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Abstract

The success of the Hubble Space Telescope created a great interest in the next gener-

ation of space telescopes. To address this need, the University of Arizona (UA) has

designed and built several lightweight prototype mirrors ranging in size from 0.5 m to

2 m in diameter. These mirrors consist of three key components: a thin, lightweight

glass substrate holds the reflective surface; the surface accuracy is maintained by an

array of position actuators; and the stiffness is maintained by a lightweight carbon-

fiber/epoxy support structure. The UA mirrors are different from conventional mir-

rors in that they are actively-controlled: their figure may be changed after they leave

the optics shop.

This dissertation begins with an overview of the technical issues for placing large

optics in space, and I also discuss the current state-of-the-art in active mirror design.

Chapters 3 and 4 discuss ways to design mirrors such that the optical performance is

maximized while the mass is minimized. Chapter 3 looks at the best way to distribute

the mass between the reflective substrate and the actuators, and Chapter 4 looks at

the optimum geometries for structured mirrors.

The second half of this work looks at the practical aspects of controlling active

mirrors. Chapter 5 discusses the University of Arizona’s 2 m NMSD prototype mirror.

Specifically, I review the system that I developed to measure and control the mirror.

I also provide some details on using a least-squares solution to solve for the actuator

commands. Chapter 6 discusses the UA ultralightweight 0.5 m prototype mirror. I

describe the techniques that I developed for attaching loadspreaders to the reflective

surface, the metrology system, and a software package used to remotely-control the

mirror.
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Chapter 1

Introduction

1946 was a big year for space optics. Elsewhere in the world, World War II

had just ended, and the United States was poised to become a superpower. The

birthrate in America would increase by 15% over the previous year, officially starting

the Baby Boom. Meanwhile, the important optics contribution would come from

Princeton University: while working in the astronomy department, Lyman Spitzer

proposed using a telescope in space. He noted that an on-orbit telescope would

result in increased resolution and stability. At the time, the idea must have seemed

outlandish: the United States was still sixteen years away from putting anything

in space, let alone a telescope. Spitzer’s vision persevered through the next several

decades, and forty five years later NASA launched the Hubble Space Telescope (HST)

in 1990.

The HST has proven to be a major public relations coup for both NASA and the

US space program at large. Few Americans realize how many thousands of technical

satellites are currently orbiting the Earth, but the Hubble is certainly one of the most

familiar. The HST has changed the way we view ourselves in the universe. The HST

has provided evidence that the universe is accelerating, and this has reshaped the

way that scientists view the composition of the universe.1

1If the universe is accelerating, then Einstein was correct when he suggested that some other,
previously-undiscovered form of energy must exist. Einstein proposed using a “cosmological con-
stant” to account for this energy, but he later referred to this idea as his greatest scientific blunder.
Recent results from the HST suggest that such dark energy exists.
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Figure 1.1. The hazards of working under an atmosphere. Weather is a significant
concern: if there is cloud cover, the telescope cannot be used at most wavelengths.
Wind is also a factor. Breezy conditions near the ground cause instability of the
telescope structure and enclosure. There are also turbulent layers above the ground,
and this will affect the imaging performance. The atmosphere also reflects some of
the man-made light back to Earth, compounding the effect of light pollution.

1.1 Why space?

There are several reasons why space is an excellent place for a telescope. First and

foremost, the instrument is above the Earth’s atmosphere, and the atmosphere is the

source of several concerns. The biggest issue is atmospheric absorption over portions

of the near infrared spectrum. If an astronomer is looking for something that has

a wavelength in one of these absorption bands, the visibility of this object will be

very poor. The atmosphere also contains the weather, as illustrated in Figure 1.1.

Ground telescopes suffer from reduced visibility during weather events like clouds,

precipitation, and high winds. In addition to the weather, the atmoshere contains

turbulent wind layers that degrade the image quality.2 Modern ground-based tele-

scopes are currently using adaptive optics (AO) systems to subtract this effect, but

these systems are expensive: there are currently only a handful of telescopes that use

AO to any degree of success.

2You don’t have to be an astronomer to appreciate this effect. If you look across town on a clear
night, the city lights appear to twinkle. The atmosphere causes a varying index of refraction across
the horizon.
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On Earth, most telescopes are used at night, but the idea of night and day is

effectively meaningless in space. Depending on where the telescope is placed and

what it’s pointed at, the user can get more than the eight hours of viewing that he

would get on Earth. This results in a more efficient use of the instrument: the ratio

of science information gained per day is higher for a space telescope.

One of the biggest concerns in constructing modern-day ground-based telescopes

is selecting a location. Ideally, the location should have good seeing3 and little light

pollution. Environmental concerns are also a big factor in selecting a location for

telescopes built in the United States. Many of the potential sites that fit all of the

criteria are located in pristine forest or in sensitive environments. Putting a telescope

in space bypasses these concerns.

1.2 The challenges of putting large optics in space

There are several concerns that must be addressed when putting large optics into

space.4 First, the launch vehicle limits the payload in two ways, and this is illustrated

in Figure 1.2. The United States has an existing fleet of rockets used to carry technical

payloads into orbit, and one of these vehicles must be used for launching a space

telescope: NASA isn’t going to design and build new rockets for this purpose. Thus,

the telescope must fit within the payload shroud for the current selection of launch

vehicles. Most current vehicles have a payload faring of four or five meters. Notice

that this is the total payload diameter: this includes both the telescope’s primary

mirror and the rest of the satellite that surrounds it. Finally, the engines attached

to a particular rocket limit the payload’s mass. Thus, the launch vehicle places an

3While it may look like a non-scientific term, “seeing” is a technical word. It refers to the optical
quality of the column of air that a telescope must image through to see the stars. A telescope site
with “good seeing” means that the atmospheric turbulence above the site is small compared to other
locations on Earth.

4Within the context of this discussion, a “large” optic constitutes anything 0.5 meters (20”) in
diameter or larger.
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Figure 1.2. Limitations of putting large optics in space, using the Space Shuttle as
an example. The launch vehicle limits the payload’s size in two ways. The rocket(s)
have a limited amount of thrust, and this will put an upper limit on the payload’s
mass. The vehicle’s payload bay is a particular size, and this puts an upper limit on
the payload’s volume.

upper bound on the payload’s mass and volume.

The journey, itself, is also a concern for putting large optics into space. The ride

up through the atmosphere is rough: the payload must be able to survive the journey

into orbit. In addition to this, space is potentially a harsh environment to work in.

Depending on whether or not the satellite spends time in direct sunlight, the payload

can experience temperature swings of tens of degrees. As a result, the materials for

both the optics and the metering structure must be chosen appropriately such that

their materials properties (i.e. coefficient of thermal expansion) match.

1.3 The University of Arizona MARS mirror design

1.3.1 Conventional optics

Conventional telescope mirrors are made from thick, heavy plates of glass. This is

because the substrate5 serves two purposes: it supports the reflective coating (often

5Throughout this work, I will use the terms “facesheet”, “substrate”, and “reflective surface”
interchangeably. The word “substrate” is appropriate because the glass only serves as a support for
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only a few hundred atoms thick), and it also serves as the structural support. For a

solid plate, the bending stiffness goes as the cube of the plate thickness, so there is a

significant advantage to be gained by making an optic thicker. Conventional mirrors

are also passive: the figure that is applied in the optics shop is the figure the mirror

will have for the rest of its life. This is another reason why conventional mirrors are

thick: because the figure is permanent, it is advantageous that they be stiff, rigid

structures.

Modern ground-based telescopes use passive mirrors with active supports. The

passive mirror with an active support uses the support to remove errors with large

spatial scales. For example, the Multiple Mirror Telescope’s primary on Mt. Hopkins

is 6.5 m in diameter, and it’s supported by 160 actuators. These actuators can’t

correct for errors on the order of a few inches: they’re spaced too far apart to do this.

Instead, they are used to correct for gross astigmatism or trefoil caused by self-weight

or wind loading.6

Conventional mirrors have an advantage in that they have a significant legacy in

mirror fabrication. Opticians have been making conventional passive mirrors for over

one hundred years, and the processes and tooling are well understood, standardized,

and readily available. This means that conventional mirrors usually don’t require

complicated new tooling or additional research, and this is an important consideration

for ground-based telescopes.7

the reflective coating. (The glass, by itself, doesn’t reflect much light. The reflective coating is the
real mirror.)

6There is a distinction between an active mirror and a passive mirror with an active support. An
active mirror generally has more control over its surface: it has the ability to correct errors over a
smaller spatial period. (This is referred to as a “high authority” mirror.) Passive mirrors tend to
be a lot thicker, and this makes them harder to control over smaller spatial periods.

7The Hubble’s primary is a lightweighted conventional mirror. It was made by taking three
components of ULE and fusing them together at a high temperature. The Hubble’s primary is
basically a giant sandwich: there is a facesheet and a backsheet that surround a series of ribs in
between.
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Figure 1.3. Left: The University of Arizona MARS mirror design. The mirror
consists of three key components: a thin, glass facesheet serves as a reflective sub-
strate; the surface accuracy is maintained by an array of actuators; and the stiffness
is maintained by a lightweight, carbon-fiber and epoxy support structure. Middle:
The added advantage of using an active mirror design. If the structure should deform
for some reason (due to temperature effects, for example), the glass facesheet will
deform, too. Right: This error is readily corrected using the actuators.

1.3.2 The MARS design: a Membrane with Active Rigid Support

The University of Arizona has been working on a mirror concept for the past ten

years that satisfies all of the concerns discussed in the previous section.8 The design

replaces the use of a single, monolithic piece of glass with an entirely active design

that has three key components, Figure 1.3. The substrate that will eventually receive

the reflective coating is still made from glass, but instead of being several inches thick

(in the case of the Hubble’s primary) it is only a few millimeters thick. However,

because the glass is so thin, it is also very flexible. As a result, the substrate is

mounted on an array of position actuators. These are little motors that have the

ability to move up and down to correct the substrate’s surface figure. Finally, the

system stiffness is maintained by a lightweight support structure (sometimes called

a reaction structure) that is generally made from a carbon-fiber/epoxy composite

material. Together, these three elements make up the Univ. of Arizona lightweight

“MARS” mirror design: Membrane with Active Rigid Support.

The design details of the support structure and the actuator mechanics are mostly

a mechanical problem, and therefore they will not be discussed in great detail. For

8The University of Arizona got into the space mirror business because of their work in adaptive
secondary mirrors for ground-based telescopes. The MARS design is basically a lightweighted version
of an adaptive secondary mirror.
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Figure 1.4. Actuator spacing and error correction. Left: if errors occur within the
actuator spacing, they cannot be fixed. Right: errors with periods twice that of the
actuator spacing (and larger) can be removed.

example, the geometry of the support structure is based entirely on the system’s

dynamic mechanical requirements (i.e. resonant frequency properties). These issues

are worked out by mechanical engineers.

The layout of the actuator geometry is an important consideration, and the design

details of this are discussed in Chapter 3. For the time being, it’s important to point

out that errors in the mirror can only be removed if they are on spatial scales greater

than twice the actuator spacing, Figure 1.4. For example, the left side of Figure 1.4

shows a surface error with a period smaller than the actuator spacing. This error

cannot be removed using the actuators.

1.3.3 The original MARS prototype mirrors

The initial MARS mirrors were three identical, half meter prototypes [1] built as a

proof-of-concept for NASA in 1997, Figure 1.5. The mirrors contained all of the three

key components described in the previous section. The glass facesheet was 53 cm in

diameter and 2.1 mm thick. It was fabricated from a Zerodur9 disk, and the final

mass of the substrate was 1.25 kg.

New Focus Picomotors were chosen as the actuators for these mirrors. The Pico-

motors each had a mass of 40 g, and they used an 80 pitch screw as the actuator.

Picomotors are driven via cylindrical piezo-electric10 stacks: they move in discrete

9Zerodur is a glass/ceramic that has a very low coefficient of thermal expansion.
10A piezo-electric material is one that changes linear shape when a voltage is applied.
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Figure 1.5. The original MARS mirror, circa 1997. All three components of the
active mirror design are clearly illustrated in this picture: the [uncoated] glass sub-
strate, the composite support structure, and the New Focus Picomotor actuators.
This now-famous picture illustrates a curious phenomenon in prototype engineering:
some pictures casually taken as snapshots end up becoming ubiquitous. If Phil Hinz
had known this, do you think he would have worn a ring that day?

steps of 30 nm with very little hysteresis.

The support structure was made from a carbon-fiber/epoxy composite material.

It was designed at the Univ. of Arizona and fabricated at Composite Optics, Inc.

in San Diego. This particular support structure was 53 cm in diameter and 4 cm

thick. The facesheets are 1 mm thick, and the internal portion of the structure was

composed of tangetial and radial ribs. The mass of the support structure was 2.0 kg,

and the entire assembly (including the actuators and the support structure) was 4.73

kg.

The mirror’s surface quality was measured using visible interferometry . The

resulting surface was 53 nm rms (λ/11 at HeNe), Figure 1.6. The bumps in the

surface are the result of gravity: the glass membrane is so thin that it slumps about

all of the support points. In space, gravity doesn’t exist, and this effect would not be

as dominant. The effective surface error in the absence of gravity was calculated to

be 33 nm.

The original MARS mirrors were successful on several fronts. First, they proved

that the lightweight design was feasible and that it could be successfully fabricated.



30

Figure 1.6. The final surface map for the original MARS mirror. Left: gravity-
limited surface figure (53 nm rms). The glass is so thin that it slumps about the
support points, and this is what causes the bumps shown in the figure. Right: pre-
dicted surface in a zero-gravity environment (33 nm rms). The missing portions of
data were masked out during data reduction. Due to a tooling error, these portions
of the mirror exhibited unusually high errors. This systematic error was corrected in
future mirrors.

The following results are the important technical conclusions that came out of this

project:

• Zerodur, the material used for the facesheet, exhibited low internal stress, and

it was a good material for this application. There was also very little residual

stress due to the fabrication process.

• The prototype used magnets as the interface between the actuators and the

facesheet. This was done for two reasons. First, it allowed the actuators to

exert a small downward force of 1.5 N (five times the local self-weight on each

actuator). It also allowed for a fail safe method in case one actuator was ex-

tended too far: if this happened, the surrounding magnets would release from

their actuators and the facesheet would not be damaged. The prototype showed

that this interface scheme worked well, with “little evidence [of] parasitic forces

from bending moments or lateral friction.” [1]

• The prototype met the design goal of being light enough for the next generation
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of space telescopes. The areal density of these mirrors was 21 kg/m2. By

comparison, the Hubble’s primary mirror has an areal density of 180 kg/m2.

• This 0.5 m prototype was a success, but the fabrication team realized that

scaling the mirror up to the next larger size (meter class) would represent a

significant challenge.

1.3.4 The 2 m NGST demonstration mirror

After the success of the 0.5 m prototype, the Arizona team looked into building a

larger prototype, and the two meter, NGST11 demonstration was the result. A cartoon

of the mirror is shown in Figure 1.7. This mirror is basically a larger, advanced

version of the 0.5 m prototypes that were discussed in the previous section. The

glass facesheet is 2 mm thick and 2 m in diameter. The facesheet is supported

by 166 actuators, and nine-point loadspreaders are used to interface the glass with

the actuators. The loadspreaders are used to spread the influence function out over

a larger surface area. The reaction structure is made from a carbon-fiber/epoxy

composite material.

Although the 2 m is significantly larger than the 0.5 m prototype, it is also sig-

nificantly less massive. The areal density of the 2 m is 13 kg/m2, nearly half that of

the original protoype. In fact, the total mass (including the glass, the actuators, the

loadspreaders, the support structure, and all of the on-board wiring) is 39 kg (86 lbs

on Earth).

The 2 m prototype was a major technical undertaking at the University of Arizona,

and the details of the metrology schemes used to measure and actuate the mirror are

discussed in Chapter 5.

11Next Generation Space Telescope. The NGST has since been renamed the James Webb Space
Telescope.
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Figure 1.7. The 2 m NGST demonstration mirror. The glass facesheet is 2 mm
thick and 2 m in diameter. The glass is supported by 166 actuators that are each
coupled to the glass via a nine-point loadspreader. The support structure is made
from a carbon-fiber/epoxy composite.

1.3.5 The ultralightweight half-meter mirror

The ultralightweight half-meter mirror arose from the need for a mirror technology

that was light enough to be used at geosynchronous orbit. Geosynchronous orbit is

ideal for Earth-imaging because the satellite remains fixed over a particular location

on the ground. The Earth-imaging community has determined that a successful

geosync mirror technology must have an areal density of 5 kg/m2. Based on this

determination, the 2 m demonstration discussed in the previous section is not light

enough for this task. Thus, the ultralightweight prototype is a super lightweighted

version of 2 m demonstration mirror.

A cartoon of this prototype is shown in Figure 1.8. The glass facesheet is 1 mm

thick and 2 m in diameter. The facesheet is supported by 31 actuators, and three

point aluminum loadspreaders are used to interface the glass with the actuators.

Again, the reaction structure is made from a carbon-fiber/epoxy composite material.

The half meter ultralightweight prototype was a very successful project, and the

details of its integration and system testing are described in detail in Chapter 6.
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Figure 1.8. The 0.5 m ultralightweight demonstration mirror. The glass facesheet
is 1 mm thick and 0.5 m in diameter. The glass is supported by 31 actuators that are
each coupled to the glass via a three-point aluminum loadspreader. As with the other
MARS mirrors, the support structure is made from a carbon-fiber/epoxy composite.
Unlike the other mirrors, the support structure was aggressively lightweighted.

1.4 The next generation of space telescopes

The technology demonstrated in Arizona’s recent prototype mirrors are designed for

use in the next generation of space telescopes. Future missions have ambitious science

goals, and they will require much lighter mirrors than what is currently available.

For example, the James Webb Space Telescope (JWST) is being designed to re-

place the aging Hubble at the end of the decade.12 The HST was only designed to

last for five years, but recent service missions have stretched its useful lifetime out to

eighteen years. Eventually, the HST will be brought offline, and the JWST will start

answering the next set of science questions.

The James Webb is an ambitious project. The planned aperture is 6 meters in

diameter, with a projected areal density of roughly 25 kg/m2. The primary mirror

will consist of eighteen 1.2 m segments made of beryllium. (Beryllium mirrors are

discussed along with other competing mirror technologies in Section 1.4.1.)

The science goals of JWST will be different than for Hubble. First, the Hubble’s

four instruments cover a spectral range from 115 nm to 2.5 microns. By contrast, the

Webb will observe over a much larger range of wavelengths: 0.6 to 28 microns. The

12A launch date of August 2011 is currently scheduled.
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Webb’s larger aperture and spectral range will be used to observe the first stars and

galaxies created in the universe. To do this, the Webb must be able to detect objects

400 times fainter than those seen with the largest ground-based telescopes (Keck and

Gemini) and yet still maintain the same spatial resolution as the Hubble.

The other major telescope mission13 is the Terrestrial Planet Finder (TPF). As-

tronomers currently have strong evidence suggesting that Earth-like planets exist

within the universe, but they have yet to directly observe these planets. TPF will be

a telescope designed to directly image these extra-solar planets.

Imaging these extra-solar planets is difficult because the planets are orbiting

nearby stars, and the stars are several orders of magnitude brighter than the planets.

In fact, astronomers estimate that the optical systems needed to image these planets

must be able to distinguish contrast to a part in 1010!

At the present date, two competing designs exist for TPF, and both are being

studied at the Jet Propulsion Lab in Pasadena CA. One scheme consists of using a

coronagraph and a 4 m class telescope to physically block the light from the adjacent

star. A coronagraph uses a physical mask to block the light coming from the star

with the hopes that the planet will then be detectable in the star’s corona. The other

scheme uses a proposed space interferometer with 3.5 m class apertures along a 20

meter baseline. An interferometer takes advantage of the wave-like nature of light

to destructively interfere light. If this destructive interference occurs where the star

is, perhaps the light from the planet can be detected in the neighboring constructive

bands. Regardless of which design is ultimately selected, one fact will remain: TPF

will require a 4 m class space optic.

Figure 1.9 shows the progression of areal densities for recent telescopes and planned

missions. Notice that the future missions (labeled in green) demand that the pro-

13There are plenty of planned telescopes on the horizon. However, these “major” missions have
the following things in common: NASA has invested heavily in their enabling technologies; they have
very ambitious science and technology goals; and they have scheduled launch dates on the calendar.
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Figure 1.9. Areal densities for current and planned telescopes. Notice the negative
exponential curve as the years progress. Launched telescopes are labeled in blue;
successful technology demonstrations (prototypes) are labeled in violet; and planned
missions are shown in green.

gression started by Hubble and the Spitzer14 continue along a negative exponential

trend. Recent prototype mirrors (shown in plum) developed by NASA and the Univ.

of Arizona meet the design goals, but these mirrors are not flight-ready. In addition

to this, the future missions require apertures that are much larger than the current

state of the art.

Clearly, there is a great desire within the astronomical community to improve the

current technology of space optics. The success of these future missions depend on

the optical community’s ability to fabricate larger and lighter mirrors.

14The last of NASA’s Great Observatories to be launched, the telescope was placed on orbit on
24 August 2003.
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1.4.1 Competing technologies

The Arizona MARS design isn’t the only lightweight mirror technology available for

future space telescopes. Several other competing technologies exist, and they are

summarized below.

Beryllium Beryllium (Be) mirrors are similar in construction to the Arizona MARS

design, except that Be is used as the mirror substrate. However, fewer actuators are

necessary because Be is much stiffer than glass. Beryllium’s biggest advantage as a

mirror substrate is its specific stiffness. Specific stiffness is defined as E/ρ, where E

is Young’s modulus15 and ρ is the mass density (m/V ). Ideally, lightweight mirrors

should be constructed from something that has a large E (takes lots of stress with

little strain) and a low density (lightweight for its size). Thus, large values of specific

stiffness are ideal for building lightweight, stiff mirrors. Figure 1.10 shows the density

and Young’s modulus for several common materials. Beryllium stands by itself on the

lower right-hand corner of the chart. Beryllium is one of the stiffest, lightest materials

that mirror-making money can buy. For example, the specific stiffness for Be is over

five times that of optical glass (BK7), yet it is 27% less dense than glass.

Beryllium is, on paper, an ideal material for mirror construction. There are,

however, some important disadvantages to using Be. First, because the material is

so stiff, it is very time-consuming to polish. Be has a very low yield stress: unlike

spring steel, Be cannot be stressed very much before it does not spring back to its

initial shape. Also, the particulate form of Be is toxic, so it must be polished in

special, controlled environments. Finally, there isn’t the established legacy for Be as

there is for glass. As such, few optics shops have the tooling and experience needed

to successfully polish Be. All of these factors mean that Be is several times more

expensive to work with than glass.

