

Chase provides a set of cost–tolerance curves for some metal
removal processes[6]. By extrapolating these curves, we de-
termine values for the coefficientsaj, bj and cj for each
dimension in the kinematic coupling.Table 1presents the

coefficients calculated for an exemplary kinematic coupling
configuration.

Using the values inTable 1, Eq. (19)defines the manufac-
turing cost for every dimension in the exemplary kinematic
coupling. Plots of the relations inFig. 7 illustrate the effect
of tightening tolerances. The portion of the total manufactur-
ing cost that is attributable to tolerancing is then the sum of
the costs for alll dimensions in the ball and groove bodies,
as shown inEq. (20).

Ctotal =
l∑

j=1

(
cjR

aj
j

tj

)1/bj

(20)

9. Tolerance allocation by optimization

Optimal tolerances for the dimensions are determined us-
ing nonlinear constrained optimization. The problem is for-
mulated as shown inEq. (21), where the total cost from
Eq. (20)is used as the objective function that is minimized.
Constraints are formulated by specifying that the standard de-
viation of the translation and rotation errors must be positive

Fig. 7. Cost–tolerance relations for dimensions.
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Table 2
Constraints used for exemplary tolerance allocation

Variation Constraint Calculated

σmax
xr

6.67�m 5.23�m
σmax
yr

6.67�m 6.67�m
σmax
zr

6.67�m 4.87�m
σmax
γr

1.164× 10−3 rad 0.115× 10−3 rad
σmax
βr

1.164× 10−3 rad 0.068× 10−3 rad
σmax
αr

1.164× 10−3 rad 0.078× 10−3 rad

yet below critical values. Additional bounds can be specified
to prevent the optimization from driving the assigned toler-
ances to unreasonably high or low values.

minimize


 l∑
j=1

(
cjR

aj
j

tj

)1/bj

 such that

0 ≤ σxr ≤ σmax
xr

, 0 ≤ σyr ≤ σmax
yr

,0 ≤ σzr ≤ σmax
zr

,0 ≤ σαr

≤ σmax
αr

, 0 ≤ σβr ≤ σmax
βr

, 0 ≤ σγr ≤ σmax
γr

(21)

The allocation method was used to allocate tolerances to an
exemplary kinematic coupling. The parametric surface rep-
resentation was based on 25 dimensions in the ball body

Table 3
Computed tolerances

Dimensions Nominal dimension Assigned tolerance

Ball Pallet Thickness of the plate 6.35 mm 1.000 mm
Length of a leg (× 3) 19.05 mm 0.749 mm
Ball diameter (× 3) 12.70 mm 0.464 mm
Roundness of ball at contact point (× 6) 0 mm 0.071 mm
x coordinate of a leg-axis at the top of the plate Leg 1 25.40 mm 0.030 mm

Leg 2 25.40 mm
Leg 3 177.80 mm

y coordinate of a leg-axis at the top of the plate Leg 1 177.80 mm 0.030 mm
Leg 2 25.40 mm
Leg 3 101.6 mm

x coordinate of a leg-axis at the bottom of the plate Leg 1 25.40 mm 0.030 mm
Leg 2 25.40 mm
Leg 3 177.80 mm

y coordinate of a leg axis at the bottom of the plate Leg 1 177.80 mm 0.030 mm
Leg 2 25.40 mm
Leg 3 101.6 mm

Groove body Height of the vertices for the groove body (× 3) 2.54 mm 0.449 mm
Orientation angle of a groove Vee 1 −�/3 rad 0.100 rad

Vee 2 �/3 rad
Vee 3 � rad

Half-angle of aperture of a groove (× 6) �/4 rad 0.078 rad
x coordinate of a groove Vee 1 25.40 mm 0.419 mm

Vee 2 25.40 mm
Vee 3 177.80 mm

y coordinate of a groove Vee 1 177.80 mm 0.419 mm
Vee 2 25.40 mm
Vee 3 101.60 mm

Total number of dimensions: 43.

(m = 25) and 18 dimensions (n = 18) in the groove body.
The dimension schemes are completely described by Bar-
raja [38]. The cost–tolerance coefficients listed inTable 1
and the constraints listed inTable 2were used during the
optimization. The tolerances that result from the optimiza-
tion procedure are listed inTable 3. With these tolerances,
the constraint on positioning variation in they direction is
most difficult to satisfy; this is indicated by the calculatedσyr
equaling the constraint valueσmax

yr
. All other standard devia-

tions will be less than the constraint values as summarized in
Table 2.