15Young’s modulus is a measure of how much stress (force/area) you can put into something before
it yields a given amount. Rubber has a small Young’s modulus compared to that of steel.
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Figure 1.10. Density versus Young’s modulus for various opto-mechanical materials.
Specific stiffness is defined as the mass density divided by Young’s modulus. Ideally,
space mirrors should be made from materials that are both lightweight (low density)
and stiff. Beryllium and silicon carbide both meet these requirements.
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The current state of the art in Be mirror demonstrations is Ball Aerospace’s

Advanced Mirror System Demonstrator (AMSD) [15]. This 1.39 m mirror was suc-

cessfully completed in the summer of 2003. The total areal density is 15.6 kg/m2,

and this includes substrate, flexures, actuators and reaction structure. The optical

figure at ambient temperatures was measured to be 70.0 nm surface rms.

Silicon carbide Silicon carbide (SiC) is another potential mirror substrate, although

no parts have been fabricated at any large (> 0.5 meter) scale. SiC is an attrac-

tive material because it is inexpensive to produce, and it can be formed into non-

conventional shapes rather easily. SiC’s biggest advantage is that it has a very high

specific stiffness. The material also has a high fracture toughness which makes it an

excellent candidate for the telescope structure, as well. There is a big advantage in

constructing a telescope’s structure and primary mirror out of the same material: the

system is athermalized and it will not be affected by temperature change.16

SiC presents several challenges, as well. First, the material is very hard, and this

makes the polishing effort difficult and time-consuming. SiC also faces challenges

becoming accepted into the space mirror community because it lacks the successful

legacy of glass or even beryllium. There are currently few funded projects that use a

SiC mirror. Finally, because so few mirrors have been created, the long-term stability

of these systems is unknown.

1.4.2 The next century

The next century will yield some exciting innovations in the field of space optics.

Most important, the limitations in space mirror design will not be due to fabrication

limits. Instead, the optical performance will be limited by the inherent properties of

the materials used to construct the system. In Chapters 3 and 4, I discuss an approach

16If the entire telescope is made out of one material, everything will change shape with tempera-
ture, and the entire design is just scaled up or down with no degradation in optical performance.
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to maximizing the system performance using the least amount of mass. These design

strategies will be necessary as the current generation of fabrication techniques mature.

1.5 A quick tour of this dissertation

This work is designed to address the following technical aspects of mirror design and

control:

• Chapter 2 is a review of opto-mechanical principles. I don’t introduce any novel

material in this chapter. Instead, I explain the basics of material properties:

stress, strain, Young’s modulus, moment of inertia, and the coefficient of thermal

expansion. I am including this chapter because all of this information is essential

to understanding the material in Chapters 3 and 4.

• Chapter 3 looks at a method for optimizing the design of active mirrors. Ulti-

mately, this chapter answers the following question: “How do I build the best

mirror using the least amount of mass?” Currently, mirrors are designed based

on the availability and ease of component fabrication. In this chapter, I assume

that anything is possible, and I derive a set of design conditions assuming that

the limiting factors are the inherent mechanical properties of the materials used.

• Chapter 4 looks at the effects of lightweighting the facesheet. By using the struc-

tural efficiency as a metric for mirror “goodness”, I derive a set of conditions

that shows how to get the stiffest substrate for the least amount of mass.

• Chapters 5 and 6 describe the two most recent Arizona MARS mirror demon-

strations. Chapter 5 discusses the UA 2 m NMSD mirror. In particular, I discuss

the unique challenges associated with measuring a high-authority meter-class

active mirror. Chapter 6 discusses the UA ultralightweight 0.5 m mirror. This
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mirror was built as a technology demonstration for use in geosynchronous or-

bit, and I discuss the design details that allowed us to meet the areal density

specification set forth by the customer.

In addition to covering the aforementioned technical issues, I have incorporated

several features into this dissertation which will make it a valuable reference for future

researchers:

• I’ve made an effort to explain the concepts in such detail that a non-specialist

can understand what I’ve done. I assume little prior knowledge about optics or

mechanics. This may prove tedious to the experienced optical engineer, but I

am confident that it will benefit more often than it frustrates.

• This work should be self-contained. Chapter 2 contains all of the important

background information such that outside background reading should not be

necessary.

• Most of the concepts that I discuss are drawn from the aerospace industry,

which is famous for using a myriad of acronyms. As such, there is a glossary of

terms, acronyms, and abbreviations in Appendix A.

• Footnotes are used liberally throughout to explain concepts, add anecdotes, and

clarify some words.

• References are denoted by a number within square brackets. [π] References can

be found at the end of this book, preceding the Appendix.

• Each chapter includes a summary at the end. In it, I summarize the important

conclusions, equations, and lessons learned that were described in the preceding

chapter.

• Most important, I have included an index. By using the index, glossary, and

the table of contents, the reader should be able to find information very quickly.
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1.6 Chapter summary

This chapter was intended to set the context for the remainder of this dissertation.

Specifically, I discussed the following important concepts:

• Space telescopes offer several advantages over their ground-based cousins. Most

important, they are above the atmosphere: in space there isn’t any weather and

the imaging system is unaffected by atmospheric turbulence or absorption.

• There are several challenges to building a successful space telescope. First, the

launch vehicle limits both the payload mass and volume. The launch process

is also rigorous, and the payload must be robust enough to survive the journey

into space.

• The University of Arizona MARS (Figure 1.3) design meets the challenges in-

volved for building a lightweight mirror. The reflective surface is a thin glass

membrane, and the surface accuracy is maintained by an array of position ac-

tuators. The stiffness is maintained via a lightweight support structure.

• The family of MARS mirrors include the original legacy mirrors as well as

the current generation of prototypes. The original MARS mirrors were three

identical 53 cm prototypes. The contemporary set of mirrors includes the 2 m

and 0.5 m prototypes. These mirrors will be discussed in Chapters 5 and 6,

respectively.

• I talked about other mirror technologies that are currently under development

at other institutions. Several alternative to the MARS design exist, and each

of these designs, including the MARS mirrors, have their advantages and dis-

advantages.

• For ease of use, this work includes chapter summaries, a glossary, and an index,

such that the information contained within can be easily located.
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Chapter 2

Basic opto-mechanical principles

Chapters 3 and 4 describe the ideal design space for creating lightweight, active

mirrors. These chapters will most likely appeal to the optical engineer, but the

derivations are based on mechanical principles. As a result, I am including this chapter

as a primer to the material discussed in Chapters 3 and 4. In this chapter, I review

some basic mechanical principles that I will use in the remaining chapters. Specifically,

I will explain mechanical quantities such as Young’s modulus, the stress/strain curve,

and flexural rigidity. The material in this chapter is not novel—I am not reporting

any new results—and readers who understand these concepts should skim or skip this

chapter. I am including these explanations for two reasons. First, in later chapters,

I will occasionally refer to the equations that I discuss in this chapter. Also, this

summary will prevent the reader from having to research any outside sources about

the mechanical concepts discussed in future chapters.

2.1 Mechanical quantities

2.1.1 Forces & moments

The force is at the heart of all classical mechanical situations. Forces make things

happen. A force is classically defined by Newton’s second law (~F = m~a), and it exists

whenever a massm is accelerated by acceleration ~a. Force has units of kg ·m/s2, which

is equivalent to a Newton (N).

A moment1 is a force applied through a distance, and this is illustrated in Fig-

ure 2.1. Moments tend to make things rotate. A moment is defined as follows:

1Physicists refer to moments as torques. It’s the same thing.
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Figure 2.1. Moment demonstration. The finger exerts a force at the red dot (at the
edge of the tire). Left: the hand exerts a force along a direction perpendicular to the
line that contains the tire hub and the red dot, and the wheel starts spinning. Right:
The hand exerts a force along a direction other than the perpendicular. Only the x
component of F contributes to spinning the wheel.

~M = ~F × ~d, (2.1)

where ~F is a force exerted through distance ~d. M is a vector because it represents

the cross product of two individual vectors. The units of M are Newton-meters (N ·

m). Notice that, because the moment is a cross product, only the component of the

force that is perpendicular to the distance vector is used to calculate the moment.

This concept is illustrated in Figure 2.1.

2.1.2 Stress, strain, and Young’s modulus

When a material is subjected to an external force or moment, it’s helpful to have

a set of quantities available that describe how the material reacts to those forces.

For example, if a steel I-beam is subjected to a moment, it will bend a little bit,

Figure 2.2. Stress is what causes the I-beam to bend; strain describes how much it

will bend; and Young’s modulus is the constant that relates the two.

Stress, usually denoted by a σ, is defined as a force per unit area:

σ =
F

A
, (2.2)



44

Figure 2.2. A bending I-beam. A stress is applied (in the form of a moment) at
the ends of the I-beam, and the beam bends a little bit.

and it has units of N/m2 (Pascals). Note that stress and pressure are the same thing:

they both represent a force per area.

Strain, usually denoted by an ε, is defined as a change in dimension over the initial

dimension due to an external stress σ:

ε =
∆L

L
, (2.3)

where this is the relationship for a one-dimensional example. Notice that strain is

dimensionless. Stress and strain are related: the more stress (force) is applied, the

more something will strain, or yield.

Young’s modulus is the constant that relates these two quantities:

σ = E ε. (2.4)

Because ε is a dimensionless quantity, Young’s modulus has the same units as stress

σ, N/m2. Equation 2.4 is analogous to Hooke’s Law, which relates force F and

displacement x for a spring: F = kx, where k is usually referred to as the spring

constant. In either case, a force is exerted, something reacts (by changing dimension),

and a constant relates the two quantities.
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Figure 2.3 shows a typical stress-strain curve. There are several features in this

graph which help illustrate the relationship between stress, strain and Young’s mod-

ulus. First, notice that the first portion of the line is linear. In this region of the

curve, the material behaves linearly. Linear materials obey the relationship described

in Equation 2.4. As such, the slope of the line is Young’s modulus. Materials with a

larger value of E will change dimension less given the same amount of stress: steeper

slopes mean the material is less likely to deflect under stress.2 Within this linear

portion of the curve, the material is subjected to stress, and it will always return to

its initial dimensions when the stress is removed.

The curve shown in Figure 2.3 also has a non-linear portion. In this region, the

material will not snap back to its original dimension when the stress is released.

Instead, the material will follow a different path (the dotted line in Figure 2.3), and

the material will remain permanently changed. Ultimately, of course, a material will

eventually break if subjected to enough stress, and this breaking point is illustrated

by the red ‘x’ in Figure 2.3.

The stress-strain curve shown in Figure 2.3 is typical of metals. For glass, the

curve is slightly different: the relationship is linear right up to the breaking point.

Also, the location of the breaking point is highly dependent on the glass quality. Glass

sheets with no inclusions or microfractures can tolerate large amounts of strain.

2.1.3 Poisson’s ratio

Poisson ratio’s is best understood by considering a rubber cube, Figure 2.4. If a

compressive force is exerted along one axis, the rubber will expand out along another

axis. This effect is common in most materials, and it is quantified using Poisson’s

ratio. Specifically, Poisson’s ratio is a measurement of how an object’s dimensions

change (relative to one another) as a force is exerted. Poisson’s ratio ν is defined as

2For example, the stress-strain curve for steel will feature a much steeper slope than a similar
chart for aluminum.
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Figure 2.3. The stress-strain curve. Stress σ is plotted along the vertical axis,
and strain ε is plotted along the horizontal axis. The slope of the linear region is
Young’s modulus E. For most of the curve, the material behaves according to a
linear relationship: σ = E ε. If the material is stressed outside of its linear region
(to point A, for example), the material will suffer a permanent shape change. For
example, if stressed to point A, the material will not follow the solid line back to
the origin when the stress is released. Instead, it will follow the dotted line, and the
dimensional change will be permanent. There is, of course, an amount of stress which
will cause the material to break, and this breaking point is noted by the red “X” on
the curve. The stress at this point is called the ultimate strength.

Figure 2.4. The Poisson effect. Left: a rubber cube. Right: a rubber cube with a
stress applied along one axis. Because of this force the rubber is compressed along
one direction, but it expands along another. The Poisson ratio quantifies this effect.
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ν =
unit lateral contraction

unit axial elongation
. [24] (2.5)

Poisson’s ratio is positive for normal materials.3 Rubber has a relatively large Poisson

ratio (ν = 0.5); stainless steel has a smaller value (ν = 0.29).

2.1.4 Flexural rigidity

The flexural rigidity D is the bending analogue of Young’s modulus. It tells how

much, given a particular moment, something will bend:

1

r
=
M

D
,

where M is the moment exerted on the plate, and r is the resulting radius of curvature

of the plate. [25] As D increases, it takes more force (or moment) to bend the piece

by an equivalent amount.4

The flexural rigidity is a little different than the other quantities previously de-

scribed because it is heavily dependent on the geometry of the plate or member. For

example, I-beams are used because they are almost as stiff as a solid beam, but they

can be significantly lighter. Clearly, there is something about the geometry of an

I-beam that allows this to be the case. Timoshenko derives an expression for D that

holds for thin plates and shells:

D =
E

1− ν2

I

B
, (2.6)

where E is Young’s modulus, ν is Poisson’s ratio, B is the width of a cross-sectional

element, and I is the moment of inertia5. [25]

3Lateral contraction usually leads to axial elongation.
4In other words, larger values for D mean that the plate or shell is more difficult to bend.
5The moment of inertia is discussed in Section 2.3.
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2.2 Coefficient of thermal expansion

Most materials change shape when they change temperature, and the coefficient of

thermal expansion (CTE) is a way of quantifying this effect. CTE is usually repre-

sented by the Greek letter α, and its units are part-per-million/oC. For example, if a

1 meter-long bar has a CTE of 7 ppm/oC and it uniformly changes temperature by

+1oC, it will expand in length by 7 millionths of a meter.

This change in length is related to the CTE and temperature by the following

relationship:

∆l = l α∆T, (2.7)

where α is the CTE and ∆T is the temperature change.

Finally, it is interesting to note that, by dividing both sides of Equation 2.7 by l,

the quantity (α∆T ) is equal to strain:

ε =
∆l

l
= α∆T. (2.8)

This relationship is used in Chapter 3.

2.3 The moment of inertia

As a body rotates, two geometrical properties determine how it will behave: the

location of the point about which the body rotates, and the distribution of mass

about the rotation point. The moment of inertia quantifies both of these parameters.

Figure 2.5 shows a two-dimensional area A. The moment of inertia of A about

the respective x or y axis is

Ix =

∫
y2 dA

Iy =

∫
x2 dA.
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Figure 2.5. Calculating the moment of inertia for an area A. The moment of inertia
is always calculated with respect to an axis. In this example, the moment is calculated
about the x or y axis.

For common geometries, the moment of inertia can be found in a table like the

one shown in Figure 2.6. Figure 2.6 reiterates the fact that the moment of inertia

is highly dependent on the structural member’s geometry. For example, the I for a

solid rectangular beam and an I-beam with the same overall dimensions will be very

different.

In the context of this work, the moment of inertia is an important component

of the flexural rigidity (Equation 2.6), and it’s important to understand how it’s

calculated.

2.3.1 Center of mass

The illustrations that appear in Figure 2.6 show a set of axes through each cross-

section. This is because the moment of inertia must be calculated with respect to

some point. This point is usually chosen to be the center of mass.

The center of mass is essentially a weighted average, and it is mathematically

defined as follows:

~r =
1

M

∫
~r dm =

∑
i ~rimi∑

imi

, (2.9)

where ~ri points to an infinitesimally small unit of mass mi, and the total mass is∑
imi = M . [14] Notice that the center of mass is a vector: it is a particular location
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Figure 2.6. Common moments of inertia. Notice that each case has a red axis
drawn through it. This is the centroidal axis: it passes through the center of mass,
described in Section 2.3.1, and it is the axis about which the moment is calculated. If
a different axis is appropriate for a calculation, Equations 2.10 and 2.11 can be used
to shift the axis to any arbitrary location.
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in space.

2.3.2 Transfer of axes

Sometimes it is necessary to calculate the moment of inertia about a point other

than the center of mass. There is a simple method available for transferring from

the centroidal axes to an arbitrary set of axes. (The centroidal axes intersect at the

center of mass.) The moment of inertia about an arbitrary set of axes x and y is

Ix = Ix + Ad2
x (2.10)

Iy = Iy + Ad2
y, (2.11)

where Ix and Iy are the moments of inertia about arbitrary axes x and y; Ix and Iy

are the moments of inertia about the centroidal axes xo and yo; and dx and dy are

the respective distances between x & xo and y & yo.

2.3.3 Practical example: calculating I for a ruler

As an example, I will calculate the moment of inertia for a ruler. The cross section

of a ruler is approximately 1” tall and 0.25” wide. The equation for the moment of

inertia for a rectangular cross section can be found in Figure 2.6: it is b h3/12. I’ll

assume that the ruler is mounted in a springboard fashion on the edge of the table

such that the increment numbers are touching the table, Figure 2.7. In this case, the

moment is

I =
1 · 0.253

12
≈ 0.0013 in4.

As expected from experience, the ruler will be very flexible if a force is exerted on

the free end. However, now consider what happens if the ruler is turned such that its
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Figure 2.7. Rulers and the moment of inertia. The moment of inertia for a rect-
angular cross section is 1

12
bh3. When the ruler rests flat on the table (bottom ruler),

b > h. When the ruler is turned such that its narrow width rests on the table (upper
ruler), h > b. In fact, the upper ruler has a moment of inertia that is roughly 16
times greater than the lower ruler. This means that it will be 16 times harder to bend
when pushing down at the end of the ruler.

short width is touching the table. The geometry has changed, and it’s necessary to

recalculate the moment of inertia:

I =
0.25 · 13

12
≈ 0.021 in4.

Notice that this value is roughly sixteen times larger than the previous case! Flexural

rigidity is directly related to the moment of inertia (Equation 2.6); as a result, the

ruler is sixteen times harder to bend. This example emphasizes that stiffness is

directly related to the moment of inertia and the beam geometry.

2.4 Chapter summary

In this chapter, I reviewed the following basic mechanical and material properties:

• Force A force accelerates a mass. Forces make things move. They have units

of Newtons (kg · m/s2).

• Moment A moment (or torque) is a force applied through a distance. Moments

typically make things bend or spin. They have units of N · m.
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• Stress A stress is a force per unit area. Stress σ has units of Pascals (N / m2).

• Strain A strain is a reaction to stress: it characterizes how the material changes

shape when a force is exerted on it. Strain is dimensionless.

• Young’s modulus Young’s modulus is a constant that relates stress and strain

in a linear relationship. It quantifies how easily a material resist yielding to a

stress. Young’s modulus has the same units as stress: Pascals (N / m2).

• Flexural rigidity The flexural rigidity is the bending analogue of Young’s

modulus. D has units of N · m.

• Coefficient of thermal expansion The coefficient of thermal expansion quan-

tifies the dimensional change that occurs when a material is heated or cooled.

It typically has units of parts-per-million per degree Celsius.

• Moment of inertia The moment of inertia tells how the mass is distributed

across the cross section of a body. The moment of inertia for most common

geometries is available in a table like the one shown in Figure 2.6.
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Chapter 3

Optimized, active space mirrors

3.1 Building a better active mirror

Today, mirror designs come about due to strange circumstances: funding, schedule,

and legacy all play an important role in the final specifications of a mirror. Because

of this, mirrors are rarely mass-optimized during the design process. This chapter

provides an optimum mirror design that is independent of schedule, cost, and ease of

fabrication.1

Figure 3.1 is an illustration of the UA MARS mirror design. There are several ways

to make this mirror lighter. First, the support structure can always be made lighter by

using thinner laminates and/or more aggressive lightweighting. However, the design

of the support structure is governed entirely by system dynamics. The resulting

structure must satisfy the design requirements for resonant frequency, stiffness and

thermal specifications. These are issues best solved by mechanical engineers. As a

result, the support structure will not be considered a variable in this analysis.

There are two ways to make the MARS design lighter, and both variables are

intertwined with each other. One way to make the mirror lighter is to reduce the

thickness of the facesheet.2 If the thickness is reduced, more actuators are necessary

to maintain the same surface quality. The alternative is to make the facesheet thicker

(and stiffer). This adds mass, but the mirror will lose some mass because fewer

actuators are necessary for maintaining the same surface accuracy.

1To be fair, the design algorithm isn’t going to require the use of 1 nm thick reflective membranes
or actuators that weigh half a gram. In Section 3.2.4, I will work an example that shows that the
model provides designs that can be fabricated using today’s technologies.

2The stiffness goes as the cube of the thickness: using a facesheet half as thick results in a
reduction in stiffness by a factor of eight!
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Figure 3.1. The University of Arizona lightweight active mirror design. There are
two ways to make this mirror lighter. The first way is to reduce the thickness of the
glass facesheet. This results in less mass due to the glass, but more actuators are
necessary to maintain the same surface accuracy. Alternatively, the glass thickness
could be increased, and this would result in the use of fewer actuators because the
facesheet would be stiffer. Clearly, there must be a way to distribute the mass between
the facesheet and actuators such that performance is optimized while the mass is
minimized. This chapter works towards answering that question.

Looking at these concerns raises the obvious question: is there an ideal way to

distribute the mass between the actuators and the facesheet? This chapter works

through a derivation for finding this solution. I will show that there is an ideal

solution, provided that a few assumptions are made.

Unlike conventional mirrors that derive their stiffness from their thickness, the

surface quality for a thin, active mirror isn’t determined by the structural geometry

of the substrate.3 The design uses an array of force or position actuators to correct for

any localized figure errors. These figure errors can be from several sources: self-weight

deflection (gravity), temperature gradients across the material, or fabrication errors.

Whatever the cause, all of these sources cause localized stresses in the membrane.

Throughout this entire chapter, I will assume that all of the practical aspects

of the mirror behave the way they were designed. For example, the actuators will

move the correct distance when they are instructed to do so, and the glass will be

3I define “thin” as having an aspect ratio of over 100. That is, the diameter is at least 100 times
larger than the thickness.
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polished to the proper specification. I will assume that inherent material properties

and environmental effects are to blame for errors in the surface figure.

3.2 Discrete temperature/CTE patches

In this section, I will derive a set of design rules that specify how to distribute the

mass between the substrate and the actuators for the best possible performance with

the least mass. To do this, however, it’s necessary to look at what causes errors in

the mirror’s surface.

Even if a mirror is fabricated to the specifications provided by the design team,

there are still several outside factors which may degrade the optical performance. All

science instruments are subject to the effects of their environment, and space mirrors

are no exception. An extreme example of this is that orbiting satellites risk being

destroyed by space debris. Temperature is a more subtle effect. If different parts of

the mirror have different temperatures, the optical performance will be affected.

The inherent material properties also affect the optical performance. For example,

most materials expand when heated and contract when cooled. The coefficient of

thermal expansion (CTE) is a physical value that quantifies this effect.4 For most

situations, engineers assume that the CTE of all bulk materials (i.e.: a rod of steel or

a sheet of glass) is homogenous throughout the material. However, when dealing with

optical tolerances, it’s important to realize that the CTE is not constant throughout

the material.

For this derivation, I will assume that surface errors in the membrane are caused

either by discrete temperature differences (patches of hot and cold spots on the mem-

brane), regions with different coefficients of thermal expansion combined with a global

temperature change, or both. However, while I do assume that these patches exist,

I also assume that each patch is homogeneous, Figure 3.2. Combined, these two

4CTE is discussed in Section 2.2.
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Figure 3.2. The two effects that can affect the shape of the mirror’s surface. Left:
patches of different CTEs combined with a global temperature change result in regions
of the mirror that expand and contract at different rates with a change in temper-
ature. Right: patches of the mirror at different temperatures result in non-uniform
expansion/contraction of the mirror’s surface. Both of these effects distort the sub-
strate. Notice that, within each patch, I will assume that the CTE or temperature is
constant.

effects can cause errors in the mirror surface at various spatial frequencies, and the

errors that are larger in scale than the actuator spacing can be fixed by moving the

actuators.5

The following derivation assumes that errors in the mirror result from the two

effects described above. Given a target mass budget for the entire mirror, I will

derive the optimum fabrication parameters (membrane thickness, membrane mass,

and number of actuators) that produce the lightest, most accurate mirror. In an

effort to concentrate on the big picture, the mathematics are only briefly described

during the derivation. The full derivation is included in Sections 3.2.6 and 3.2.7.

3.2.1 Supporting a membrane with a discrete number of points

Both of the effects illustrated in Figure 3.2 will cause a disturbance in the membrane.

If this occurs, a region on the membrane will expand or contract, pushing or pulling

against the area around it, and a “blister” will form. Of course, if this occurs over

5This concept is illustrated in Figure 1.4
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several actuator lengths, the actuators can be used to remove this error from the

surface figure.

In order to fix the blisters, the actuators must exert a force on the membrane.

Because the membrane is supported by a discrete number of points, the surface will

consist of local bumps over every actuator.6 Obviously, these bumps will affect the

surface quality of the membrane, and this effect is quantified by using a relationship

that Nelson developed [20] that describes the rms surface error of a plate that is

supported by N points:

δrms = 0.0012
P

D

(
A

N

)2

. (3.1)

The rms surface error δrms is a function of the force per unit area P applied by

N actuators, and it is the starting point for the derviation. A is the total plate area,

and N is the number of support points. D is the flexural rigidity, and it depends

strongly on the geometry of the membrane.7 Equation 3.1 has two key assumptions

associated with it:

• The substrate is a thin shell.

• The actuators are arranged in a triangular, periodic pattern. A triangular

geometry is more effective at correcting the surface error8 than a hexagonal,

circular, or rectangular geometry. [20]

Equation 3.1 is difficult to apply directly to the UA active mirrors because we

usually don’t know how much pressure each actuator must exert to fix a blister.9

6If the actuators have the ability to pull downward, there might be little dimples, as well.
7The flexural rigidity is discussed in Section 2.1.4.
8Nelson provides a thorough analysis of this in his paper. [20] In it, he shows that a triangular

configuration results in a surface rms error that is 10% less than a square geometry and nearly 50%
less than a hexagonal geometry. He assumes that the plates are semi-infinite with a large number
of support points. By doing this, edge effects can be neglected. In his derivation, all of the support
points (for all three geometries) support an equal area.

9Instead, the person adjusting the mirror just applies enough force until the surface is fixed.
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To that end, it would be useful to derive an expression for P that depends on more

tangible variables. Because I want to focus on the practical conclusions to be drawn

from this relationship, I will only show the results here. A detailed derivation is

included in Section 3.2.6. The new expression for P is as follows:

P =
2t [CE∆(αT )]

R
,

and this can be substituted into Equation 3.1 to get a new expression for δrms:

δrms =
0.03C(1− ν2) ∆(αT )

R t2

(
A

N

)2

. (3.2)

Here is a description of the variables in Equation 3.2:

ν Poisson’s ratio (See Section 2.1.3.)
∆(αT) Sources of stress (Figure 3.2): ∆(αT ) = (α∆T + T∆α)

C Shell constant (See Section 3.2.6. C doesn’t affect the solution.)
R Shell radius of curvature
t Shell thickness
A Shell area
N Number of actuators

Equation 3.2 represents an important conclusion. This equation is an expression

for RMS surface error that depends on the two material properties responsible for

causing the error: temperature (T) and CTE (α) differences. Also note that, unlike

Equation 3.1, Equation 3.2 is now in terms of three fabrication parameters: t, A,

and N , the thickness, shell area, and number of actuators, respectively. These are all

parameters that affect the system mass.

A fundamental relationship for thin mirrors is contained within Equation 3.2. The

variables for shell thickness and the number of actuators are both in the demonimina-

tor: more actuators or a thicker shell result in a smaller residual error. Also, there is

a direct tradeoff between shell thickness and the number of actuators. For example,

if the shell thickness t decreases by half, then the number of actuators N must double

to maintain the same surface quality δrms. In fact, this is the mathematical expression
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of the assertion that I made in Section 3.1: it shows the interconnectedness of the

number of actuators and the thickness of the substrate.

Finally, it’s worth noting that Equation 3.2 does not contain Young’s modulus,

E.10 This implies that the designer does not gain anything by choosing a stiffer

material: in theory, rubber is just as acceptable as glass or metal, given the initial

assumptions. Choosing a stiffer material will require more force from the actuators

to remove the blisters, yet the force that is applied through the actuators will cause a

surface error that is described by Nelson’s equation (Equation 3.1). These two effects

cancel each other out, and E is not a factor in the design algorithm.11

3.2.2 Optimizing the system for the smallest rms surface error δrms

Equation 3.2 yields some insightful information, but it doesn’t provide a solution

for building a mass-optimized mirror. Practically speaking, the system mass is an

important factor in designing space mirrors. All three of the fabrication parameters

(t, A, and N) affect the mass, so Equation 3.2 can be optimized to find the ideal

fabrication parameters for the smallest value of δrms.

If I express t and N in terms of mass, I can take the derivative—with respect to

the substrate mass, of Equation 3.2—set it equal to zero, and find the mass condition

that minimizes δrms. The mathematics are described in Section 3.2.7. When t and N

are expressed in terms of mass, Equation 3.2 can be written as follows:

δrms =
0.03C(1− ν2)∆(αT ) ρ2A2

R
(

msub

A

)2
(

m−msub

mact

)2 , (3.3)

were msub is the mass of the substrate, mact is the mass of each actuator, and m is

the total mass (such that m = msub + Nmact). To optimize Equation 3.3, I’ll take

10It falls out of the derivation. See Section 3.2.6.
11It’s not a factor, with one caveat: this assumes that the mirror will be used in a zero-gravity

environment. Here on Earth, presumably where the mirror will be fabricated and tested, there’s an
additional force: gravity. ‘E now comes into play again, as a glass membrane will be easier to test
than a rubber membrane.



61

the derivative with respect to m and set it equal to zero. The following relationship

results:

(4msub − 2m)(msub −m) = 0

msub =
m

2
.

The answer is stunningly simple! This relationship states that the minimum

surface error will occur when the shell mass, msub, makes up one half of the mass

budget.12 In other words, the optimum correction occurs when

substrate mass = actuator mass.

This relationship occurs because t2 and N2 are both in the denominator in Equa-

tion 3.2. Neither term can get too small or δrms will rapidly increase. The ideal

solution occurs when the mass is balanced equally among the substrate and actua-

tors. Here are the basic relationships:

t =
msub

Aρ
=
Nmact

Aρ
(3.4)

msub = Nmact =
m

2
.

With these relationships in place, I can outline a procedure for designing the

optimum a mirror:

1. Determine the mass budget and substrate diameter. This sets the values for

the total mass, m, and the area of the substrate, A.

2. Calculate the mass budget for the substrate:

msub =
m

2
.

12The solution where msub = m is trivial.
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3. Calculate the substrate thickness:

t =
msub

Aρ
.

4. Use the thickness t to determine the total number of actuators from the mass of

each actuator. (I assume that the actuator mass is a predetermined constant.)

Nmact = tA ρ

Notice that this approach assumes a fixed actuator mass. Mirror designers usually

have a working actuator design in mind when they design an active mirror, and they

can use this value to calculate the required number of support points. As the actuator

mass decreases, more actuators can be included in the design.

Finally, it’s important to notice that this design scheme does not include the

mass of the support structure. The support structure’s design depends on the system

dynamics so I did not consider it in this analysis. When I discuss the “mass budget”,

I refer only to the elements that maintain the reflective surface: the thin membrane

and the actuators.

3.2.3 Why does it work?

The design algorithm that falls out of the equations is elegantly simple; however,

the equations don’t provide much insight on why the solution makes physical sense.

Figure 3.3 shows an example plot of residual surface error (Equation 3.3) as a function

of fractional substrate mass.13 The plot shows that the minimum amount of surface

error occurs when the facesheet uses 50% of the mass budget. This makes physical

sense because of what happens at either extreme. For example, the left side of the

13I had to make some decisions about the material properties and mirror geomery in order to
create this plot. For example, I assumed that the facesheet had the following physical properties:
Pyrex glass (ρ = 2.23 g/cm3, ν = 0.2), 200 cm radius of curvature, 50 cm diameter, C = 0.36 (see
Section 3.2.6), and ∆(αT ) = 10−4.
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Figure 3.3. δrms as a function of facesheet mass. The minimum surface error occurs
when half the mass budget is used for the facesheet. Lighter (thinner) facesheets are
subject to high frequency error because more actuators will exist. Heavier (thicker)
facesheets are subject to low frequency bending errors. The optimum solution occurs
in the middle where neither low nor high frequency errors will dominate.

plot represents using the majority of the mass for the actuators. When this occurs,

the facesheet will be very thin, and high frequency errors will dominate because the

facesheet will slump about the support points. By contrast, if the majority of mass

is used for the facesheet, there will be very few actuators and low-order bending will

contribute most of the surface errors. The best solution occurs right in the middle

where neither high or low spatial frequency errors will dominate the surface figure.

3.2.4 Practical example: 2 m mirror for use in geosynchronous orbit

As a practical example, let’s put the four step procedure to work by calculating

the parameters for a hypothetical two meter mirror for use at geosynchronous orbit.

Geosync orbit is useful for Earth-imaging situations because the satellite remains

fixed over the same position as the Earth rotates.14 For this exercise, assume that

an areal density of 5 kg
m2 is the nominal areal density required for this application. [2]

Applying the areal density over a two meter mirror, the mass budget for the glass

14The basics of geosynchronous orbit are discussed in Section 6.1.
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and the actuators is as follows:

total mass = areal density × aperture area

m = 5
kg

m2
× (1m)2π

= 5π kg

m ∼ 16 kg.

After calculating the target mass and mirror diameter, the mass budget for the sub-

strate is as follows:

msub =
m

2

=
16 kg

2
= 8 kg.

Before continuing, it is necessary to choose a substrate material. Corning’s ULE15

is an appropriate choice. ULE has a density rho of 2210 kg
m3 . Using step three, the

substrate thickness is calculated using Equation 3.4:

t =
msub

Aρ

=
8 kg

(π m2)(2210 kg
m3 )

t = 1.2 mm.

Finally, I can use step four to calculate the required number of actuators. If

I know a priori that the actuator fabrication house can build 50 gram actuators

(mact = 50 g), then I can calculate how many support points I will need:

15This glass has a very low coefficient of thermal expansion; standard-grade ULE has a CTE of
15 ppb

oC . By comparison, BK-7 has a CTE of 7000 ppb
oC . This glass is usually a good choice for space

applications.
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t =
Nmact

Aρ

N =
tAρ

mact

=
(.0012 m)(π m2)(2210 kg

m3 )

0.050 kg

N = 167 actuators.

It’s important to note that all of the values obtained via this procedure are rea-

sonable and capable of being fabricated! The University of Arizona has created 50

cm Zerodur substrates less than 1 mm thick. [5] Steward Observatory has designed

and built actuators that are less than 40 grams. [7] The numbers generated in this

example are certainly possible using existing fabrication methods.

Finally, it’s interesting to note that the University of Arizona 2 m mirror, discussed

in Chapter 5, roughly meets this specification. The areal density of the 2 m is 13

kg/m2, which is twice the value used in this example. However, the facesheet is 2 mm

thick, and the mirror uses 166 actuators that have a mass of 40 grams each. Again,

the 2 m stands as another example that this model produces physical parameters that

are both reasonable and easy to build.

3.2.5 Using loadspreaders

Loadspreaders are often used in lightweight, active mirrors, Figure 3.4. Incorporating

a loadspreader into the mirror design offers several benefits. First, the loadspreader

increases the area of an actuator’s influence function. For example, a loadspreader

with a three inch footprint will result in a smoother Gaussian influence than an

actuator in direct contact with the substrate. Also, using loadspreaders result in a

safer mirror design. They allow each actuator to influence a larger portion of the

substrate, and this results in less stress/area in the mirror’s surface. In addition to
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Figure 3.4. A nine-point loadspreader. Loadspreaders (or whiffle trees) are used
to spread an actuator’s influence out over a larger area. For example, this particular
loadspreader contacts the actuator on its underside (in the middle of the spreader),
and it spreads the force imparted by the actuator to nine contact points on the mirror.
Section 3.2.5 describes how to interpret the design rules such that loadspreaders can
be included in the mirror design.

this, complex loadspreaders can be designed to disengage when they are subjected to

too much, or too little, force.16

Loadspeaders are easy to include in the design scheme laid out in this chapter.

First, it’s necessary to differentiate between the number of actuators, Nact, and the

total number of contact points, Npts:

Npts = Nact ×Npts/act,

where Npts is the total number of support points on the substrate, Nact is the total

number of actuators, and Npts/act is the number of support points controlled by each

actuator. (For example, here are the values for a mirror with four actuators, where

each actuator has a nine point loadspreader: Npts = 36, Nact = 4, and Npts/act = 9.)

Finally, Equation 3.4 can be written to include the loadspreader mass:

16The UA 2 m NMSD mirror uses a complex loadspreader. See Section 5.1.3.
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t =
Nactma

Aρ
=
msub

Aρ
=
msupport

Aρ

Npts =
tA ρ

msupport

Npts =
tA ρ

(ma +mls)
, (3.5)

where msub = msupport is the key design rule (i.e.: the mass of the substrate must

equal the total actuator/support mass), ma is the mass of an individual actuator, mls

is the mass of an individual loadspreader, t is the substrate thickness, A is the surface

area of the substrate, and ρ is the mass density of the substrate.

The loadspreaders are part of the support structure, so it is appropriate to in-

clude their mass in Equation 3.5. Note that this expression works in the absence of

loadspreaders, too: in that case, mls = 0 and Npts = Na.

In Section 3.2.4, I calculated the number of actuators required for a 2 m meter in

geosynchronous orbit. The results show that 167 fifty gram actuators minimize the

rms surface error while utilizing the least mass. Now, let’s suppose that each actuator

is 40 grams, and a 10 gram three-point loadspreader will be used. Equation 3.5 is

used to calculate the ideal design parameters:

Npts =
tA ρ

(ma +mls)

Na ×Npts/act =
tA ρ

(ma +mls)

3Na =
(.0012 m)(π m2)(2210 kg

m3 )

(0.040 kg + 0.010 kg)

Na = 56 actuators.

Thus, 56 actuators can be used to maintain the same number of contact points (167).17

The rms surface error is still held to a minimum, yet fewer actuators are necessary.

17This solution assumes an infinite actuator pattern. In reality, the actuator density must be
increased near the edge to handle the edge effects.
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3.2.6 Derivation details: pressure expression for δRMS

In an ideal situation, once the actuator has been activated, it should be able to remove

all of the surface error caused by the strain. In reality, however, a small error remains.

In 1982, Nelson presented a relationship that describes the rms surface error of a plate

supported by N support points:

δrms = 0.0012
P

D

(
A

N

)2

. (3.6)

The rms surface error δrms is a function of the force per unit area P applied by

the actuators. A is the total plate area, and N is the number of support points. D is

the flexural rigidity, which is given by this relationship:

D =
Et3

12(1− ν2)
, (3.7)

where t is the shell thickness, ν is Poisson’s ratio ( εtrans

εlong
), and E is Young’s modulus.

The expression for δrms will be more helpful if P is expressed in terms of something

more tangible than the pressure applied by the actuators. The following derivation

for P generates an expression that depends on the shell thickness, blister size, and

the stress.

Before I derive the expression for pressure P , it is helpful to look at a similar

situation: a balloon, illustrated in Figure 3.5. When the balloon is inflated, there are

two opposing forces at work. As the balloon is inflated, the rubber stretches out. This

causes an internal membrane stress that is tangent to the balloon’s surface. Once the

balloon has some air in it, it is in static equilibrium: it does not change its size. As

such, there must be a reaction force to counteract the membrane stress. The reaction

force comes from the air pressure inside the balloon.

Like the balloon, a glass shell is subject to similar forces. When either of the

temperature/CTE effects described in Figure 3.2 are present, a blister will form.

Figure 3.6 shows a shell with radius of curvature R that contains a blister that is
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Figure 3.5. The science of balloon inflation. After the balloon has some air in it,
two opposing forces are at work. The stretched-out rubber has a membrane stress;
this is tangent to the balloon’s surface. This pressure wants to make the balloon
smaller. Opposing this, there is a reaction pressure in the form of air pressure that
pushes outward, normal to the balloon’s surface. This pressure wants to make the
balloon larger. The balloon is in static equilibrium (once inflated, it does not change
size) so the two forces must be equal.
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Figure 3.6. A stress causes a blister to appear on a glass shell. Right: the geometry
of the blister of radius r.

r units wide. The local blister is subject to two forces: a membrane stress σ and a

counteracting reactive force P .18 The membrane stress is, like the balloon example,

tangent to the shell. Because the system is in static equilibrium, the z components

of the two forces are equal across the blister.

The force due to the membrane stress is expressed as follows:

Fz = Aannulus (σ sin θ)

= 2πrt
(
σ
r

R

)
,

where (σ sin θ) is the z component of the membrane stress and Aannulus is the area

over which that stress acts. The blister size is assumed to be small compared to the

shell’s radius of curvature, so I can substitute (r/R) for sin θ.

The reaction force P opposes the membrane stress. It acts on the projected area

of the blister:

Fz = PAblister proj

= P πr2.

18This derivation assumes that the reactive force P and the blister’s curvature are constant.
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Because the system is in static equilibrium, the two forces are equal:

2πrt
(
σ
r

R

)
= Pπr2

P =
2σt

R
. (3.8)

The expression for P in Equation 3.8 contains the membrane stress, σ. Stress is

defined in Equation 2.4 as the product of Young’s modulus and the strain: σ = Eε.

In Equation 2.8, I noted that strain is equal to (α∆T ). Physically, this represents

the scenario shown on the left side of Figure 3.2. Similarly, the quantity (T ∆α) is

also a strain. (This represents the scenario shown on the right side of Figure 3.2.)

Thus, for a flat, solid plate, the stress is given by this relationship:

σ = E∆(αT ). (3.9)

where ∆(αT ) denotes the possibility of either strain occurring: ∆(αT ) = α∆T +

T ∆α.

Equation 3.9 is for a flat plate, but the stress for a curved shell will be smaller.

To determine the correct relationship for a shell, Brian Cuerden developed a finite

element model for this situation, and he determined that the following relationship

holds true for a thin19, curved shell:

σ = 0.36E∆(αT ).

For the general case, I will replace Brian’s empirical coefficient with a shell constant

C such that σ = C E∆(αT ). I will carry this constant C through the remainder of

the derivation, but it will never affect the ultimate solution.

I will substitute this equation for σ into Equation 3.8 to get a new expression for

P :

19A thin shell has an aspect ratio of at least 100.
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P =
2σt

R

=
2t(CE∆(αT ))

R
. (3.10)

Notice that Equation 3.10 now expresses pressure P as a function of the two possible

sources of surface error shown in Figure 3.2.

Finally, I will solve Equation 3.7 for Young’s modulus E, and I will substitute this

into Equation 3.10:

P =
2t(CE∆(αT ))

R

=
2t

[
C(12

t3
D(1− ν2))

]
∆(αT )

R
.

Now that I have a new expression for P , I will substitute this into Equation 3.6,

the starting point in this derivation:

δrms = 0.0012
P

D

(
A

N

)2

= 0.0012

(
2t(C( 12

t3
D(1−ν2)))∆(α T )

R

)
D

(
A

N

)2

δrms =
0.03C(1− ν2) ∆(αT )

R t2

(
A

N

)2

. (3.11)

Equation 3.11 now contains a tangible fabrication parameter that depends on mass:

the substrate thickness t.

3.2.7 Derivation details: finding the minimum of δRMS by taking a deriva-

tive

The system mass is an important design factor for lightweight mirrors. All three of the

fabrication parameters (t, A, and N) depend on mass, so I can optimize Equation 3.2
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to find the optimum fabrication parameters for the smallest mass. To do this, I first

need to express t and N in terms of mass.

First I’ll express the shell thickness, t in terms of msub, the mass of the shell. This

can be done by starting with two well-known relationships:

V = A t

ρ =
msub

V
,

where V is the volume of the shell and ρ is the density. If I combine these two

relationships, I get an expression for the thickness in terms of the mass of the shell:

t2 =
(msub

A

)2 1

ρ2
. (3.12)

This result is squared because the thickness term in Equation 3.2 is squared.

Now, I’ll express the number of actuators in terms of the shell mass. The total

mass is equal to the following expression:

total mass = # actuators (mass at each support point) + substrate mass

m = Nmact +msub,

where mact is the actuator mass. Solving this equation for N yields

N =
m−msub

mact

. (3.13)

Finally, I will substitute Equations 3.12 and 3.13 into Equation 3.11:

δrms =
0.03C(1− ν2)∆(αT )ρ2A2

R
(

msub

A

)2
(

m−msub

mact

)2 . (3.14)
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Now that I have the residual surface rms expression in terms of mass, I will take

a derivative with respect to msub, set it equal to zero, and find the condition that

minimizes the rms surface error δrms.

The dependent variable in Equation 3.14 is msub. It will be easier to take the

derivative if we just concentrate on the parts that include msub. With this in mind,

let’s rewrite Equation 3.14 without all of the constants and then take the derivative

and set it equal to zero:

δrms ∝ 1

m2
sub(m−msub)2

∝ 1

m2
sub(m

2 − 2mmsub +m2
sub)

∝ 1

m2
subm

2 − 2mm3
sub +m4

sub

dδrms

dmsub

∝ 0− (2msubm
2 − 6mm2

sub + 4m3
sub)

(m2
subm

2 − 2mm3
sub +m4

sub)
2 = 0

4m3
sub − 6mm2

sub − 2m2msub = 0

msub (4msub − 2m)(msub −m) = 0

msub =
m

2
.

3.3 Gradient temperature/CTE patches

In Section 3.2, I assumed that the errors in the substrate were caused by the inherent

material properties (CTE variations) as well as environmental considerations (changes

in temperature). In doing this, I also assumed that the patches on the substrate were

homogeneous throughout.

In this section, I will assume that the patches are not homogeneous. Most impor-

tant, I allow the patches to contain temperature or CTE gradients in a direction that

is normal to the substrate, Figure 3.7.
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Figure 3.7. Gradient patch effects. In Section 3.2, I derived a set of optimum design
conditions assuming that the limiting errors are caused by discrete temperature/CTE
patches across the substrate. A more realistic consideration is that the patches will
really be gradients of temperature or CTE, as seen above. In this section, I re-derive
the design conditions assuming there is a temperature/CTE gradient normal to the
substrate.