10. Verification by Monte Carlo simulation

A Monte Carlo simulation, illustrated inFig. 8, is used to
verify the optimization algorithm. A large number of kine-
matic couplings are virtually generated using the parametric
model, and their dimensions are randomly distributed with
a mean equal to their nominal value and a standard devi-
ation equal to one third of the allocated tolerance. The al-
gorithm calculates the resting position and orientation of
each randomly generated sample, then it performs a statis-
tical treatment on the collected results. Finally, it returns
the mean and standard deviation of the resting position and
orientation.
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Fig. 8. Flowchart of Monte Carlo simulation.

Table 4
Comparison optimization/simulation

Standard deviation Results of
tolerance
allocation

Simulation: limits of
the 95% confidence
interval

Lower Upper

σxr (�m) 5.23 5.14 5.28
σyr (�m) 6.67 6.66 6.85
σzr (�m) 4.87 4.81 4.94
σγr (× 10−6 rad) 115 114 117
σβr (× 10−6 rad) 67.5 66.1 67.9
σαr (× 10−6 rad) 78.4 76.6 78.7

Ten thousand cases were generated for the simulation us-
ing the nominal dimensions and the assigned tolerances listed
in Table 3. The positioning error for each case was computed,
and the population’s mean and standard deviation were es-
timated after completing all 10,000 cases. The means were
all very near zero (no mean shift), and the confidence inter-
vals on the standard deviation (95% confidence) are listed in
Table 4. The standard deviations from the optimization all
fall within the minimum and maximum confidence intervals
from the Monte Carlo simulations.

11. Conclusions

Kinematic couplings are known as an economical method
for precisely locating one body with respect to another, but
the absolute position and orientation between the coupled
bodies depends upon manufacturing tolerances. In systems
that exchange coupled bodies, system-wide variation results
from the inaccuracy of dimensions in each body. Therefore,
tolerances should be selected so that the system-wide varia-
tion is within a specified range.

This paper presents and demonstrates a method for allo-
cating tolerances to the dimensions of the bodies. A paramet-
ric representation of the contacting surfaces is constructed
and combined with a procedure that calculates the resting
location based on the inaccurate dimensions. An analytical
relation between dimensional variation and variation in the
resting location is obtained from multivariate error analysis.
Optimal tolerances are computed by minimizing the relative
manufacturing cost while respecting constraints on variation
in the resting position and orientation. Future work should
consider expanding the techniques described in this paper to
estimate relative costs as functions of requirements on posi-
tioning accuracy.

Appendix A. Determining the HTM from a metrology
datum frame to a centroidal coordinate system

The coordinates of the triangles’ three apicesB1
(DxB1,

DyB1,
DzB1), B2 (

DxB2,
DyB2,

DzB2) andB3 (
DxB3,

DyB3,
DzB3) are measured in a metrology datum frame,

denoted with the prescriptD, as shown inFig. 9.
The centroidal coordinate system, denoted with the pre-

scriptC, is defined by three criteria

(1) Its origin is located at the intersection of the triangle’s
bisectors, which is the centroidC.

(2) Its x-axis points towardsB3.
(3) The three apicesB1, B2 andB3 lie in thexy-plane.

Criterion (3) implies that thez-coordinates of the apices are
equal to zero, as shown inEq. (A.1)

CzB1 = CzB2 = CzB3 = 0 (A.1)
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Fig. 9. Datum and centroid coordinate systems in coupling triangle captions
for figures.

The complete geometry of triangle (B1B2B3) is determined
by calculating the edge lengths usingEqs. (A.2)–(A.4)and
the internal angles usingEqs. (A.5)–(A.7).

B1B2 =
√
(DxB2 − DxB1)

2 + (DyB2 − DyB1)
2

+ (DzB2 − DzB1)
2 (A.2)

B2B3 =
√
(DxB3 − DxB2)

2 + (DyB3 − DyB2)
2

+ (DzB3 − DzB2)
2 (A.3)

B3B1 =
√
(DxB1 − DxB3)

2 + (DyB1 − DyB3)
2

+ (DzB1 − DzB3)
2 (A.4)

∠B1 = arccos

(
B3B1

2 + B1B2
2 − B2B3

2

2 × B3B1 × B1B2

)
(A.5)

∠B2 = arccos

(
B1B2

2 + B2B3
2 − B3B1

2

2 × B1B2 × B2B3

)
(A.6)

∠B3 = arccos

(
B2B3

2 + B3B1
2 − B1B2

2

2 × B2B3 × B3B1

)
(A.7)

Applying the law of sine’s in triangle (B1CB3) givesEq. (A.8)

CB3

sin(∠B1/2)
= B3B1

sin(∠B1CB3)
(A.8)

Since the three angles of a triangle are supplementary, triangle
(B1CB3) providesEq. (A.9).