Unlike the derivation shown in Section 3.2, I will include the full derivation here,

without the use of appendices. The procedure will remain the same as the previous

chapter: I will identify the sources of errors in the substrate, and then I will use these

to derive a set of optimum design rules. As before, Nelson’s equation (Equation 3.1)

will be the starting point for this derivation. Recall that Equation 3.1 contains the

pressure/area, P , exerted by each support point. This quantity is rather nebulous, so

the purpose of this derivation will be to replace P with a more tangible expression.

To do this, I will use the following procedure:

1. First, I will generate a function that describes the surface error due to a tem-

perature gradient.

2. Next, I will describe a transfer function that relates surface error to the required

actuator pressure needed to fix that surface error.

3. I will multiply the two functions from steps 1 and 2 to find the pressure function,

P .
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Figure 3.8. Thermal bending for a homogeneous plate. When a linear thermal
gradient is applied through a bar of material, it bends. The amount that it bends
is proportional to the size of the temperature gradient. In Section 3.3.1, I derive an
expression that relates the amount of bending (quantified by the radius of curvature,
R) to the temperature gradient, ∆T .

4. Finally, I will substitute this new equation for P into Nelson’s equation.

3.3.1 Generating a function that relates surface error to temperature

gradients

Figure 3.8 illustrates what happens to a homogeneous plate when a linear temperature

gradient is applied in a direction normal to the plate: it bends.20 This bending

can be qualified by specifying the radius of curvature, R, of the bent plate. For a

homogeneous shell with a normal, linear temperature gradient through the material,

the curvature R changes as a function of temperature gradient, ∆T = |T1 − T2|.

To begin, note that the curved surfaces in Figure 3.8 are not the same length.

The bottom surface of the shell has length l, and the top surface has length l + ∆l.

This change in length is due to the thermal expansion effect, expressed as

∆l = l α∆T,

20This is not a crazy idea. In fact, most home thermostats uses this phenomenon as the technique
for measuring temperature change.
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where α is the coefficient of thermal expansion of the material. The length of the top

surface can now be rewritten as follows:

lt = l + lα∆t

lt = l(1 + α∆t).

The radii of curvature (ROC) of the two surfaces are proportional to their arc

lengths21:

ROCtop

ROCbottom

=
R + t

R
l(1 + α∆T )

l
=

R + t

R

1 + α∆T = 1 +
t

R

R =
t

α∆T
=

1

αdT
dz

, (3.15)

where t is the shell thickness, α is the CTE of the shell, and ∆T is the temperature

difference through the plate.

For the case of space mirrors, the substrate is usually a shell: it already has some

initial curvature to it. Thus, it is more instructive to describe the shape in terms of

curvature instead of radius. Recall that curvature is defined as 1
R
. Doing this means

that Equation 3.15 can be rewritten as a differential equation:

d2z

dx2
= α

dT

dz
. (3.16)

Equation 3.16 is a differential equation that I will solve by assuming a form for

dT
dz

. If dT
dz

= K(ξ) cos(2πξx), this can be substituted into Equation 3.16, and I can

solve for z(x) by integrating twice:

21For a circle of radius r, the arc length contained by an angle ψ is r|ψ|. [12] Arc length is linearly
proportional to the radius of curvature.
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d2z

dx2
= αK(ξ) cos(2πξx)

z(x) = − α

(2πξ)2
K(ξ) cos(2πξx)

z(x) = − α

(2πξ)2

dT

dz
, (3.17)

where K(ξ) is the amplitude of the cosine function. Equation 3.17 describes the

surface error due to a temperature gradient through the shell as a function of spatial

frequency ξ.

3.3.2 Defining a transfer function

In the previous section, I derived an expression for surface error as a function of

temperature gradient through the shell. This surface error can be corrected by the

actuators because they exert a pressure on the shell. The amount of pressure required

to do this is proportional to the surface error, and I just need to find the scaling factor

between them. The scaling factor Γ is a transfer function that scales the surface error

s(x) to the pressure required to fix it p(x):

p(x) = s(x) · Γ, (3.18)

where Γ is the transfer function that relates the two.22 Equation 3.18 is analogous

to Hooke’s Law (F = kx), which relates a force to a product of linear distance and

stiffness. Thus, the transfer function that I seek is a stiffness (a spring constant) that

relates pressure to surface error.

The transfer function that I will use was developed by Mehta [18] and further

explained by Michael Tuell in his master’s thesis [26].23 Mehta looked at correcting

22Γ also depends on the spatial frequency of the surface error s(x).
23Mehta is responsible for developing the theory, but Tuell’s derivation is more accessible.
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high spatial frequency errors in aspheric optics. He developed expressions for the

polishing tool stress when it contacts an aspheric optical surface. I will summarize

Mehta’s derivation in the following paragraphs, and the complete details are available

in either work by Mehta or Tuell.

Mehta starts with two simultaneous partial differential equations that describe the

tool deflection w as a function of the flexural bending and transverse shear stiffnessnes:

∇4w =
q

D
− ∇2q

Ds

(3.19)

∇2

(
∂2w

∂x2
− ∂2w

∂y2

)
− 2Ds

D(1− ν)

(
∂2w

∂x2
− ∂2w

∂y2

)
= 0. (3.20)

Equation 3.20 is a form of the Helmholtz equation, and it represents the deflection

due to torsion.

Equation 3.19 characterizes the deflection due to bending and transverse shear; it

describes the relationship between tool deflection w, pressure distribution acting on

the tool q, flexural rigidity D, and shear stiffness Ds. The flexural rigidity (discussed

in Section 2.1.4) characterizes the bending stiffness. The shear stiffness Ds is

Ds = Gt =
E t

2(1 + ν)
, (3.21)

where E is Young’s modulus, t is the shell thickness, and ν is Poisson’s ratio. Phys-

ically speaking, the shear stiffness is a measure of resistance to shearing when a

transverse shear force is exerted upon a material.

When Equations 3.19 and 3.20 are solved for the pressure q, the following solution

results:

q = Kc

(
1− β1

β2

)
s(x), (3.22)

where Kc is the pitch stiffness.24 The variables β1 and β2 equal the following:

24Equation 3.22 assumes the problem is one-dimensional. That is, Mehta only considers surface
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β1 = Kc

[
1 +

D

Ds

(
π2

a2

)]
β2 = β1 +D

(
π2

a2

)2

,

where a is the half period of a spectral feature of the surface error.

In Equation 3.22, the quantity
[
Kc

(
1− β1

β2

)]
is just a scaling factor which relates

the optical surface error s(x) to the pressure distribution q across the tool, which

is the same relationship that I show in Equation 3.18. Tuell rewrites the quantity[
Kc

(
1− β1

β2

)]
in a more intuitive form:

Γ = Kc

(
1− β1

β2

)
=

1
1

16π4Dξ4 + 1
4π2Dsξ2 + 1

Kc

, (3.23)

where he substitutes ξ for 1
2a

such that his expression is in terms of spatial frequency

ξ.

Equation 3.23 describes the stiffness of the polishing tool—or any thin plate—

considering the effects of bending ( 1
16π4Dξ4 ), transverse shear ( 1

4π2Dsξ2 ), and pitch

compliance ( 1
Kc

). Note that the bending and stiffness terms depend on the spatial

frequency of the error. For large spatial frequencies (short spatial periods), the shear

term dominates. By contrast, bending dominates for small spatial frequencies (long

spatial periods). This makes physical sense: long beams (small ξ) will deflect due

mostly to bending.25

For this analysis, I will make two assumptions before proceeding. First, the 1
Kc

term (the pitch compliance) is inappropriate in this situation, so I will always assume

that 1
Kc

= 0. Also, I will assume that the strain caused by the temperature/CTE ef-

fects results in bending deflection only. Mathematically, this means that I will assume

that the
(

1
4π2Dsξ2

)
shear term is equal to zero. This approximation is appropriate

errors in one direction. (The error in the other direction is assumed to have an infinite spatial
period.)

25This concept is also discussed in Figure 4.16.
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because I am assuming that the surface errors occur across several actuators where

bending will be the dominant deflection.26

The surface error z(x) and the transfer function Γ can now be multiplied together

(as in Equation 3.18) to get an expression for pressure:

p(x) = z(x) · Γ

=
−α

(
dT
dz

)
(2πξ)2

16π4Dξ4

p(x) =
−α

(
dT
dz

)
1

4π2Dξ2

(3.24)

D, the flexural rigidity, is discussed in Section 2.1.4.

3.3.3 A revised expression for Nelson’s equation

Equation 3.24 now represents a more tangible expression for pressure, and it can be

substituted into Nelson’s equation as follows:

δrms = 0.0012
P

D

(
A

N

)2

=
−0.0012α

(
dT
dz

)
1

4πξ2

(
A

N

)2

(3.25)

3.3.4 Optimizing the system for the smallest mass

Equation 3.25 describes the rms surface error in the mirror substrate due to gradient

temperature/CTE patches. This relationship says that using more actuators per

unit area will result in a smaller rms surface error. Unlike the scenario described in

Section 3.2, there is not an ideal solution for this situation.

26Shear is most likely to dominate over shorter distances.
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Equation 3.25 suggests that the surface error is independent of thickness, and

this may seem counter-intuitive. For example, a half meter, 5 mm thick, 25 actuator

mirror will have the same surface error as a half meter, 10 mm thick, 25 actuator

mirror. The thicker mirror will require a pressure that is proportional to the bending

stiffness D (Equation 3.24) to fix the surface error, but the surface error (via Nelson)

is inversely proportional to D. In the end, the thickness (buried within D) falls out

of the relationship.

Note that these results are derived assuming a flat plate. (The solution from

Section 3.2 inherently assumes that the shell is curved.) For a thin shell, the additional

stiffness obtained by using a curved structure will change these results.

3.4 Which model is the best?

The two models used in this chapter start with different assumptions. Therefore, they

are appropriate in different situations. The solution for discrete temperature/CTE

patches that resulted in an optimum solution (mactuators = msubstate) should be used

when the dominant cause of surface errors is temperature changes across the mirror.

This model also assumed that the substrate was a thin shell.

The solution for gradient temperature/CTE patches is only valid for flat plates.

It is most applicable when small surface errors exist due to figure errors or tempera-

ture/CTE gradients.

3.5 Chapter summary

In this chapter, I derived a set of design rules for creating the best possible surface

figure with the least amount of mass. Along the way, I made a few assumptions about

the geometry and fabrication parameters:

• All of the components (glass, actuators, support structure, etc) must be properly
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fabricated to the designer’s specifications. In other words, actuators actuate

properly, and the glass is polished correctly.

• The actuators are arranged in a triangular geometry. (Edge effects were ig-

nored.)

• Surface errors in the substrate are due to temperature changes and CTE vari-

ations within the material.

• The mass of an individual actuator is known a priori.

I analyzed two different situations, and the overall results from either case were

exactly the same:

• First, I looked at the case where homogeneous patches of hot/cold spots or

different CTEs exist within the substrate. (This concept is illustrated in Fig-

ure 3.2.)

• I also looked at the case where the temperature/CTE patches are not homoge-

neous. (This concept is illustrated in Figure 3.7.)

For homogeneous temperature/CTE patches, the minimum surface error occurs

when the mass of the substrate equal to the mass of the support system (actuators

+ loadspreaders, if any).

In addition to this, the following relationships fall out of the derivation and prove

helpful in determining substrate thickness and the number of total actuators required:

t =
msub

Aρ
=
Nmact

Aρ

msub = Nmact =
m

2
.

When using loadspreaders with this model, it is not necessary to re-derive any-

thing. Instead, I simply changed the notation such that it was more robust:
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Npts =
tA ρ

(ma +mls)

Na ×Npts/act =
tA ρ

(ma +mls)
.

Note that these relationships reduce to the ones shown previously when no load-

spreader is present.

For gradient temperature/CTE patches, there is no optimum solution. As more

actuators are used per unit area, the rms surface error decreases.



85

Chapter 4

Optimized, structured substrates

In the previous chapter, I discussed how the mass should be distributed between

the glass and the support system in order to achieve the minimum surface error.

Throughout that derivation, I assumed that the membrane was a solid, thin shell.

In this chapter, I will explore the possibilities of using a structured membrane to

maximize the effectiveness of the mass allotted for the membrane.

A structured membrane is a thin shell or plate that is not completely solid. For

example, throughout this chapter, I will assume that there are two possible ways of

making a shell lighter, and these two schemes are both illustrated in Figure 4.1. The

left side of Figure 4.1 shows a sandwich-type design. This scheme consists of a cellular

core that is flanked by a face and backsheet. The right side of Figure 4.1 shows a

openback geometry.1 The openback scheme also has a cellular core, but it only has a

facesheet.

In this chapter, I will discuss the merits of the two geometries shown in Fig-

1This is also referred to as an “egg carton” design.

Figure 4.1. Two schemes for lightweighing thin shells. Left: A sandwich scheme
uses a facesheet and a backsheet that surround an inner rib structure. Right: The
openback scheme uses only a facesheet, and the inner ribbing is exposed from the
back.
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ure 4.1. I will also show how the structural properties of each geometry change as

more material is removed.

4.1 Lightweighting mirrors: a lesson in bending and shear

Before I discuss the individual lightweighting strategies, it’s important to understand

what happens to a thin plate as material is removed from it. For the purposes of this

analysis, the effects on bending and shear are most important.

4.1.1 Bending deflection

Bending is the result of a moment, as discussed in Section 2.1.1. The I-beam in

Figure 4.2 bends because gravity causes it to bend under its own weight. Ignoring

the effects of shear, the amount of deflection depends on the following equation:

d2z

dx2
=

M

E I
,

where M is the moment that’s causing the bending, E is Young’s modulus2 and I is

the moment of inertia3. [14] This relationship is important because it shows that the

deflection, described as a curvature ( d2z
dx2 ), depends on the moment of inertia, which

depends on the structure’s geometry. In order words, the bending properties of an

I-beam are very different from those of a solid beam.

This equation can be rewritten to describe the curvature that results from a force

q(x) applied along the beam:

2Young’s modulus is discussed in Section 2.1.2.
3The moment of inertia is reviewed in Section 2.3.
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Figure 4.2. An I-beam supported at one point. It bends due to its own weight (top
right), but it also shears near the support point (bottom right). These two effects
combine to create the (exaggerated) shape shown on the left.

d2z

dx2
=

M

E I
d2

dx2

(
EI

d2z

dx2

)
=

d2

dx2
M

EI
d4z

dx4
= −q(x),

where −q(x) is a force per unit length and is equal to d2M
dx2 . [14]

For the case of thin mirror substrates, it’s more appropriate to look at how a

plate bends. The deflection for a thin, flat, transversely-loaded plate is given by the

following relationship:

∇4w =
q

D
, (4.1)

where w is the transverse deflection of the plate, q is the transverse load per unit

area, and D is the modulus of flexural rigidity. [3] The most important component of

Equation 4.1 is the modulus of flexural rigidity, which was discussed in Section 2.1.4.

D is defined by the following relationship:

D =

(
E

1− ν2

) (
I

bo

)
, (4.2)
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Figure 4.3. The moments of inertia for a solid beam and an I-beam. Note that the
moment is smaller for the I-beam.

where E is Young’s modulus, ν is Poisson’s ratio4, bo is the width of a cross-sectional

unit cell, and I is the moment of inertia. [25]

Again, it’s essential to notice that the bending (flexural rigidity D) depends on

the moment of inertia I, and I depends strongly on the geometry of the object. For

example, the moments of inertia for a solid, rectangular beam and an I-beam are

shown in Figure 4.3. Notice that the I-beam has a smaller moment of inertia.

Equation 4.2 implies that there is a way to distribute the mass such that the

resulting structure is stiffer than a solid plate of equivalent mass. This is a powerful

tool for improving mirror designs, and it will be discussed in Section 4.2.

In conclusion, the following statements about bending deflections are true:

• Bending is caused by a moment.

• The degree to which a structure is likely to bend is closely tied to the moment

of inertia (geometry) of the structure. In other words, an I-beam will behave

differently than a solid plate.

• Increasing the moment of inertia (I) or the flexural rigidity (D) will result in a

stiffer beam or plate.

4Poisson’s ratio is discussed in Section 2.1.3.
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Figure 4.4. Scissors use a shearing effect to cut paper. The bottom blade exerts an
upward force while the top blade exerts a downward force. This shearing force along
a straight line tears the paper into separate pieces.

4.1.2 Shear deflection

Shearing results when molecules slip along a plane that is parallel to the applied

force. For example, scissors (or “shears”) work by shearing the paper along a line,

Figure 4.4. As the top blade of the scissors approaches the cutting point, it exerts

a downward force on the paper. Meanwhile, the paper also rests against the bottom

blade which provides an upward force. The shear force is so great along the line of

contact that the paper tears into separate pieces.

Plates and shells are often subjected to localized shear forces, and it’s important

to consider what occurs when this happens.5 Consider a layer of pizza dough, Fig-

ure 4.5.6 If a force is exerted at a discrete point on the dough, the surface figure will

change. Why does it assume this particular shape? It does this because the pizza

molecules shift past each other along the direction of the force. As a result, a local

bump occurs.

The shear modulus, G, is the factor that quantifies this effect.7 It relates the

applied force to the shear deflection:

5For example, the Arizona MARS mirrors are subjected to local shear forces from the actuators.
6Pizza dough is a better example than glass or metal because it’s easier to imagine the effects of

shearing.
7G is the shear equivalent of Young’s modulus for bending deflections. Like Young’s modulus,

its value is material-dependent, and it is obtained by looking it up in a materials reference book.
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Figure 4.5. This pizza dough is subjected to a localized force (a finger), and it
deforms mostly due to shear effects.

τ = Gγ

F

A
= G

∆l

l
,

where τ is the applied force per unit area, and γ is the strain that results from

the force. [14] Materials with a large shear modulus will not experience much shear

deflection when a force is exerted upon them.

The shear stiffness, Ds, is analogous to the flexural rigidity for bending: it quan-

tifies how much a particular geometry will deform due to shear forces. The shear

stiffness is

Ds = Gh =
E

2(1 + ν)
h,

where E is Young’s modulus, G is the shear modulus, ν is Poisson’s ratio, and h is

the height of the unit cell. [14] The unit cell is chosen such that, when reproduced

periodically, the plate’s structure is recreated. (The unit cell is discussed in more

detail in Section 4.2.) Note that the shear stiffness Ds depends on the plate thickness:

thin plates shear more than thick plates.

Thus, the following statements about shear deflection are true:
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Figure 4.6. A comparison between a solid and a lightweighted plate. The callout
bubble shows the dimensions of the lightweighted unit cell: ho = 2, bo = 2, hi = 1,
and bi/2 = 0.75. The dimensions for the solid unit cell are ho = 2 and bo = 2. (hi

and bi are equal to zero since the cell isn’t structured.)

• The shear stiffness Ds scales linearly with the unit cell height. A thinner plate

always has a greater susceptibility to shear.

• Like bending deflection, the amount of shear deflection depends on the struc-

ture’s geometry.

4.1.3 Practical example: bending for a lightweighted plate

Figure 4.6 shows two plates, each with a different geometry. Plate A is solid and

Plate B is lightweighted such that square pockets have been milled out in a periodic

fashion. Both plates have the same overall length and width. For the purpose of

this example, I will assume that both plates extend out of the page, and the bending

occurs in a plane perpendicular to the page.

The results of this comparison are shown in Table 4.1. The moment of inertia

was calculated using the equations shown in Figure 4.3. Using the moment of inertia,

I was able to calculate the flexural rigidity D using Equation 4.2. Table 4.1 shows

that the lightweighted plate has a flexural rigidity that is 9% less than the solid

plate. However, note that the areal density for the lightweighted structure is about
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Quantity Solid Plate Lightweighted Plate Comments
I (m4) 1

12
(2 · 23) 1

12
(2 · 23 − 1.5 · 13) LW’d is 9.3% less

D (N·m) E
B(1−ν2)

(1.33) E
B(1−ν2)

(1.21) LW’d D is 9.3% less

% ( kg
m2 ) (4) ρ (2.5) ρ LW’d areal density is 37.5% less

Table 4.1. This table shows the relative values for the following quantities: mo-
ment of inertia I, flexural rigidity D, and areal density %. The two structures being
compared are the ones shown in Figure 4.6.

62.5% that of the solid plate. This is an important conclusion: it shows that the

lightweighted structure is 37.5% lighter yet only 9% more compliant in bending.

4.2 Optimizing the design based on efficient mass distribu-
tion

In the previous section, I suggested that a structured mirror could improve the

facesheet’s stiffness, given a particular mass budget. In this section, I will quan-

tify this effect by performing a detailed analysis that investigates the most efficient

way to distribute mass about the plate.

As discussed in the previous section, lightweighted mirror structures can consist

of one or two design geometries: sandwich geometries use a cellular core with a face

and backsheet, while openback geometries use a cellular core with only a facesheet.

These two geometries are illustrated in Figure 4.1.

These geometries have a legacy in several ground-based telescopes. The 200”

Palomar mirror, for example, was considered an engineering marvel when it was cast

in 1934. Its sheer size was due in part to using a lightweighted, openback Pyrex mirror

blank. [9] The blank was cast by using a mold to create the openback geometry. Today,

the Steward Mirror Lab casts 8.4 m monolithic mirrors that use a sandwich geometry

with a honeycomb structured core. [17]

Both of these lightweighting schemes would lend themselves well to thin mirror

substrates. [27, 21] The openback design has already been studied [28, 4, 22, 23] and
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used in several space mirror prototypes. [8] Openback facesheets are already being

used because the technology needed to produce these geometries is already in place.

Waterjet-cutting is an established process that uses a high pressure jet of water with

a fine particulate to make precise pocket cuts in materials such as glass. On the

other hand, it is currently not possible to create high quality, thin substrates with

the sandwich design.

To date, no one has studied these geometries in an effort to provide some general

scaling laws for their use. For example, for the openback geometry, is there a partic-

ular ratio of rib to facesheet thickness that maximizes the structural efficiency? Are

there combinations of rib and facesheet thicknesses where lightweighting has little (or

no) effect on the structure’s stiffness?

To answer these questions, I will examine the structural efficiency of the two

geometries shown in Figure 4.1. I will analyze the openback and sandwich geometries

to see how the structural efficiency changes as the facesheet, backsheet, and web

thicknesses are varied.

4.2.1 Defining the structural efficiency ratio

In order to compare different lightweighting geometries, I will define a metric of

quality called the structural efficiency ratio. The structural efficiency will quantify the

stiffness for a particular geometry mass. I will begin by using the stiffness expression

developed by Mehta and Tuell and discussed in detail in Section 3.3.2:

Γ =
1

1
16π4Dξ4 + 1

4π2Dsξ2

, (4.3)

were D is the flexural rigidity, Ds is the shear stiffness, and ξ is the spatial fre-

quency (1/in) of the surface errors. [26] Recall that this expression is the stiffness for

a thin plate that considers the effects of both bending ( 1
16π4Dξ4 ) and transverse shear

( 1
4π2Dsξ2 ).
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For this analysis, it will be most helpful to compare a particular lightweighted

geometry with a solid plate of equal mass. This way, I will be able to determine

which design uses the mass in the most structurally-efficient manner. To do this, I

will define the structural efficiency ratio (sE) as follows:

sE =
ΓLW

Γsolid

, (4.4)

where ΓLW is Equation 4.3 for a lightweighted plate and Γsolid is Equation 4.3 for a

solid plate of equivalent mass.

4.2.2 Optimized design: sandwich geometry

Now that the concept of structural efficiency has some mathematics attached to it,

Equation 4.4 can be used to analyze a particular situation. In this section, I will

discuss the performance of the sandwich geometry, shown in Figure 4.1. First, though,

a unit cell must be defined that can be periodically replicated to represent the entire

surface.8 For a sandwich geometry, the unit cell looks like a cross with a face and

backsheet, Figure 4.7. The cross section looks just like an I-beam, and this makes it

easy to calculate the moment of inertia for this cell:

I =
1

12
(boh

3
o − bih

3
i ),

8The use of unit cells to describe the overall structure is supported by two different researchers.
Barnes used this approach in his analysis of triangular, hexagonal, and square sandwich structures. [3]
For a square sandwich structure, he uses the moment of inertia of a two-dimensional I-beam. His
resulting expression for the flexural rigidity D is equivalent to mine, except that his notation is
different. Throughout his analysis, he assumes that the unit cell is small in comparison to the
overall mirror width. In addition to this, Ralph M. Richard performed two finite element analyses on
structured mirrors. The first one used constant-stress, linear-edge displacement membrane triangles.
These are elements that were not allowed to bend, but they were allowed to move in piston with
respect to one another. The other model used rectangular elements, where each element was allowed
to bend. The resulting overall mirror stiffnesses were within 2% of each another. [22] Richard’s results
show that the unit cells do not have to bend in order to model the system correctly. (This assumes,
of course, that the unit cells are small in comparison to the overall mirror diameter.)
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Figure 4.7. 2D and 3D unit cells for the sandwich scheme.

where the variables are shown in Figure 4.7.

I can substitute the expression for the moment of inertia into Equation 4.4 such

that it represents the specifics of the sandwich geometry:

sE =
ΓLW

Γsolid

=

1
1

16π4Dξ4
+ 1

4π2Dsξ2

Γsolid

=

1
1

16π4
„

E
1−ν2

I
bo

«
ξ4

+ 1
4π2Dsξ2

Γsolid

=

1
1

16π4

 
E

1−ν2

1
12 (boh3

o−bih3
i
)

bo

!
ξ4

+ 1

4π2( E
2(1+ν))h′o ξ2

Γsolid

=

1
1

16π4

 
E

1−ν2

1
12 (boh3

o−bih3
i
)

bo

!
ξ4

+ 1

4π2( E
2(1+ν))h′o ξ2

1
1

16π4

0@ E
1−ν2

1
12 boh

′3
o

bo

1Aξ4

+ 1

4π2( E
2(1+ν))h′o ξ2

=

1
1

16π4

 
E

1−ν2

1
12 (boh3

o−bih3
i
)

bo

!
ξ4

+ 1

4π2( E
2(1+ν))

 
b2oho−b2

i
hi

b2o

!
ξ2

1
1

16π4

24 E
1−ν2

1
12

 
b2oho−b2

i
hi

b2o

!3
35ξ4

+ 1

4π2( E
2(1+ν))

 
b2oho−b2

i
hi

b2o

!
ξ2

. (4.5)

Equation 4.5 looks like an intimidating expression, but it is very useful! All of
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the steps leading up to it are simply algebraic substitution, and I included them to

clarify how I arrived at the answer. There are two items which may warrant additional

explanation:

• Line three numerator: I
bo

. bo is the width of the unit cell, as shown in Figure 4.7.

• The shear stiffness Ds is the same for both the lightweighted and solid cases.

This is because I am normalizing the lightweighted mirror to a solid mirror

of equal mass. The shear stiffness depends only on the amount of material

present—not the geometry—so the value of Ds is equivalent in both cases.9 As

such, I define the effective thickness h′o as follows:

mLW = msolid

ρ VLW = ρ Vsolid

Vsolid − Vempty = Vsolid

b2o ho − 4hi

(
bi
2

)2

= Vsolid

(b2o ho − b2i hi) = b2o h
′
o

h′o =
b2o ho − b2i hi

b2o
.

The effective thickness is the height of the solid plate. It represents all of the

mass that is within each structure.

I can now use Equation 4.5 to investigate how the structural efficiency changes

as a solid plate is lightweighted using the sandwich geometry. First, however, it will

be helpful to define what I mean when I say that a structure “is lightweighted”. The

basic idea is simple: I’d like to show what happens to the structural efficiency ratio

as I start removing material from a solid plate. For the sandwich geometry, I will

always remove material using the same procedure.

9If I normalized the lightweighted plate to an equivalent plate of equal thickness—which I am
not—then the respective values forDs would be different because each plate would contain a different
amount of material.
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Figure 4.8. Lightweighting the sandwich geometry. In this example, the ratio of
the facesheet to rib thickness is equal to one (TR = 1). Thus, the facesheet and rib
thickness remain equal as the cell is lightweighted.

Figure 4.8 illustrates the most efficient way to gradually remove material from a

solid cell to create a sandwich cell. The mass is initially removed along the neutral

axis because this contributes the least to the sandwich structure’s stiffness. (The

material near the very top and bottom—the I sections of the I-beam—contribute the

most to the stiffness.) While removing material, I maintain a constant proportion

between the facesheet and rib thickness. I define this thickness ratio (TR) as follows:

TR =
tfacesheet

trib

=
ho−hi

2

bo − bi
, (4.6)

where ho, bo, hi, and bi are shown in Figure 4.7. For example, if I set TR = 3, then

the facesheet will always remain three times thicker than the rib.10

By using the thickness ratio, I can easily generate a plot of the structural efficiency

ratio as a function of lightweightedness. There are four variables that define the

geometry: bo, ho, bi, and hi. I’m going to choose the values for TR, bo, and ho. In

order to lightweight the structure, the independent variable will be hi, which will vary

from zero to ho. For every hi, I will calculate bi using Equation 4.6.

Figure 4.9 shows how the structural efficiency changes as a solid plate is light-

weighted. The percent lightweightedness (% LW) is plotted along the x-axis, and

10For another example of thickness ratio, Figure 4.9 shows a unit cell where TR = 1.
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Figure 4.9. Structural efficiency (sE) for a sandwich structure as a function of
lightweightedness (% LW ). For this example, I used BK7 (ν = 0.206) and a unit cell
with outer dimensions bo = 1 in and ho = 2 in. ξ = 1/10 1

in
. The different curves

represent different facesheet to rib thicknesses. For example, the line labeled “5” is
for a sandwich geometry where the facesheet thickness is held at five times the rib
thickness as the unit cell is lightweighted.

the structural efficiency (sE) is plotted along the y-axis. The different curves each

represent a different thickness ratio. For example, the curve labeled “5” is for a

geometry where the facesheet thickness is held at five times the rib thickness as the

unit cell is lightweighted. This plot illustrates three important conclusions about

lightweighting schemes using the sandwich geometry:

• First, there are geometries where little or no structural efficiency is gained by us-

ing a lightweighted shell over a solid shell of equal mass. For example, the curve

labeled “1” (TR = 1, or the facesheet thickness is the same as the rib thickness)

shows very little increase in sE until the unit cell is over 70% lightweighted.

• Second, using a thinner rib always results in a better structural efficiency ratio

for the same % LW. For example, in this plot, a shell that maintains a facesheet

that is ten times thicker than the ribs (TR=10) will have a structrual efficiency

ratio of 10 when the unit cell is 65 % lightweighted. A shell that has equal rib

and facesheet thickness (TR=1) needs to be 85% lightweighted to achieve the
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same structural efficiency.

• Most important, the structural efficiency increases as the material is light-

weighted.

Figure 4.9 represents a particular geometry of unit cell parameters: bo = 1 in,

ho = 2 in, and ξ = 1/10 1/in. I also assumed that I was using BK7, a standard-grade

optical glass. (This sets the Poisson ratio, ν = 0.206.)11 The following rules apply if

any of these constants are changed as follows:

• bo is increased. Doing this effectively spaces the ribs farther apart. Increasing

bo increases the sE for a given % LW. For example, for bo = 1 in, ho = 2 in,

TR = 1, ν = 0.206, and ξ = 1/10 1/in, sE ≈ 6 at 60% LW. For bo = 10 in,

ho = 2 in, TR = 1, ν = 0.206, and ξ = 1/10 1/in, sE ≈ 7.5 at 60% LW.

• ho and bo are scaled up by the same factor. Increasing ho and bo by the same

scaling factor decreases the sE for a given % LW. For example, for bo = 1 in,

ho = 2 in, TR = 1, ν = 0.206, and ξ = 1/10 1/in, sE ≈ 6 at 60% LW. For

bo = 4 in, ho = 8 in, TR = 1, ν = 0.206, and ξ = 1/10 1/in, sE ≈ 2 at 60%

LW. This result may seem counterintuitive, but the ratio of the moments of

inertia does not double if the unit cell’s dimensions are doubled.

• ξ is increases. Increasing ξ decreases the sE for a given % LW. For example,

for bo = 1 in, ho = 2 in, TR = 1, ν = 0.206, and ξ = 1/10 1/in, sE ≈ 5.5 at

60% LW. For bo = 1 in, ho = 2 in, TR = 1, ν = 0.206, and ξ = 1/4 1/in, sE

≈ 3 at 60% LW.

• ν increases. (Increasing the Poisson ratio results in using a material that is

essentially more rubbery. See Section 2.1.3.) Increasing ν decreases the sE for

11It’s interesting to note that Young’s modulus E drops out of Equation 4.5, and it isn’t necessary
to specify E in order to solve the problem.
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Parameter (change) Effect on sE for a given % LW
bo (+) Increase

ho, bo (scaled up) Decrease
ξ (+) Decrease
ν (+) Decrease
TR (+) Increase

% LW (+) Increases

Table 4.2. Summary of effects on sE for the sandwich geometry. By far, the easiest
way to increase the structural efficiency is to increase the % LW. By comparison, the
other factors have little effect.

a given % LW. For example, for bo = 1 in, ho = 2 in, TR = 1, ν= 0.206, and

ξ = 1/10 1/in, sE ≈ 5.7 at 60% LW. For bo = 1 in, ho = 2 in, TR = 1, ν= 0.5,

and ξ = 1/10 1/in, sE ≈ 5.0 at 60% LW.

These rules are summarized in Table 4.2.

4.2.3 Optimized design: openback geometry

I can perform a similar analysis on the openback geometry, shown in Figure 4.1.

However, the openback scheme is more involved than the sandwich geometry because

it is not symmetric about any horizontal axis. As a result, the algebra will be more

involved for this situation. The conclusions, however, are far more dramatic than for

the sandwich geometry.

As in the previous section, I will use Equation 4.4 as the starting point. The unit

cell for the openback geometry looks like the letter “T”, as shown in Figure 4.10. As

with the case of the sandwich geometry, I need the moment of inertia for this cell.

The cross section shown in Figure 4.10 is not symmetric about a horizontal axis, and

this requires some extra steps when calculating the moment of inertia, I. Unlike an

I-beam, the location of the center of mass changes as the facesheet or rib thickness

is changed. This results in an expression for the moment of inertia that is more
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Figure 4.10. 2D and 3D drawings for the openback unit cell. Left: the 2D drawing
has been divided up into two smaller pieces for solving the moment of inertia for this
geometry. This is the scheme that I will use for calculating the center of mass.

complicated than that of the I-beam.12 The following paragraphs derive the moment

of inertia for an openback unit cell.

The moment of inertia depends on the location of the center of mass, and this is

the first quantity that must be calculated. Figure 4.10 shows the geometry of a T

cell. The following equation is used to find the center of mass: [19]

〈~r〉 =

∫
~r dm

m
=

(hi

2
)(bo − bi)hi +

[
hi + (ho−hi)

2

]
(ho − hi)(bo)

(bo − bi)hi + (ho − hi)bo

〈~r〉 =
boh

2
o − bih

2
i

2 boho − 2 bihi

. (4.7)

The location of the center of mass for a T cell is
boh2

o−bih
2
i

2 boho−2 bihi
units above the base of

the cell.

To simplify matters, I will calculate the moments of inertia for the top and bottom

pieces separately. The line drawing in Figure 4.10 shows that the unit cell is easily

divisible into two rectangles. By doing this, the individual centers of mass can be

calculated and then combined for the net center of mass. Because both pieces are

12Because of this, the expression for I is rarely found in textbooks. However, it is simple enough
to calculate.
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rectangles, this relationship can be used as a starting point: Irect = bh3

12
. The moments

for rectangles 1 and 2 are

I1 =
1

12
bo (ho − hi)

3 and

I2 =
1

12
(bo − bi)h

3
i .

Now I will transfer13 each moment to the neutral axis, which contains the center of

mass14 (Equation 4.7:
boh2

o−bih
2
i

2 boho−2 bihi
):

I1 = I1 + Ad2

I1 =
1

12
bo (ho − hi)

3 + (ho − hi) bo

[
ho −

(ho − hi)

2
− boh

2
o − bih

2
i

2 boho − 2 bihi

]2

I2 =
1

12
(bo − bi)h

3
i + (bo − bi)hi

[
hi

2
− boh

2
o − bih

2
i

2 boho − 2 bihi

]2

.

The total moment of inertia is the sum of I1 and I2:

I =
1

12
bo (ho − hi)

3 +
1

12
(bo − bi)h

3
i + hi(bo − bi)

(
hi

2
− boh

2
o − bih

2
i

2 boho − 2 bihi

)2

+ bo (ho − hi)

(
ho +

1

12
(hi − ho)−

boh
2
o − bih

2
i

2 boho − 2 bihi

)2

. (4.8)

I can now substitute Equation 4.8 into Equation 4.4. In order to prevent the

algebra from consuming the page, I will represent Equation 4.8 as I(bo, ho, bi, hi):

13The procedure for transfer of axes is reviewed in Section 2.3.2.
14For pure bending, the centroidal axis coincides with the neutral axis. Timoshenko provides a

proof of this on page 95 in Strength of Materials, Part I. [24]
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Figure 4.11. Lightweighting the openback geometry. As material is removed, the
ratio of the rib to unit cell width remains constant. (In this example, Rr = 0.25. The
rib width is 25% the unit cell’s width.)

sE =
ΓLW

Γsolid

=

1
1

16π4Dξ4
+ 1
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1
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!!
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. (4.9)

Equation 4.9 contains a considerable number of terms, but it will produce some

powerful conclusions. It is similar to Equation 4.5; as such, refer to that derivation

for explanations of the I(bo,ho,bi,hi)
bo

and Ds terms.

In Section 4.2.2, I used the thickness ratio (TR) to help define how I lightweighted

the sandwich unit cell. I will define an analogous convention for the openback case,

but it is very different from the thickness ratio.15

15It’s very different because the geometries are very different, and it doesn’t make any sense to
use the TR in this case. Instead, I will define a different ratio.
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Figure 4.11 shows the convention that I will use for removing material from the

openback geometry. The mass is initially removed from the lower right and lower left

corners because this is how it would be done using traditional lightweighting tech-

niques like water-jet milling.16 While removing material, I will maintain a constant

rib thickness. To make matters simpler, I will define the rib width as a function of

the total cell width:

Rr = (1− bi/bo) , (4.10)

where Rr is defined as the rib ratio. For example, if Rr = 0.2, then the rib is 20%

as wide as the unit cell. As I remove material from the openback’s unit cell, Rr (and

therefore the rib thickness) will remain constant. For example, as material is removed

from the unit cell in Figure 4.11, the rib width remains constant.

I can use Equation 4.9 to look at how the structural efficiency varies as a plate is

lightweighted using the openback geometry. Figure 4.12 shows how the sE varies as

the unit cell is lightweighted. The parameters of the unit cell are bo = 10 in, ho = 1

in, Rr = 0.5 in, and ξ = 1/10 1/in.

The results are very different when compared to the sandwich geometry. First,

when this unit cell is between 0 and 11% lightweighted, the structural efficiency of

the openback structure is worse than a solid plate of equivalent mass. Why does

this happen? As I mentioned above, the material that is farthest away from the

neutral axis provides the greatest contribution to the stiffness. This means that the

material at the top and bottom of the unit cell provide the most stiffness per unit

mass. When this material is removed (using the scheme shown in Figure 4.11), the

structural efficiency will decrease because this material provides a big contribution

to the stiffness. Eventually, the material that is removed comes from the middle of

the unit cell, and this material doesn’t contribute very much to the cell’s structural

16Note! Unlike in Section 4.2.2, this is not the most structurally efficient way to remove the
material. It is, however, the most practical way to do it using today’s pocketmilling techniques.
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Figure 4.12. Structural efficiency (sE) for an openback structure as a function of
lightweightedness (% LW). I also include the approximate illustration of the unit cell
for a few points. Note that the rib width remains constant as material is removed.
(In this case, Rr = 0.5 so the rib width remains 50% that of the cell width.) For
this geometry, the optimum structural efficiency is obtained when the unit cell is
lightweighted by 22%.

stiffness. As such, the structural efficiency ratio will increase. Finally, there is a

particular % LW at which the structural efficiency reaches a maximum. For the

openback structure, this means there is one value for hi that yields the best sE ratio.

After the maximum, the structural efficiency starts to decrease again because material

is removed from the very top part of the cell.

Figure 4.12 is for a single set of bo, ho, and Rr. For this particular combination of

values, there is a value for hi that maximizes the structural efficiency. How does this

ideal value of hi change for other sets of bo, ho, and Rr? This information is shown in

Figure 4.13.

The left side of Figure 4.13 shows the percent lightweighedness (% LW) required

to maximize the structural efficiency ratio for a given rib thickness (Rr). For example,

when (1 − Rr) = 0.8 (the rib is 20 % of the cell width), the maximum sE ratio will

occur when the unit cell is 60% lightweighted.

The right side of Figure 4.13 shows the maximum structural efficiency ratio that

is possible for a given rib thickness (Rr). For example, when (1−Rr) = 0.8, the max-
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Figure 4.13. Left: The % lightweightedness required to maximize the structural
efficiency as a function of Rr. This plot shows how much the unit cell must be
lightweighed to achieve the maximum sE for a particular rib width. Right: The
maximum possible structural efficiency as a function of Rr. This plot shows the
maximum possible sE for a particular rib width.

imum possible sE is five times that of a solid plate of equivalent mass. (And, looking

at the previous paragraph, this occurs when the unit cell is 60% lightweighted.)

In summary, Figures 4.12 and 4.13 illustrate three important conclusions about

lightweighting schemes that use the openback geometry:

• There are geometries where the structural effciency for a lightweighted plate is

worse than that of a solid plate of equal mass. This occurs when the unit cell

is only lightweighted by 5 or 10%. Using a large value (> 0.50, thicker ribs)

of Rr can intensify this effect. For geometries with a value of Rr near unity, a

structural efficiency advantage is never gained.

• Unlike the sandwich geometry, there is a particular % LW that maximizes the

structural efficiency ratio for a given set of ho, bo, ξ, and Rr. For a particular set

of these parameters, the designer should choose the % LW that maximizes the

structural efficiency. Every other choice for % LW results in an un-optimized

design.

• Using a thinner rib always results in a higher possible structural efficiency. Most
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geometries will experience a significant increase in sE when Rr is less than 0.2.

The maximum possible sE increases with a linear decrease in rib thickness.

Finally, note that Figures 4.12 and 4.13 are for a particular combination of bo

and ho: bo = 10 in, ho = 1 in, ξ = 1/10 1/in, and ν = 0.206 (BK7). Because

Figure 4.12 contains an inflection point, I cannot create a list of scaling laws for each

of the physical parameters as I did in Table 4.2 for the sandwich geometry. As such,

if a design engineer is interested in a particular geometry, it would be best to do the

calculation for his specific case. Section 4.2.4 contains an example for an openback

aluminum structure.

4.2.4 Two practical examples

Example using a sandwich geometry: An engineer is asked to analyze a sandwich mir-

ror made from OHara’s E6 glass (ν = 0.195), with the following unit cell parameters:

bo = 4 in, ho = 0.5 in, and TR = 1. I will assume that ξ = 1/10 1/in.

Section 4.2.2 shows that there isn’t an ideal unit cell geometry that will maximize

the structural efficiency. (The sE will approach infinity as % LW approaches 100.)

However, I can create a plot that shows how the structural efficiency changes as the

material is lightweighted.17 To do this, I will generate a list of hi values that range

from 0 to ho. For each hi point, I will calculate the % LW using this relationship:

% LWsand = (1− b2oho − b2ihi

b2oho

)× 100. (4.11)

Next, I will use Equation 4.5 to calculate the sE for each hi. (Equation 4.6 is used

to calculate a bi from each hi.) Finally, I will plot the sE values against the % LW

values. This plot is shown in Figure 4.14. As expected, the sE advantage increases

with increased lightweightedness.

17This plot will be similar to Figure 4.9.
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Figure 4.14. Structural efficiency (sE) for a sandwich structure as a function of
lightweightedness (% LW). This plot is for an example using E6 glass (ν = 0.195),
and a unit cell with dimensions bo = 4 in, ho = 0.5 in, and TR = 1. ξ = 1/10 1/in.

Let’s suppose that the structure should be 20 times stiffer than a solid plate of

equivalent mass. Figure 4.14 shows that this occurs when the unit cell is about

67% lightweighted. What are the values of bi and hi when the unit cell is 67%

lightweighted? I will use Equations 4.6 and 4.11 to find these values:

TR =
ho−hi

2

bo − bi
= 1

0.5−hi

2

4− bi
= 1

hi = 0.5− 2(4− bi)

% LWsand = (1− b2oho − b2ihi

b2oho

)× 100 = 67

(1− 42 · 0.5− b2i · [0.5− 2(4− bi)]

42 · 0.5
)× 100 = 67

bi = 3.92 in

hi = 0.348 in.

In conclusion, the structure will be 20 times stiffer than a solid plate of equivalent

mass when bo = 4 in, ho = 0.5 in, bi = 3.92 in, and hi = 0.348 in.
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Example using an openback geometry: An engineer is asked to analyze an openback

mirror made from 6061-T6 aluminum (ν = 0.33) with the following unit cell param-

eters: bo = 6 in, ho = 1 in, and Rr = 0.1. I will assume that ξ = 1/10 1/in.