∠B1CB3 = � − ∠CB1B3 − ∠CB3B1 (A.9)

Applying the same rule on triangle (B1B2B3) giveEq. (A.10)

∠B2 = � − ∠B1 − ∠B3 (A.10)

By definition, the bisectors divide the triangle’s internal an-
gles into two equal angles. This rule givesEqs. (A.11) and
(A.12).

∠CB1B3 = ∠B1

2
(A.11)

∠CB3B1 = ∠B3

2
(A.12)

Inserting Eqs. (A.10)–(A.12) into Eq. (A.9) provides
Eq. (A.13):

∠B1CB3 = �

2
+ ∠B2

2
(A.13)

Eq. (A.14) results from a trigonometry relation applied on
Eq. (A.13)

sin(∠B1CB3) = cos

(∠B2

2

)
(A.14)

Eq. (A.15)is obtained by injectingEq. (A.14)into Eq. (A.8)

CB3 = B3B1 × sin(∠B1/2)

cos(∠B2/2)
(A.15)

Criteria (1) and (2) imply that thex-coordinate of apexB3 is
equal to the lengthCB3. This condition givesEqs. (A.16) and
(A.17):

CxB3 = B3B1 × sin(∠B1/2)

cos(∠B2/2)
(A.16)

CyB3 = 0 (A.17)

The relative position of apexB1 with respect to apexB3 is
known, so its coordinates in the centroidal coordinate system
can be found as shown inEqs. (A.18) and (A.19):

CxB1 = CxB3 − B3B1 × cos

(∠B3

2

)
(A.18)

CyB1 = B3B1 × sin

(∠B3

2

)
(A.19)

Coordinates of apexB2 are similarly defined inEqs. (A.20)
and (A.21):

CxB2 = CxB3 − B1B2 × cos

(∠B3

2

)
(A.20)

CyB1 = B1B2 × sin

(∠B3

2

)
(A.21)

Finding the rotation angles about the three axes of the cen-
troidal coordinate system requires the definition of three
distinct unit vectors that start from apexB3 and point re-
spectively towardsB1, B2 andC. The coordinates of these
unit vectors in the metrology datum frame are presented in
Eqs. (A.22)–(A.24):

D	uB3B1 = 1

B3B1
×



DxB1 − DxB3

DyB1 − DyB3

DzB1 − DzB3


 (A.22)

D	uB3B2 = 1

B2B3
×



DxB2 − DxB3

DyB2 − DyB3

DzB2 − DzB3


 (A.23)
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D	uB3C = 1√√√√ (DuxB3B1
+ DuxB3B2

)2 + (Du
y
B3B1

+ Du
y
B3B2

)2

+ (DuzB3B1
+ DuzB3B2

)2

×



DuxB3B1

+ DuxB3B2

Du
y
B3B1

+ Du
y
B3B2

DuzB3B1
+ DuzB3B2


 (A.24)

Then the coordinates of the centroidC in the metrology datum
frame are defined byEqs. (A.25)–(A.27):
DxC = DxB3 + CB3 × DuxB3C

(A.25)

DyC = DyB3 + CB3 × Du
y

B3C
(A.26)

DzC = DzB3 + CB3 × DuzB3C
(A.27)

Hence, the rotationCDβ about they-axis, between the two
coordinate systems, is obtained byEq. (A.28)

C
Dβ = arcsin

(
DzC − DzB3

CxB3

)
(A.28)

The following step is the definition of the rotationCDα about
thez-axis, between the two coordinate systems, whose defi-
nition is presented inEq. (A.29)

C
Dα = arccos

(
DxB3 − DxC

CxB3 × cos(CDβ)

)
(A.29)

Finally, the rotationCDγ about thex-axis, between the two
coordinate systems, is defined byEq. (A.30)

C
Dγ = arcsin

(
DzB2 − DzC + CxB2 × sin(CDβ)

CyB2 × cos(CDβ)

)
(A.30)

To conclude, the homogeneous transformation matrixC
DT be-

tween the two coordinate systems is defined byEq. (A.31).

C
DT =




cos(CDα)cos(CDβ) cos(CDα)sin(CDβ)sin(CDγ)− sin(CDα)cos(CDγ) cos(CDα)sin(CDβ)cos(CDγ)− sin(CDα)sin(CDγ)
DxC

sin(CDα)cos(CDβ) sin(CDα)sin(CDβ)sin(CDγ)− cos(CDα)cos(CDγ) sin(CDα)sin(CDβ)cos(CDγ)− cos(CDα)sin(CDγ)
DyC

−sin(CDβ) cos(CDβ)sin(CDγ) cos(CDβ)cos(CDγ)
DzC

0 0 0 1




(A.31)
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