What are the inside dimensions bi and hi that result in the optimum structural

efficiency ratio? To answer this question, I will generate a plot similar to that of

Figure 4.12. First I will create a list of hi values ranging from 0 to ho. Then, I

will substitute each of these hi values into Equation 4.9 to calculate the structural

efficiency at each point. (Note that I will use Equation 4.10 to calculate a bi at each

hi.) Next, I will calculate the % LW at each hi using the following relationship:

% LWopen = (1− b2oho − b2ihi

b2oho

)× 100. (4.12)

Finally, I will plot the sE values against the % LW values. This plot is shown in

Figure 4.15. The optimum structural efficiency occurs when the unit cell is 79%

lightweighted. I can calculate the inside dimensions bi and hi by using Equations 4.10

and 4.12 and substituting the values of bo, ho and Rr:

Rr =

(
1− bi

bo

)
= 0.1

1− bi
6

= 0.1

bi = 5.4 in

% LWopen = (1− b2oho − b2ihi

b2oho

)× 100 = 79

(1− 62 · 1− 5.42 · hi

62 · 1
)× 100 = 79

hi = 0.975 in

When the unit cell is lightweighted by 79% (this is equivalent to unit cell dimen-

sions bo = 6 in, ho = 1 in, bi = 5.4 in, and hi = 0.975 in), the openback structure

will be 16.5 times stiffer than a solid structure of equivalent mass. As suggested by
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Figure 4.15. Structural efficiency (sE) for an openback structure as a function
of lightweightedness (% LW). This plot is for an example using aluminum 6061-T6
(ν = 0.33), and a unit cell with dimensions bo = 6 in, ho = 1 in, and Rr = 0.1.
ξ = 1/10 1/in.

Figure 4.13, the stiffness can be improved by using a smaller value for Rr (a thinner

rib).

4.2.5 Design note: bending versus shear at different spatial frequencies

Throughout this chapter, I calculated the plate stiffness as a function of structural

geometry. Equation 4.3 includes the effects of both bending and shear, but I haven’t

mentioned the situations where the deflection is dominated by either bending or shear.

For example, Figure 4.16 shows two beams of different lengths. When a downward

force is exerted at the end of the longer beam, the deflection is caused mostly by

bending. By contrast, when a force is exerted at the end of the short beam, the

deflection caused mostly by shear. Clearly, there are geometries where either bending

or shear is the dominate cause of the deflection.

The mathematics describing the two scenarios shown in Figure 4.16 is shown

below. The shear deflection scales linearly with the beam length, while the bending

deflection is proportional to the cube of the beam length:
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Figure 4.16. Bending versus shear deflection for different geometries. Left: the long
beam deflects due to mostly bending effects. Right: the short, stubby beam deflects
due to mostly shear. This is because shorter beams are more difficult to bend with
the same amount of force, so the shear effect is more apparent in the stubby beam.

∆yshear =
F

AG
· l

∆ybending =
F

3EI
· l3,

where A is the cross-sectional area, G is the shear modulus, E is Young’s modulus,

I is the moment of inertia, and F is the downward force at the end of the beam

of length l. These equations emphasize that bending is the dominant deflection at

longer beam lengths.

Over which geometries does bending or shear dominate for the sandwich and

openback geometries? The left side of Figure 4.17 shows the spatial frequencies for

which bending and shear compliance are equal as the unit cell is lightweighted.18

Shear dominates in the upper left region and bending dominates in the lower right

region. As the value of %LW approaches 100, the material that is removed comes

from the flanges of the I-beam, and this material contributes the most to the bending

stiffness. The bending stiffness drops off significantly, and the structure is dominated

18Note that the overall cell dimensions bo and ho remain the same as the cell is lightweighted.
Figure 4.17 was generated from the following unit cell parameters: bo = 1 in, ho = 2 in, and TR = 1.
Recall that TR = 1 means that the rib has the same thickness as the facesheet as the unit cell is
lightweighted. Larger values of TR mean the rib is proportionally thinner. For example, when
TR = 5, the rib is 5 times thinner than the facesheets as the unit cell is lightweighted.
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Figure 4.17. Spatial frequencies where bending and shear stiffnesses are equal for
a sandwich cell of constant height. Left: This plot is for bo = 1 in, ho = 2 in, and
TR = 1. Right: This plot is for different values of TR. (Recall TR determines the rib
thickness. For example, when TR = 3, the rib is 3 times thinner than the facesheets
as the unit cell is lightweighted.)

by bending deflection. The right side of Figure 4.17 shows the same information,

except each plot represents a different value for TR.

Figure 4.18 is an analogous plot for the openback structure. It shows the spa-

tial frequencies where bending and shear compliance are equal as the unit cell is

lightweighted. (Again, the unit cell height remains constant as the cell is ligh-

weighted.) The left side of Figure 4.18 was generated from the following unit cell

parameters: bo = 5 in, ho = 1 in, and Rr = 0.1. (Recall that Rr = 0.1 means that

the rib width is held at 10% of the unit cell width.)

This plot looks different than Figure 4.17 because the mass removal affects the

stiffness in a different manner. At first, the material is removed from the bottom

of the cell (as illustrated in Figure 4.11), and this results in a drastic reduction in

stiffness. As the material near the middle of the unit cell is removed, the stiffness

isn’t affected as much; this is shown in Figure 4.18 as the region with zero slope.

Finally, the material removal comes from the top section of the “T”, and the stiffness

is drastically affected once again.

The right side of Figure 4.18 shows the same information for different rib thick-
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Figure 4.18. Spatial frequencies where bending and shear stiffnesses are equal for
an openback cell of constant height. Left: This plot is for bo = 5 in, ho = 1 in, and
Rr = 0.9. Right: This plot is for different values of Rr.

nesses. Note that, as the rib thickness is increased, the cell cannot be lightweighted

as much.

4.2.6 Design note: sandwich versus openback

The two geometries discussed in this chapter are very different from each other. The

sandwich structure’s backsheet allows it to be significantly stiffer than an openback

structure of equivalent mass. As a result, it isn’t fair to compare the stiffnesses of the

two geometries: for the same amount of mass, the sandwich structure is always better.

However, it is instructive to look at just how much better the sandwich structure is

over the openback geometry.

I considered an example unit cell, with outer dimensions bo = 5 and ho = 1. For

the sandwich structure, I allowed the thickness ratio TR to be 1. (The rib and the

facesheet will remain at equal thickness as the unit cell is lightweighted.) The rib

ratio Rr for the openback structure was set at 0.1. (The rib is 10% of the unit cell

width.) I assumed that ξ = 1/10. The results are shown in Figure 4.19.

For small lightweighting percentages (< 20%), there is a relatively small differ-

ence between the openback and sandwich structures. However, as the structures are

lightweighted, the sandwich’s structural efficiency increases. When lightweighted by
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Figure 4.19. Comparison between the sandwich and openback geometries. This
comparison is for unit cells with the same overall thickness, ho = 1. The two plots
both show the same data; the plot on the right shows a larger range for the sE. These
figures emphasize the structural efficiency advantage that the sandwich geometry has
over the openback when the unit cell is lightweighted more than 80%.

80%, the sandwich structure is about 3.5 times stiffer than an openback structure of

equal mass.

Ultimately, the decision to use an openback or sandwich structure will depend on

several factors: what the structure will be used for; the availability of the fabrication

equipment; the previous experiences of the design and fabrication team; and the

allowances for schedule and budget.

4.2.7 Design note: alternative geometries

Throughout this chapter, I only discuss lightweighting schemes that use square cells.

There are, however, lightweighting geometries that use hexagon or triangular cells.

Why did I only analyze the square schemes? First, the square cells possess a symmetry

that result in simple expressions for the moment of inertia I. For example, for the

sandwich geometry, I was able to use the moment of inertia of an I-beam. This resulted

in an intuitive approach that didn’t require the use of finite-element analysis.

There is evidence in the literature that suggests that it doesn’t matter which rib

geometry is used! Ralph M. Richard has shown that—for mirrors using square, trian-
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gular, and hexagonal sandwich cells—the stiffnesses are nearly equivalent if the same

amount of mass is used in each mirror. He notes that the “structural deformations for

all ... mirror models [are] isotropic and essentially identical”. [22] Richard performed

two finite-element analyses using constant-stress, linear-edge displacement membrane

triangles and rectangular bending elements. (The two analyses were within 2% of one

another.) He concludes that the deformation is isotropic provided that the cell size

is small compared to the mirror diameter.

4.3 Chapter summary

In this chapter I discussed the two lightweighting schemes shown in Figure 4.1. I

analyzed the structural efficiency behavior for each geometry, and I came to the

following conclusions:

Sandwich Geometry:

• When compared to a solid plate of equal mass, the structural efficiency ratio of

a sandwich structure increases as the plate is lightweighted.

• Most sandwich geometries do not experience a significant advantage (10X) over

a solid plate until the sandwich is over 50% lightweighted.

• Thinner ribs always result in better structural efficiency.

Openback Geometry:

• For most openback geometries, there is a combination of unit cell dimensions

that will provide an optimum solution for maximizing the structural efficiency

ratio.

• There are geometries where the stiffness can be worse than that of a solid plate

of equal mass.
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• Thinner ribs always result in better structural efficiency.

I also discussed the following helpful design notes:

• Table 4.2 shows how changing individual sandwich unit cell parameters affects

the structural efficiency.

• Section 4.2.4 provides two real-world examples. I look at an E6 sandwich ge-

ometry and an aluminum openback structure.

• Section 4.2.6 provides an example that illustrates how much stiffer a sandwich

structure is over an openback structure.
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Chapter 5

NMSD: the UA two meter NGST demonstration

mirror

The University of Arizona’s NMSD mirror was an ambitious project: at two meters in

diameter, it was going to be the largest high-authority glass mirror that anyone had

ever built. The mirror was built as a technology demonstration for the James Webb

Space Telescope, the successor to the Hubble Space Telescope that is scheduled to

launch in 2011. In this chapter, I begin by briefly describing the fabrication process.

My specific role in the project was as the metrology engineer, and the bulk of this

chapter describes the schemes that I used to measure and control the mirror.

5.1 Design and fabrication

A cartoon of the NMSD mirror is shown in Figure 5.1. The F/5 glass membrane is 2

meters in diameter (point-to-point), and it is 2 mm thick. The glass is supported by

166 actuators: 39 edge actuators are coupled directly to the glass, and the central 127

actuators are coupled to the glass via a nine-point loadspreader. (The actuators are

remotely-controlled via a separate electronics system.) The support is maintained

by a lightweight, carbon-fiber/epoxy reaction structure. All of these components

combine to form a mirror system that weighs only 86 pounds. In addition to these

specifications, the mirror was designed and built to work at cryogenic temperatures.

The NMSD mirror was an important project because it allowed the university

to bring several of its research areas—thin glass fabrication, actuator development,

and structural design—to maturity. This section highlights some of the important

technical aspects of the fabrication process.
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Figure 5.1. The University of Arizona NMSD 2 m prototype. The F/5 glass mem-
brane is two meters point-to-point and 2 mm thick. The membrane is supported by
166 actuators. The entire structure, including the glass, actuators, support structure,
loadspreaders, and all of the onboard wiring, weighs only 86 pounds.

5.1.1 Glass fabrication

Two 50 mm thick glass blanks were created for this mirror. The first shell suffered

from flaws present since the initial casting, and this caused it to fail during the

polishing process. [6] The second shell was successfully cast using the large rotating

oven at the Steward Observatory Mirror Lab, Figure 5.2. The mirror was cast from

a single chunk of Ohara’s E6 borosilicate glass.1 This particular casting achieved

excellent homogeneity because a single block of E6 was used to cast the entire mirror

blank. (This block was hand-selected in Japan specifically for this project.) The final

mirror blank was 50 mm thick and 2.2 m in diameter.

The glass fabrication process is shown in Figure 5.3. The generating and polishing

operations were designed such that no novel tooling was needed for these steps: the

opticians used the existing generating and polishing machines to fabricate the thin

membrane. The process started with generating, grinding, and polishing the convex

1Why E6? There were several reasons. First, borosilicate possesses a relatively low thermal
coefficient of expansion (Section 2.2), which means that it doesn’t change dimension much with
changes in temperature. For example, the CTE of E6 is 2.9 parts/oC, while standard optical glass
(BK7) is about 7 parts/oC. The Mirror Lab also has a legacy with this glass: the opticians have
been using it long enough such that they are comfortable working with it, and they understand its
behavior through years of use.
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Figure 5.2. The two meter casting process. These three images show how the
Steward Mirror Lab’s 8.5 m furnace was prepared for the casting of the 2 m glass
blank. 1. A 2.2 m mold was assembled in the oven’s center. 2. The glass was lifted out
of its shipping container and inspected for impurities. 3. The block was lowered on
to the mold. The Steward furnace was then fired to a temperature of 1100 oC (2000
oF). At this temperature, glass has the consistency of thick honey, and it flowed into
the mold. The furnace was slowly cooled, and the finished glass blank was removed
from the mold. Throughout the casting process, the furnace rotates such that the
top of the glass blank forms a parabola.

(non-optical) side of the mirror blank. After this step, the blank was about 35 mm

thick, and it was flipped over and blocked down to a thick, rigid blocking body using

pitch.2 At this point, most of the excess glass was removed from the concave (optical)

side until the shell was 3 mm thick. Finally, the glass was ground and polished using

conventional techniques. The completed membrane was 2 mm thick. After polishing,

the 2.2 m round shell was cut into a 2 m hexagon (point-to-point).

The glass shell was complete after the polishing operations, but it still remained

attached to the blocking body. In the past, the standard procedure for smaller mirrors

involved placing the mirror in a 200 oC oven, waiting for the pitch to soften, and slowly

sliding the glass off the blocking body. Because of its large size, this procedure would

have posed too much of a risk to the glass. Instead, a new procedure for deblocking

a glass membrane was developed.

2The blocking body is needed to support the membrane throughout the fabrication process such
that it does not bend or flex during the polishing operations. In this case, the blocking body was
made of E6 glass.
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Figure 5.3. The glass fabrication process. The process started with a meniscus-
shaped glass blank, Figure 5.2. The convex, non-optical surface was polished while
the blank was 50 mm thick. This allowed the opticians to use standard polishing
techniques and their existing tooling. After the convex (non-optical) surface was
finished, it was flipped over and bonded to an E6 blocking body using pitch. After
attachment, the excess glass was removed from the concave (optical) side using a
diamond cutting tool. Finally, the concave side was ground and polished to remove
any micro-fractures. When the optical finishing was complete, the facesheet was
removed from the E6 body. The unique deblocking process developed for this mirror
is described in Section 5.1.2.

5.1.2 A novel scheme for deblocking a 2 m mirror

Brian Cuerden’s3 scheme for deblocking the glass is illustrated in Figure 5.4. The

membrane was placed in a hot bath of motor oil, and the bouyant forces were used

to separate the glass from the blocking body once the pitch softened. To assist in

this operation, eighteen cylindrical floats were attached to the glass using an RTV

adhesive. The entire assembly was placed in a 10-foot wide insulated steel tank

containing standard motor oil, and the oil was heated to 120 oC (250 oF). Distance

gauges were used to monitor the glass as it started to separate from the blocking

body. The entire operation took 30 hours total: the motor oil required 12 hours to

preheat; the glass lifted off in 6 hours; and the oil needed another 12 hours to return

to room temperature.

Once the glass was cool, it was removed from the oil bath using an 18-point whiffle

3Brian is a mechanical engineer at Steward Observatory with years of experience working with
large telescope optics.
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Figure 5.4. Cuerden’s deblocking scheme. Left: Floats were attached to the mirror’s
surface, and the entire assembly was placed in a large insulated tank. Middle: The
tank was filled with motor oil and heated to 120 oC (250 oF). Right:After several
hours, the pitch released the glass from the blocking body, and it floated to the
surface. Pictures of the deblocking process are shown in Figure 5.5.

tree. The glass was cleaned using a spray degreaser, and the floats were carefully

removed. A convex vacuum tool was used to transport the membrane about the

optics shop. Figure 5.5 shows photos taken at each step in the deblocking process.

5.1.3 Loadspreader design and attachment

After the glass was deblocked, the engineering team attached 127 nine-point load-

spreaders to the rear of the facesheet. A schematic of a loadspreader is shown in

Figure 5.6. Each loadspreader interfaced with a set of nine glass buttons that were

permanently attached to the back of the facesheet using a cryo-ready adhesive. Two

preloads maintained a stiff connection between the actuator and the glass buttons.4

The preloads broke away when the forces became too great. For example, the spring

next to the glass button breaks away when the actuator pulls down with too much

force. The preload in-between the main and sub-loadspreader arms breaks away when

the actuator pushes with too much force. Thus, there is a small range of force over

which the actuator is coupled to the glass via a stiff connection. If the force exerted

upon the glass is outside of this range, the loadspreader is completely ineffective.

4A preload is a spring that holds two things together. In this case, the preloads were dome-shaped
washers made out of Teflon or steel.
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Figure 5.5. Photos of the deblocking process. 1. A special enclosure was built
outside the Steward Mirror Lab. The resulting structure had a removable lid such
that the glass could be taken in and out. 2. The blocked membrane was placed in a
large tub of hot motor oil. Floats were attached to the glass to provide the buoyancy
necessary to separate the glass from the blocking body. 3.Once the pitch melted, the
glass floated to the surface, and a whiffle tree was used to lift the glass out of the oil.
4. The glass was lifted out of the oil using an overhead crane. 5. A liquid degreaser
was used as an initial measure for cleaning the glass. 6. The glass was lowered on to
a special handling fixture. Once secure on the fixture, the floats were removed and
the glass was thoroughly cleaned. 7. The resulting 2 m glass membrane.
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Figure 5.6. Schematic and photo of the NMSD loadspreaders. The drawing shows
a side view of the loadspreader components. There are two preload systems which
maintain a stiff connection between the glass and the actuator. The picture of the
installed loadspreaders was taken before the glass was coated.

The loadspreaders served several purposes. First, they increased the spatial in-

fluence of each actuator. As a result, the actuator influence functions were roughly

Gaussian instead of being a sharp peak immediately above the actuator. This reduces

the number of required actuators necessary to maintain the same surface accuracy.

The loadspreaders also served to protect the glass: if the force on each loadspreader

was too large or too small, the loadspreader disengaged, as mentioned above.

5.1.4 Support structure and actuators

The support structure is a lightweight carbon-fiber structure, and it was designed

at the Univ. of Arizona and fabricated at Composite Optics, Inc. Because it was

constructed from a graphite composite, mechanical properties (such as thermal strain)

were selected to maximize the on-orbit performance. The support structure is curved

such that it has the same radius of curvature as the glass membrane. This allows the
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actuators to contact the loadspreaders in a direction that is normal to the membrane.

The support structure includes a set of launch restraints that are used to firmly attach

the glass to the membrane.

A schematic of an actuator used to adjust the mirror’s surface is shown in Fig-

ure 5.7. The actuator’s operation is similar to whipping a tablecloth out from beneath

a set of dishes, Figure 5.8. Both depend on overcoming the static friction within the

system. The schematic shown in Figure 5.7 illustrates the important components

necessary for operation. There are two solenoids; one is used to turn the actuator

clockwise and the other turns the actuator counterclockwise. When a current pulse

is sent to a solenoid, a steel rod is accelerated through the solenoid and into a nut.

At the moment of this impact, the nut slips about the screw by one arcminute. The

flexures then return the nut to the original position, and the screw advances by one

arcminute. Figure 5.9 is a picture of one of the NMSD actuators.

The actuators are “set and forget”: no power is required to maintain their posi-

tion. This is an important requirement because satellite platforms have limited power

resources. In addition to this, no heat is emitted when they are not in use.

Once the mirror was assembled, the actuators were controlled remotely via a

personal computer. The actuators were tethered to a large electronics chassis that

gathered all of the actuator wires together. The chassis interfaced with two digital

in/out boards installed in a PC. The user ran the actuators using a Windows program

written specifically for this project.5

5.1.5 System integration

The completed mirror is shown in Figure 5.10. After the loadspreaders were attached,

the glass was coated with bare aluminum. As is the case with all of Arizona’s active

mirrors, the glass membrane does not assume the correct shape when placed on

5The software was similar to that described in Section 6.3.2, but it didn’t contain as many
features.
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Figure 5.7. The University of Arizona set-and-forget actuator. The action is impact-
driven, and it requires no power to maintain its position. It works using the tablecloth
principle illustrated in Figure 5.8. There are two electromagnetic coils on either side of
a nut. To move the actuator, a current pulse is sent to one of the coils. This accelerates
a steel impactor rod through the coil until it taps on a nut. At the moment of impact,
the nut slips about the screw by one arcminute. (This is equivalent to whipping the
tablecloth out from beneath the dishes: the tablecloth moves, but the dishes don’t.)
Three flexures (arranged symmetrically about the nut) then slowly return the nut to
its original orientation, and the screw advances by one arcminute. (This is equivalent
to slowly pulling on the tablecloth: the tablecloth and dishes move together.)

Figure 5.8. The old tablecloth trick. If the tablecloth is pulled to the left with
a gentle pull, the glass will move in a one-to-one ratio along with it. (The force
that accelerates the glass is less than the static friction between the glass and the
tablecloth.) If the tablecloth is whipped to the left with a quick snap, the static
friction is overcome and the tablecloth moves while the glass stays put. (The force
that accelerates the glass is greater than the static friction.)
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Figure 5.9. An NMSD actuator. All of the key components described in Figure 5.7
are visible in this picture: the electromagnetic coils (copper wire), the impactor rods,
the inertial mass, the flexures, and the fine-pitch screw. Paul Gohman used a minia-
ture computer-controlled milling machine to fabricate all of the parts.

the actuators.6 As such, it was necessary to measure and adjust the mirror using

the actuators. This was my role in this project, and the next section describes the

techniques that I used to do this.

5.2 Metrology

Because the surface figure of the Arizona active mirror concept is determined by

the array of actuators, the glass membrane does not assume the proper figure when

it is initially assembled. The procedure for actuating smaller mirrors is simple: the

membrane is supported on three actuators, and the mirror is illuminated with a point

source at the center of curvature. The three initial actuators are adjusted until the

image at the center of curvature displays three-fold symmetry. Additional actuators

are applied and adjusted to achieve corresponding symmetry in the return image.

Once all of the actuators are engaged, the figure is usually good enough for a visible

6The actuators can be positioned to the nearest 0.001” using standard measurement tools.
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Figure 5.10. The completed 2 m NMSD mirror. Brian Stamper provides a sense of
scale by standing next to the assembled mirror. The hole in the lower right portion
of the glass was drilled out to prevent a fracture from propagating all the way to the
edge.

interferometer, and interferometry7 is used to remove the remaining figure errors.8

However, because this mirror was larger than the previous Arizona mirrors, it was

not possible to support the membrane by three points because the stress would risk

fracturing the glass. In addition to this, the loadspreaders contained a mechanical

system that decoupled the actuator from the glass if too much self-weight was loaded

onto each support point. As a result, even if the glass had been able to withstand the

stress of being supported by three points, the loadspreaders would not have worked

correctly.

As a response to these concerns, I developed a metrology scheme that utilized three

different tests. The first of these tests had a high dynamic range and low accuracy for

doing rough mirror figuring. The two remaining tests were based on interferometry

and had increasingly smaller dynamic ranges with better accuracy.

7The concept of interferometry is not discussed in this work. Basically, it is a technique which
uses the wave-like properties of light to measure the shape of a surface. The basics of interferometry
are discussed in Hecht’s Optics [13], and the use of interferometry to measure surfaces can be found
in Malacara’s Optical Shop Testing [16].

8In fact, this is the technique that I used to correct the figure of the half-meter mirror that is
discussed in Chapter 6.
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5.2.1 Hartmann test

The concept of the Hartmann test is simple: a screen is used to project rays of light

on to the test surface. The rays are imaged on to a CCD where they appear as spots.

(An example Hartmann-gram is shown in Figure 5.13.) By noting the change in spot

location as the actuators are adjusted, the user can determine the mirror’s slope.

The Hartmann test that I designed and used differed from a conventional Hart-

mann test in several ways:

• The Hartmann mask (shown in Figure 5.11) was a paper mask with 216 holes

that were 0.25” in diameter. Each actuator was surrounded by six spots ar-

ranged in a hexagonal layout. This geometry was useful because the size of the

hexagon’s image would scale up or down as the actuator moved up or down.

An example of this is shown in Figure 5.14.

• The mask was placed directly on the mirror’s surface. (The weight of the

mask caused a small amount of deflection, but this deflection was insignificant

compared to errors caused by incorrect actuator heights.) A cartoon of this

concept is shown in Figure 5.11.

• The imaging system was designed such that the mirror surface and CCD were

conjugate to one another. This layout (shown in Figure 5.12) allowed for a

large dynamic range, which was the biggest advantage for using this test. The

operation details are described below.

The geometry of the Hartmann testing scheme is shown in Figure 5.12. The

mirror had a radius of curvature of 20 meters (65.6’), and the setup was assembled in

the Optical Science Center’s tower. A Princeton Instruments VersArray CT:1300B

imaging array was positioned behind the center of curvature, and the CCD was on

a stage such that they could be moved along the optical axis. The CCD had 1340
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Figure 5.11. The Hartmann mask. I constructed the mask out of a large sheet
of butcher paper. Each actuator location is surrounded by six holes arranged in a
hexagon. There were 216 holes (I did not use this scheme to measure the single
actuators at the very edge of the mirror), and each hole was 0.25” in diameter.

by 1300 imaging pixels, and each pixel was 20 microns square. There was a 100% fill

factor, and the imaging area was 26.8 by 26 mm.9 The HeNe laser source is not shown

in Figure 5.12, but it was positioned next to the CCD. I designed the illumination

system such that the aberrations due to the projection optics were small compared

to the mirror’s aberrations. The fold mirror was supported by a mount that was

controlled via two Picomotors. This allowed for fine adjustment of the mirror’s tip

and tilt. The Hartmann mask was placed directly on top of the mirror, as shown in

Figure 5.11.

After mirror assembly, this test proved to be an efficient, qualitative measurement

tool for quickly identifying and correcting actuators that were severely out of place.10

For example, Figure 5.13 shows two pictures that represent the before and after

Hartmanngrams for the portion of the mirror that contains the central 19 actuators.

The left side of Figure 5.13 shows that the Hartmann spots are visible, but they are

not in the correct locations. The right side shows the results after the actuators in

9While the Hartmann mask was simple and inexpensive, a CCD of this size is not. Luckily, we
were able to borrow it from another organization.

10I should mention that I tried a few other schemes before I settled on a Hartmann test, and none
of them were very successful. First, I tried analyzing the return images to determine which parts
of the mirror had the most error. I also tried using a formal curvature sensing technique with an
instrument that was available in-house. Unfortunately, neither of these ideas was successful. The
return image contained too many folds for either technique to be successful.
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Figure 5.12. Hartmann test layout. The mirror had a large radius of curvature, so
I tested it in the Optical Science Center’s test tower. (The mirror was mounted at the
tower’s base, and the fold mirror, CCD, and illumination system rested on a platform
65 feet above the mirror.) The illumination system is not shown here, but the HeNe
laser source would be behind the CCD. The illumination system used two singlets to
shape the beam and control spherical aberration. (The resulting aberration from the
illumination system was significantly smaller than the errors in the mirror.) The fold
mirror was mounted on a tip-tilt stage, and the Hartmann mask rested directly on
the mirror’s surface. Inset: the view looking down from the platform where the laser
and CCD were located. (There is an image of the camera and my hands inside the
mirror.) The lines across the mirror are pieces of thin butcher paper that I was using
as fiduciary markers.
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Figure 5.13. The Hartmann test as an efficient quantitative tool. These images
show the Hartmann spots for the 19 inner-most actuators. There is an actuator inside
each of the hexagons. Left: the actuators in the southeast corner are not adjusted
properly. The Hartmann spots are in the image, but they are not in the correct
locations. Right: the surface showed improvement after I adjusted the actuators.
(The spots are still a little displaced; this is caused by the actuators surrounding the
inner 19 actuators.)

the southeast corner were all moved up by hand. Using this information, I was able to

manually turn each actuator while watching the resulting spot motions in real time.

This proved to be a very effective procedure for quickly moving all of the actuators

to their nominal positions.

I was also able to use this scheme to determine the relative actuator heights.

Because the Hartmann spots form a hexagon around each actuator, the relative size

of the hexagons provide the relative height information. For example, if a particular

actuator is too low, the local surface above that actuator will be slightly more concave

than the surrounding region. This region will have a shorter focal length, and the

hexagon will be smaller.11 If an actuator is too high, the surface above the actuator

will be less concave than the surrounding region. This results in a larger hexagonal

image. An example of this concept is illustrated in Figure 5.14.

11The connection between concavity and hexagon size depends on the location of the CCD. If
the CCD is in front of nominal focus, a smaller hexagon indicates the region is more concave than
the surrounding area, and the actuator is too low. If the CCD is behind nominal focus, a smaller
hexagon indicates the region is less concave, and the actuator is too high.
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Figure 5.14. The Hartmann test was used to determine relative actuator heights.
The hexagon that surrounds actuator A is smaller than hexagon B. Given this partic-
ular optical configuration, the actuator under the letter A is lower than the actuator
under the letter B. (This image was taken in front of nominal focus.)

The Hartmann test also provided quantitative surface measurements. By moving

the CCD back away from nominal focus, I was able to measure every ray bundle at

two points. This technique is described in Figure 5.15. Using this information, I

calculated the slope of the ray bundle and the slope of the mirror at each Hartmann

aperture. To adjust the mirror, I used a least squares solution to calculate all of

the actuator commands at once. (The least squares solution for mirror control is

described in Section 5.3.)

This test was particularly effective for this mirror because the dynamic range is

variable. For example, the mirror contained a lot of surface error during the initial

measurements. As a result, I could only defocus the CCD by a short distance. (If

the CCD was moved back too far, the Hartmann spots would start to overlap and

my centroiding algorithm wouldn’t be able to locate all of the spots.) As the mirror

improved, I was able to defocus the CCD by a larger amount and detect smaller errors

in the mirror.

This quantitative test scheme proved very successful. Figure 5.16 shows the initial

and final quantitative measurements that I made using the Hartmann test. The

mirror’s initial figure was approximately 25 microns RMS, and the final figure was

less than 4 microns RMS. This simple Hartmann test was able to improve the mirror’s
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Figure 5.15. The hardware setup that allowed for quantitative Hartmann measure-
ments. (This figure shows the illumination/imaging system shown in Figure 5.12.)
Each Hartmann aperture produced a small bundle of rays. As an example, this fig-
ure shows one bundle of rays from one Hartmann aperture. I needed two images to
calculate a quantitative surface figure. First, I took an image of the Hartmann spots
when the CCD was at nominal focus. Next, I moved the CCD back away from focus
and took another image. Using these two images, I was able to calculate the slopes
of every ray bundle and the slope of the mirror at each Hartmann aperture.
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Figure 5.16. Initial and final Hartmann qualitative measurements. The surface
on the left represents a surface figure of 25 microns RMS and 125 microns PV. The
surface on the right represents a figure of 3.7 microns RMS and 23.1 microns PV.
The final surface map is six times better than the initial measurement.

surface figure by a factor of six!

The Hartmann scheme was useful in two ways. I was able to efficiently position

each actuator to within 3 to 5 microns of its ideal location. Once all of the actuators

were positioned using this scheme, I was able to make quantitative measurements of

the surface figure.

5.2.2 IR interferometry

The Hartmann test worked well enough to prepare the surface for infrared (IR) inter-

ferometry. The IR interferometer was based on a model initially developed in the late

1970’s. The illumination source is a 10 W CO2 laser operating at 10.6 microns. This

interferometer was phase-shifted and connected to a computer running IntelliWave.12

Using the IR interferometer was more straightforward than the Hartmann test

because the instrument was provided as a turnkey system. The initial interferogram

is shown in Figure 5.17. Because the instrument was phase-shifted, I was able to

generate surface maps and calculate an appropriate set of actuator commands to fix

12IntelliWave is a third-party software package that is designed to gather interferograms and
calculate phase maps from a phase-shifting interferometer. Basically, IntelliWave collects four frames
of interferograms, and it calculates a surface map from this information.
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Figure 5.17. The initial infrared interferogram.

Figure 5.18. The final infrared interferogram. The surface statistics are 1.88 mi-
crons RMS and 15.9 microns PV. The arrow represents a region of high slope, and it
was not collected by the interferometer’s aperture.

the figure. The final interferogram taken using the IR interferometer is shown in

Figure 5.18. The final surface statistics for this data are 1.88 microns RMS and 15.9

microns PV. This surface represents a clear aperture that is 90% of the total mirror

width.

I wasn’t able to measure the entire clear aperture using this instrument because

the slopes near the edge of the mirror were too large. An example of this is shown

under the arrow in Figure 5.18. In Section 5.2.5, I discuss some improvements to the

metrology setup that would have allowed for the correction of these regions with high

slopes.
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I didn’t spend much time using this instrument because working with it was

difficult. The 10 W invisible laser necessitated a lot of precautions.13 The laser,

itself, was water cooled, and there was a very narrow window of operating conditions

over which the device would actually lase. The detector system was an old, infrared

Vidicon camera. I spent more time fixing the instrument than I did actually using it.

As a result, I used it to quickly improve the mirror, and then I started using visible

interferometry.

5.2.3 Visible interferometry

The visible interferometer was a PhaseCam on loan from 4D Technology. The Phase-

Cam is a modified Twyman-Green interferometer. It uses a diffraction grating to

image four frames of data on to a single CCD. These four frames are phased 90 de-

grees apart from each other. As a result, a surface map is calculated from a single

CCD frame. This system virtually eliminates the effects of vibration from the metrol-

ogy setup. This interferometer was connected to a computer, and IntelliWave was

used to generate the surface maps.

The PhaseCam proved to be very effective at measuring the mirror because its in-

stantaneous measurement scheme was particularly good at gathering data over regions

with high slope errors.14 The initial and final surface maps are shown in Figure 5.19.

The initial measurement on the left represents 2.0 waves RMS and 14 waves PV

(HeNe). The final measurement on the right represents 0.7 waves waves RMS and

4.8 waves PV (HeNe).

13A 10 Watt CO2 laser will easily burn holes in paper.
14The fringe visibility in high-slope regions declines more rapidly (than low-slope regions) when

vibration is present. By collecting all four interferograms at once, the PhaseCam isn’t vibration-
sensitive. This allows for better fringe visibility in the high-slope regions.
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Figure 5.19. The initial and final measurements taken with the PhaseCam. The
initial measurement on the left represents 2.0 waves RMS and 14 waves PV (HeNe).
The final measurement on the right represents 0.7 waves waves RMS and 4.8 waves PV
(HeNe). The regions near the edge contains slopes that are too high to be measured
by the interferometer.

5.2.4 Summary of technical achievements

While this mirror didn’t achieve its goal of diffraction limited performance (in the

visible) across the entire aperture, this project is still considered a major success by

the University. The NMSD mirror contributed the following technical achievements

to Arizona’s lightweight mirror program:

• The Steward Mirror Lab proved that a 2 m thin glass membrane can be made

using conventional fabrication tools.

• The engineering team pioneered a novel technique for deblocking a thin glass

membrane from a blocking body.

• I developed a test plan designed to measure the mirror both in its initial, in-

accurate state and as the mirror approaches the diffraction limit. This scheme

could be used to measure future high authority mirrors in an efficient manner.

• Both the actuators and the loadspreaders were created specifically for this
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project, and they represent an excellent first-generation design.

5.2.5 Suggested improvements and lessons learned

While this mirror did not accomplish the ultimate goal of diffraction-limited perfor-

mance across the entire two meter aperture at visible wavelengths, it has provided a

wealth of information about designing, fabricating, and operating lightweight active

mirrors. This section outlines some of the most important lessons learned during the

metrology phase of the project. Future mirror designers should take these points into

consideration before beginning to work on the next generation of active mirrors.

Suggested hardware improvements:

• Mount the mirror on its own, isolated platform when testing/actuating. During

the optical testing, the mirror and the cleanroom floor shared the same foun-

dation. When someone stepped into the cleanroom, they distorted the mirror

because it was directly coupled to the floor.

During initial actuation, it’s essential that the metrology engineer have real-time

feedback from the mirror. (Even though the mirror was remotely-controlled,

it’s important that the engineer be able to watch or touch the actuators or the

glass while the mirror is under test.) There are two instances where real-time

feedback is helpful:

1. Because the NMSD used prototype actuators, there was never a guarantee

that any actuator was moving in the direction that it was asked to move.

It’s always helpful to watch the actuators as they move to confirm that they

are moving in the proper direction. Given the hardware configuration, the

actuators could not be monitored while the mirror was being measured.
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2. It’s always helpful to walk up to the mirror, gently push down on the

facesheet, and observe the results. This test is especially useful if the

slopes in one region are so high that the return rays miss the metrology

aperture. For example, if a particular region contains so much error that

the interferometer cannot measure it, the metrology engineer can gently

push or pull on the mirror until she sees interference fringes in that region.

(This test will indicate whether the region is too high or too low.) This

scheme allows for very efficient actuation of the worst portions of the mir-

ror. Had I been able to perform this test, I would have been able to adjust

the actuators such that the entire mirror was visible in Figure 5.19.

The mirror’s mounting situation did not allow for either of these real-time tests:

progress was severely hindered because I could not touch or watch the actuators

and measure the mirror at the same time. If the mirror was mounted on a

separate foundation, someone could stand next to the mirror while it was being

measured and actuated.

• Design the actuator control software with both ‘large step’ and ‘normal step’

modes. When the mirror was actuated for the first time, the actuators had to

move large distances. Under normal conditions, the actuators were designed to

move with a 15 nm step size. Some of the initial errors were as large as 200

microns; this is equal to 13300 steps! It took roughly 50 minutes to move an

actuator this far using its normal settings (15 nm step size). If the software

could automatically double or triple the current and pulse width settings that

are sent to each actuator, this initial process could have taken place much more

quickly. Alternatively, the actuators could be designed to have large step and

small step modes.

• Include a linear distance encoder on each actuator. The success of the MARS
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design depends on repeatable, accurate actuator behavior. The NMSD actua-

tors were neither repeatable or accurate. It would have been incredibly valuable

to know how far each actuator actually moved. Although this would represent

a large increase in the initial cost of each actuator, the time saved during the

testing and actuation process would more than make up for it. Instead, I spent

a good deal of time trying to figure out how far the actuators had moved. This

is particularly important with the Hartmann and IR interferometric tests be-

cause these tests do not have the sensitivity to measure the smallest actuator

motions.

Successful techniques:

• The Hartmann test proved to be an efficient method for quick, initial actuation

of the mirror. The Hartmann test is an effective tool for high authority mirrors.

By watching the set of six spots surrounding each actuator, each actuator can be

manually turned until the spots form a uniform hexagon around the actuator.

This procedure proved to be a quick and efficient method for moving all of

the actuators to their nominal positions. The mask was constructed out of

paper and all of the imaging lenses were simple, plano-convex lenses. The only

disadvantage to using this system is that a CCD with a large collecting area

(i.e.: 1 in2) is preferred. This method would have been particularly effective if

the mirror was not mechanically coupled to the cleanroom floor.

• A system that compensates for inconsistent actuator behavior must be included

in the algorithm that corrects the mirror’s surface. No two actuators are the

same. At some resolution, inconsistent actuator behavior is going to be the

limiting factor in improving the mirror’s surface.15 This problem can be cir-

cumvented by using actuator encoders. Alternatively, the actuator behavior

15Our inability to measure the high-slope regions was always the limiting factor.
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can be analyzed in software. While the NMSD actuators definitely behaved in-

consistently, they were never the limiting factor in the mirror’s progress. Thus,

I never implemented a permanent scheme for monitoring actuator behavior.

• The PhaseCam proved to be a useful tool for testing the mirror under visible

interferometry. The PhaseCam easily measured the mirror’s high slopes un-

der very difficult mechanical conditions. This instrument should be considered

for future applications where vibrations and large surface errors would confuse

conventional interferometers.

The most important lesson of all: the effects of scaling:

• Scaling a half-meter mirror up to a two-meter model is not as easy

as it sounds on paper. This becomes an issue even before the mirror blank is

created. Most glass manufacturers have half-meter blanks on hand, but finding

a high quality piece of homogenous, low CTE optical glass is a serious challenge.

As described in Section 5.1.4, Steward elected to cast the blank themselves.16

After the blank is created, the glass faces challenges in polishing, handling, and

deblocking.

• Mirror handling becomes a major engineering challenge with apertures greater

than one-meter. The simple act of moving a two meter thin glass shell around

the optics shop requires a separate team of mechanical engineers devoted to

the task. Unlike a smaller (0.5-m) mirror, the mirror blank cannot be lifted

by hand and carried around the shop. For this project, Steward Observatory

had to design special tooling and procedures for moving the blank around the

shop as it progressed through the figuring process. In addition, Brian Cuerden

developed an entirely new method for deblocking a 2 m membrane.

16I should note that Steward is one of the few shops in the world that is capable of casting their
own 2 m glass blank.
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5.3 The least squares algorithm for high authority mirrors

5.3.1 When and why is LS useful?

In Chapters 5 and 6, I mention that I use a least-squares (LS) algorithm to generate

entire lists of actuator commands at once. While there is plenty of literature that

discusses the fundamentals of least-squares theory, there is not an article dedicated

to its use for active mirrors. The concepts are not difficult, and I certainly didn’t

invent any of this. However, I used this scheme six times across four projects and

over six years during my graduate residency. Clearly, it’s a useful tool.

When I first encountered this scheme, I spent several weeks working out the exact

details.17 If I had been presented with a cookbook-type approach, I could have solved

the problem in a manner of minutes. Therefore, I hope that future mirror control

engineers will find this section useful: I provide a recipe-like approach for using a

least-squares algorithm to generate actuator commands from an existing surface map.

5.3.2 The mirror control problem

The mirror control problem is easily understood: provided that the user can measure

the mirror surface, what combinations of actuator commands should be used to fix

the mirror surface? How far (and in what direction) should each actuator move to

remove all of the bumps and valleys?

Before a solution can be obtained, the least-squares algorithm requires a few pieces

of information from the user. First, it must know the current state of the system.

This is usually input as the current surface map. The algorithm also has to know

how the actuators are capable of changing the mirror’s surface. Each actuator is

characterized by an “influence function”, or a function that states how the actuator

17As with any problem, it’s easy to say “Oh, I used algorithm X to solve the problem.” The
time-consuming part is figuring out how to actually use the algorithm on a computer or even a pad
of paper.
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will affect the surface when it’s moved. Finally, the algorithm needs to know the

desired final state. In the case of a mirror, it is assumed to be a perfect surface (no

bumps and no valleys).

The least-squares approach may be used to solve this problem provided that the

mirror is thought of as linear system. A system is linear if it obeys the linear principle

of superposition: the “overall response to a linear combination of stimuli is simply

the same linear combination of the individual responses.”[10] In the case of an active

mirror, this means that the surface map can be produced by a linear combination of

the individual influence functions.

The least-squares approach is appealing for several reasons. First, the influence

functions (the actuator models) don’t have to be perfect because the algorithm can be

used iteratively to solve the control problem. For example, if the actuator behavior

isn’t modeled perfectly, then the first set of actuator commands will not result in a

perfect mirror. However, the mirror surface will improve as long as the actuator model

is at least a good estimate. The algorithm can then be used a second time to improve

the mirror a little more. In addition, as the mirror is improved, the actuator model

can be updated, and this will result in more accurate results from the algorithm.

5.3.3 LS solution by way of an example

Consider a square mirror that is supported by four actuators; one actuator is in the

center of each of the four quadrants. The mirror control engineer measures the mirror

and generates the surface map shown in Figure 5.20. By inspection, it appears that

the upper left actuator is correctly placed, the upper right and lower left actuators
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Figure 5.20. The initial surface map. This example considers a square mirror that
is supported by four actuators. One actuator is in the middle of each quadrant. The
actuator in the upper left is probably at the correct height. (There is no disturbance
in this quadrant.) The actuators in the upper right and lower left are too high, and
the actuator in the lower right is too low.

are too high, and the lower right actuator is too low.18 The control engineer could

certainly move the resulting actuators in the correct direction, but this operation may

take a lot of time if several hundred actuators are involved. Instead, the engineer opts

to use a LS approach to generate a list of actuator commands.

First, the engineer must generate an influence function for each of the four actua-

tors. An influence function describes how the mirror surface changes as the actuator

is moved. There are two ways to do this:

1. The engineer could use real data. For example, an actuator could be advanced

18In Figure 5.20, the surface map is represented graphically, but it is really just a 10 x 10 matrix:

0 0 0 0 0 4 4 4 4 4
0 0 0 0 0 4 12 12 12 4
0 0 0 0 0 4 12 20 12 4
0 0 0 0 0 4 12 12 12 4
0 0 0 0 0 4 4 4 4 4
2 2 1 2 2 −1 −2 −2 −1 −1
1 8 8 8 1 −1 −4 −4 −3 −1
7 10 15 10 7 −1 −10 −12 −10 −7
1 8 8 8 1 −4 −7 −7 −3 −1
1 2 1 1 2 −2 −1 −2 −1 −2


.
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by 10 steps (or 10 nm, 10 microns, etc). If the engineer took a surface measure-

ment before and after the actuator was moved, she could generate a surface map

that showed the net effect of having moved the actuator. This is the influence

function for that actuator, and this could be repeated for all of the actuators.

Note that this approach assumes that the surface deflects linearly with actuator

displacement.

2. The engineer could use a model. For example, she could model the net effect

as a Gaussian with a particular height and width. If available, a mechanical

engineer can generate a very accurate model using finite element analysis.

I have used both of the schemes described above, and I have found success with both

methods. In general, actual data yields the best results. However, it can be time-

consuming to collect an influence function for every actuator. Alternatively, one set

of actual data can be collected and then linearly shifted to represent the remaining

actuators.

For this example, the control engineer decides to model the actuators as three-

dimensional ziggurat functions.19 She decides to use a model because her actuators

are well-behaved.20 Figure 5.21 shows the resulting four influence functions that she

generates.

While the influence functions shown in Figure 5.21 are displayed in a graphical

form, they are really just matrices of numbers. For example, the matrix representing

the influence function of the upper left actuator looks like this:

19A ziggurat (zi-ger-RAT) predates the (comparably) modern pyramids of Egypt. Constructed
by the Mesopotamians, a ziggurat is a multi-layered temple where each ascending layer is smaller
than the one below. Imagine a pyramid built from standard Legos; a ziggurat is the best one could
hope for.

20A well-behaved set of actuators means that actuator A behaves identically to actuator B, as to
C, etc. This would certainly be the case if a set of commerically-produced motors, like the New Focus
Picomotors, are used. If the actuators are built in-house (to less exacting production standards) it
would be best to take actual data for use as the influence functions.
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Figure 5.21. Four influence functions. The influence functions, from left to right,
are labeled 1, 2, 3, and 4.



1 1 1 1 1 0 0 0 0 0
1 3 3 3 1 0 0 0 0 0
1 3 5 3 1 0 0 0 0 0
1 3 3 3 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


.

The remaining influence functions look similar, except their maxima are located in

the appropriate quadrant.

Now that she has a surface map and influence functions, she has everything she

needs to solve the problem. As discussed above, the least-squares solution is generally

used to solve systems of simultaneous equations. This system is essentially no differ-

ent: there are four unknowns (the actuator commands), and there are four knowns

(influence functions). The equation that will yield the solution is as follows:

A · b = ψ. (5.1)

A represents a matrix containing the influence functions, b contains the actuator

commands (the unknown in this equation), and ψ is a vector that represents the

current surface figure. Here’s another way to interpret Equation 5.1: “How many
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Figure 5.22. The least squares equation. Matrix A contains the influence functions,
shown in Figure 5.21, and redimensioned such that each influence function is a vector
containing 100 numbers. The influence functions are labeled according to the scheme
described in Figure 5.21’s caption. Vector b contains the actuator commands (the
unknown), and vector ψ contains the surface map shown in Figure 5.20.

units of each influence function are needed to fit to the current surface map?”

Figure 5.22 provides a visual depiction of how the variables work in Equation 5.1.

These variables are described in the following list:

• A is the influence function matrix. In this example, it has dimensions of 100

rows by 4 columns. There is one column for each influence function, and there

are 100 rows because the influence functions and the surface figure all contain

100 pixels.21 To prepare the influence functions for this matrix, they are con-

verted from 10 x 10 matrices to 100 x 1 vectors. It doesn’t matter how this

redimensioning is done as long as the scheme remains consistent throughout the

entire process.22

• b is the coefficients, or actuator commands. They are the unknown variables in

21The 100 pixels used in this example was chosen arbitrarily. In a real situation, this will usually
be determined by the number of the pixels in the CCD that is used to gather the surface map.

22For example, the most common method takes the 10 rows of the ma-
trix and strings them together as a long vector containing 100 numbers:
[a1,1, a1,2, a1,3, a1,4, a1,5, a1,6, a1,7, a1,8, a1,9, a1,10, a2,1, a2,2, ..., a10,10]. Practically speaking,
Mathematica’s Flatten[] command does this. In MatLab, if M is a 10 x 10 matrix, N =
reshape(M,100,1) redimensions M and saves the result to N .
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this equation. For this example, b has dimensions of 4 rows by 1 column.

• ψ is the surface map vector. For this example, it has dimensions of 100 rows by

1 column. Like the influence function matrix, it is redimensioned from a 10 x

10 matrix to a 100 x 1 vector. For this example, ψ is the redimensioned matrix

shown in Figure 5.20.

Once everything is redimensioned into vectors and packed into the appropriate

matrices, the solution can be obtained. Solving Equation 5.1 for b isn’t as simple

as it looks because A generally isn’t invertible.23 The following is the least squares

solution for b:

A · b = ψ

AT · A · b = AT · ψ[
AT · A

]−1 · AT · A · b =
[
AT · A

]−1 · AT · ψ

b = [AT · A]−1 · AT · ψ. (5.2)

First, both sides of the equation are multiplied by the transpose of A. When matrix A

is multiplied by its transpose AT, the resulting matrix [AT ·A] is square and invertible.

Thus, in the final step, both sides are multiplied by the inverse of [AT ·A]. The result

gives a 4 x 1 vector b: the solution that contains the actuator commands.24

When the control engineer uses Equation 5.2 to solve for b, the result is as follows:

b =


0
4

2.76991
−2.0708

 . (5.3)

23Invertible matrices must be square (n rows and n columns). In order for A to be square, the
number of actuators must be equal to the number of pixels, and this generally doesn’t happen.

24I should mention that MatLab provides an even easier way to solve this equation. The command
ψ \ A will yield the solution b. Note the direction of the slash.
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These are the actuator commands used to obtain the surface figure shown in Fig-

ure 5.20. In other words, 0 units of influence function number one + 4 units of

influence function number two + 2.74991 units of influence function number three +

−2.0708 units of influence function number four produces the best fit to the surface

map shown in Figure 5.20. In order to use this result as actuator commands, they

must be multiplied by negative one:


0
−4

−2.76991
2.0708

 .
These commands will remove the errors from the surface.

Finally, even though all of the influence functions were positive bumps, the al-

gorithm was able to accurately describe the negative dip in the mirror. This occurs

because the entire system is assumed to be linear. As long as this holds true, the user

doesn’t have to worry about including positive and negative influence functions for

each actuator.

5.3.4 A note about units

Throughout this description, I don’t attach any physical units to any part of the

problem. For example, what do the numbers in Equation 5.3 represent in the physical

world? The solution contains the same units as the actuator functions and surface

map. Therefore, if the units of these matrices were in microns, then the actuator in

the upper right must be moved down four microns to fix the surface error.

When actuating the mirror for the first time, it’s a good idea to move the actuators

less than the prescribed amount. For example, the solution from the previous section

suggests that the upper right actuator should be moved down four units in order to

fix the surface error. Instead of moving that actuator four units, it would be best

to move it by half this amount in two separate events. This suggestion may seem
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trivial for this example, but it will be important on a mirror with 200 actuators. If

the actuators don’t exhibit consistent behavior (and the engineer hasn’t yet realized

this fact), moving the actuators by a fraction of the prescribed amount will allow

the engineer to monitor the actuator behavior without significant risk to the surface

figure.

5.4 Chapter summary

This chapter summarizes the design and control of the Arizona NMSD mirror. The

F/5 NMSD is 2 meters in diameter (point-to-point), and it uses a 2 mm thick borosil-

icate glass shell as the optical surface. The mirror has an areal density of 13 kg/m2,

including the glass, 166 actuators, 127 nine-point loadspreaders, the support struc-

ture, and all of the onboard wiring. The entire 2 m NMSD mirror weighs 86 pounds.

In this chapter, I reviewed the fabrication details, and then I described the metrol-

ogy scheme that I developed for measuring this mirror. Here are the most important

conclusions:

• The mirror was commissioned by NASA as part of a technology demonstra-

tion for the James Webb Space Telescope, the successor to the Hubble Space

Telescope. The resulting mirror had an areal density of 13 kg/m2. (The areal

density of the Hubble’s primary mirror is 180 kg/m2.)

• The Steward Mirror Lab developed a novel technique for deblocking a 2 m thin

glass shell from the blocking body. Brian Cuerden’s scheme is discussed in

Section 5.1.2.

• The mirror was adjusted to 0.7 waves RMS and 4.8 waves PV (HeNe) across

90% of the clear aperture. The final surface map is shown in Figure 5.19.

• I presented a list of lessons-learned throughout the fabrication and testing pro-

cess. I will summarize them each with one sentence here, and they are discussed
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in detail in Section 5.2.5:

1. The mirror should be mounted on its own, isolated platform when testing

and actuating.

2. The actuator control software (or the actuators) should be designed with

both a ‘run’ and ‘walk’ mode.

3. Each actuator should have a linear distance encoder.

4. The Hartmann test proved to be an efficient method for quick, initial

actuation of the mirror. It was also robust enough to provide qualitative

measurements once the initial actuator positions were set.

5. A system that compensates for inconsistent actuator behavior must be

included in the algorithm that corrects the mirror’s surface.

6. The PhaseCam proved to be a useful tool for testing the mirror under

visible interferometry.

7. Mirror handling becomes a major engineering challenge at the two-meter

scale.

8. Scaling a half-meter mirror up to a two-meter model is not as

easy as it sounds on paper.

• Finally, I presented a useful guide to using a least-squares approach for solving

the actuator control problem. None of this material is novel, but the fact that

I’ve written it down as it pertains to active mirrors is new. The procedure,

complete with an example, is described in Section 5.3.
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Chapter 6

The half-meter ultralightweight

demonstration mirror

In 1999, the University of Arizona was asked to build a prototype mirror that would

achieve an areal density of 5 kg/m2. The result, based on the 2 m mirror described

in Chapter 5, was an ultralightweight half-meter mirror that is currently the light-

est glass mirror in the world. This chapter begins by outlining the motivation for

this project, and then I provide the details about component fabrication, metrology

system, and mirror control.

6.1 Earth-imaging from geosynchronous orbit

Most contemporary Earth-imaging sensors are placed in a low-Earth orbit (LEO).

LEO satellites are located anywhere from 320 - 800 kilometers (200 - 500 miles)

above the Earth’s surface. Because of their close proximity to the surface, they must

maintain a high velocity in order to remain in orbit. This results in a very short

period of revolution: the average LEO satellite takes about 90 minutes to complete

one revolution around the Earth.

While the close proximity of these satellites can provide spectacular imaging ca-

pabilities, there are a few disadvantages. First, the satellites do not remain over a

fixed ground location. This means that the organization that operates the sensor does

not enjoy a continuous stream of data for a particular location. Also, it’s relatively

simple to calculate the orbits of all currently-operating sensors: most organizations

are aware of when a particular satellite passes overhead, and they will govern their

activities accordingly.

One advantage to using geosynchronous (geo) orbit is that it provides a continuous
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stream of data for a particular ground location. As a satellite is placed in orbit father

away from the Earth, it experiences less of the Earth’s gravity, and it doesn’t have

to travel as quickly to remain in that orbit. At one particular distance from the

Earth, the satellite will orbit at the same angular speed as the Earth’s rotation. This

location is referred to as geosynchronous orbit, and a satellite in this orbit will always

remain fixed over the same ground location.

Geo orbit is 35,793 km (22,241 miles) above the Earth, and this presents some

interesting challenges for the person designing the optical sensors. First, this is 100

times farther away than a LEO satellite, so fewer satellites are necessary in order to

image the entire planet. The disadvantage to this location is that a geosynchronous

imaging system must have an aperture 100 times larger to achieve the same resolution

as a low-Earth orbiting satellite. Even the lightweight NMSD mirror described in

Chapter 5 isn’t light enough to meet the mass requirements needed for geo orbit.

The half-meter prototype described in this chapter is over two times less massive

than the NMSD mirror, and it meets the mass requirements for imaging from geo

orbit.

6.2 Design and fabrication

The immediate predecessor to this project was the 2 m UA NMSD mirror that I

discussed in Chapter 5. The NMSD mirror uses a 2 mm thick glass facesheet as the

reflective surface. The composite structure holds 166 actuators, and each of the 127

interior actuators is coupled to the glass via a nine-point whiffle tree. The facesheet

was designed and fabricated at the University of Arizona, and the completed mirror

weighs 86 pounds and has an areal density of 12 kg/m2.

The customer for the 0.5 m prototype determined that a successful geo telescope

should possess an areal density of approximately 5 kg/m2 for the primary mirror. The

NMSD mirror technology was not light enough for this project; however, the NMSD
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2 m NMSD 0.5 m Demo
Mirror diameter 2 m 0.5 m
Glass thickness 2 mm 1 mm
Actuator mass (each) 40 g 5 g
Reaction structure areal density 3.2 kg/m2 1.1 kg/m2

Total areal density 12.4 kg/m2 5.2 kg/m2

Table 6.1. Comparison of the 2 m NMSD and the 0.5 m demonstration mirror’s
fabrication parameters. The half meter’s glass facesheet is half as thick, and the
actuators are a scant 5 grams (0.01 lbs). Note that the total areal density includes
the glass facesheet, the actuators, loadspreaders, support structure, and all of the
on-board wiring.

mirror served as an important starting point for the 0.5 m prototype.

This 0.5 m prototype started out with the same design philosophy as the NMSD

mirror, but all of its parts were miniaturized and aggressively lightweighted. Table 6.1

shows a comparison between the NMSD mirror discussed in Chapter 5 and the 0.5 m

prototype. The 0.5 m mirror represents the lightest Arizona MARS mirror to date,

and it is currently the lightest glass mirror of its size in the world.

6.2.1 Component fabrication

The support structure is shown in Figure 6.1. It was designed at the Univ. of

Arizona and fabricated at Composite Optics, Inc. (COI). The structure was made

by sandwiching several layers of carbon fiber and epoxy together. Carbon fiber is

an ideal material for this project because the resulting structure is extremely stiff

and very lightweight. The facesheet and backsheet are both 0.015” thick, and the

webs are 0.010” thick. The entire structure has been aggressively lightweighted by

cutting holes into the face/backsheets and ribs. The actuators are mounted in the

31 reinforced holes. The structure is concave such that the actuators are mounted

normal to the glass. The completed shell is shown in Figure 6.1.

The actuators are a miniaturized version of the NMSD actuators discussed in
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Figure 6.1. Left: Paul Gohman holds the completed support structure. The struc-
ture is 0.5 m (20”) tip-to-tip and is less than 1” thick. Right: Line drawing of the
support structure. This structure is a meniscus-shaped sandwich: note that all of the
components have been aggressively lightweighted. The actuators are mounted in the
reinforced holes in the facesheet. (Line drawing by Randall Hodge.)

Section 5.1.4. The actuators used for this project are similar to the one shown in

Figure 5.7. The actuators are an impact-driven model designed and built at the

Univ. of Arizona. There are two advantages to using an impact-driven actuator.

First, the design works at cryogenic temperatures. Second, the actuators are “set

and forget”: they do not require a power source to maintain their position. This is an

important requirement because space imaging systems have limited power resources.

A picture of the 5 gram actuator is shown in Figure 6.2. The average step size

is 20 nm without any loading. Each step requires an average pulse amplitude of 700

mA for 1.5 ms.

The thin glass membrane was created using conventional techniques and existing

tooling within the optics shop. The fabrication process is illustrated in Figure 6.3.

The process started with a large Zerodur glass blank.1 The optical surface (concave)

was then generated and polished using conventional tooling. The remaining steps

shown in Figure 6.3 are necessary for thinning the glass down to its final thickness.

Before all of the excess glass can be removed, the thick blank must be attached to a

rigid body such that it does not bend during the glass removal. This rigid body is

1Zerodur is a special glass with a low coefficient of thermal expansion. These types of special
material considerations are important for space applications.
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Figure 6.2. A tiny actuator. One of the half meter’s actuators, placed next to a US
quarter for scale. The actuators are 5 grams (0.01 lbs) and have a nominal step size of
20 nanometers. This picture shows the key components of the actuator’s mechanism:
the two electromagnetic coils on either side of a nut, an 80 tpi machine screw, and a
rectangular aluminum mounting plate.

referred to as a blocking body, and a plano-convex piece of granite was used in this

instance. The blank was attached to the blocking body with pitch, and several inches

of the rear surface were generated off using a diamond cutting tool. Finally, the rear

(convex) surface was ground and polished to remove any microfractures.

After the polishing was complete, the facesheet remained attached to the blocking

body. At this point, the design team decided to attach the loadspreaders to the rear

(non-optical, convex) surface of the meniscus. This decision was made because the

loadspreaders served a useful purpose during the deblocking process. Once all of the

loadspreaders were attached, they served as a convenient grip during the de-blocking

process.

Unlike the complicated deblocking process described in Chapter 5.1.2 for the 2 m

mirror, the procedure for this mirror was considerably simpler. Because the substrate

was only 0.5 m in diamater, the optician was able to remove the substrate by hand.

Figure 6.4 shows Steve Miller removing the facesheet from the granite blocking body.

Steve placed the facesheet and blocking body in the Steward Mirror Lab’s cube meter

oven for 10 hours at 200 degrees Celsius. During this soak, the pitch softened enough

such that the facesheet could be easily slid off the blocking body.
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Figure 6.3. The glass fabrication process. The process starts with a meniscus-
shaped glass blank. The concave optical surface is polished while the blank is thick.
This allows the opticians to use standard polishing techniques and their existing
tooling. After the optical surface is finished, it is bonded to a granite blocking body
using pitch. After attachment, the excess glass is removed from the convex side using
a diamond cutting tool. Finally, the convex side is ground and polished to remove
any micro-fractures. When the optical finishing is complete, the facesheet is removed
from the granite body.

Figure 6.4. Steve Miller deblocks the facesheet. The glass and blocking body sat in
a 200 degree C oven for 10 hours before Steve gently pulled the glass off the granite
blocking body. At 200 degrees Celsius, pitch has the consistency of thick honey, and
Steve was able to safely remove the glass.



158

Figure 6.5. Loadspreader used on the UA half-meter prototype. The three feet
are attached to the glass using Q3-6093 RTV adhesive, Figure 6.6. The feet are
attached to the main loadspreader arm using thin steel flexures. The actuator picks
up the loadspreader at a small magnet located in the center of the loadspreader arm.
(There is an additional component that is not shown: a sapphire window sits on top
of the magnet. This allows for a quasi-point contact between the actuator and the
loadspreader.)

6.2.2 A scheme for attaching the loadspreaders

The loadspreaders for this project were a simple three foot whiffle tree made from

aluminum and spring steel. A schematic of a single loadspreader is shown in Fig-

ure 6.5. The feet are attached to the main aluminum loadspreader body via thin

steel flexures.2 The mechanical design of this loadspreader allows for thermal expan-

sion and contraction of the loadspreader tree without influencing the surface quality

of the glass facesheet.

The three feet were attached to the glass using Dow Corning’s Q3-6093 RTV

adhesive. This adhesive was chosen because it possesses several attractive mechanical

properties that were useful for this application. Figure 6.6 shows a cartoon of one

of the RTV interfaces between the aluminum foot and the glass facesheet. When

RTV adhesive cures, it has a rubbery consistency. This allows for a certain amount

of motion in a direction parallel to the facesheet because the RTV pad is compliant

2Because this was a demonstration project, the design team did not construct the loadspreaders
out of space-appropriate materials. A space-hardened version of this mirror would replace the
aluminum loadspreaders with a more appropriate material, like Invar or a graphite composite.
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Figure 6.6. The effects of using an RTV adhesive. The RTV pad that results from
bonding resists compressive forces, but it yields in shear.

in shear.3 By contrast, the bond does not allow for much movement in compression.

In addition to these mechanical features, the tensile strength of the bond is 325 psi.

Finally, the Mirror Lab’s engineers are partial to this particular RTV because they

have a lot of experience working with it.

As I mentioned above, the design team elected to attach the loadspreaders after

the rear convex surface was polished, but before the glass was deblocked from the

granite blocking body.4 The loadspreader attachment caused some concern because

the thin facesheet would be sensitive to moments introduced by the loadspreaders

(via the actuators) at the attachment points. For example, if the loadspreaders were

not attached in a stress-free state, they would impart moment on the glass, and this

would result in a surface error above each foot. As a result, Brian Cuerden and I

developed a procedure for attaching the feet such that they would impart little or no

moment into the facesheet. Our finalized procedure is described in the following list,

and Figure 6.7 illustrates each of the steps.

1. First, I cleaned the glass surface using four solvents in the following order: 1,1,1

trichoroethane, acetone, isopropyl alcohol, and ethanol. I also cleaned all of the

loadspreader parts in successive baths using these solvents.

3Shear is discussed in Section 4.1.2.
4The loadspreaders were attached between the third and fourth steps shown in Figure 6.3.
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2. I applied a fiberglass bonding template to the glass surface. The template was

designed at the University of Arizona and fabricated at Composite Optics. The

template has openings for each of the loadspreaders, and each opening is flanked

by two tooling/fiduciary holes.

3. For each loadspreader, I began by placing three teflon spacers in the approx-

imate locations for bonding. These horseshoe-shaped spacers were used to

achieve a particular bond thickness between the loadspreader foot and the glass.

At this time, I also placed a pin in each of the two tooling holes.

4. Next, I placed some RTV adhesive inside each of the teflon spacers. (The RTV

was outgassed for 5 minutes in a vacuum chamber before it was applied.)

5. For the next step, I placed the aluminum feet on top of the teflon spacers. When

they were in their nominal location, I placed a tooling bar across the hole in the

template. The bar had two holes which slid over the two pins placed in step 3.

6. To locate the feet in the precise locations, I used a jig that we built specifically

for this purpose. This jig looked similar to the main loadspreader arm except

that it was much thicker. I screwed the jig down to the tooling bar described

in step 5. The jig had an aluminum fixture attached to each end that allowed

for adjusting the feet to their precise locations.5

7. After the feet were positioned, I carefully unscrewed the jig used to position the

feet. I then screwed the real loadspreader arm into the tooling bar. Because of

the geometry, a spacer was needed between the arm and the bar.

8. At this point, the feet and loadspreader arm were located in their correct loca-

tions. I then attached the flexures that connect each arm segment to a foot. I

used the RTV for this attachment.

5The work time of the RTV was approximately 45 minutes. During this time, it had the consis-
tency of toothpaste, and I was able to make minor adjustments in the foot locations.
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9. To complete the procedure, I allowed the RTV to cure overnight. Finally, I

unscrewed the loadspreader arm from the tooling bar, and I slipped the bar out

from beneath the arm.

This procedure was developed as a result of several iterations using the load-

spreaders on a 1 mm thick piece of dummy Borofloat glass. These trials allowed us

to improve upon the loadspreader design such that the final design contained fewer

pieces than the original model. The final loadspreader design was more accurate

because fewer pieces had to be screwed together, and the assembly procedure was

simpler.

We were also able to measure the effects that our attachment scheme had on the

glass. Figure 6.8 shows a sample loadspreader bonded onto a test piece of 1 mm

thick float glass. After using our procedure to attach the loadspreader, I placed the

test piece on an optical flat under a [partially coherent] sodium lamp. The resulting

interference fringes are shown in Figure 6.8. The overall figure of the test piece is

terrible; however, the important result is that there is no noticeable distortion around

each foot.6 This shows that the attachment procedure imparts little or no stress on

the local region around each foot.

6.3 Metrology

The assembled mirror is shown in Figure 6.9. The mirror’s mass is 1.17 kg: this

includes the actuators, loadspreaders, glass, reaction structure, and all of the on-

board wiring. The mirror was attached to a tip/tilt stand via the three hardpoints

shown in Figure 6.9.

The mirror was tested at its center of curvature using a phase-shifting Twyman-

Green interferometer.7 This particular interferometer operated at 633 nm, and it

6If there was a disturbance due to the foot, one would see a break in the contour lines around
each attachment point.

7A phase-shifting interferometer gathers three or more frames of interferograms that are each 90
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Figure 6.7. Procedure for attaching loadspreaders in a stress-free manner. 1. I
started with the bare glass after it was polished but before it was deblocked. The
loadspreaders were attached to the rear, convex (non-optical) surface. 2. A bonding
template was applied to ensure the loadspreaders were placed in the correct location.
3. Teflon spacers were used to regulate the bond thickness. Also, two tooling pins
were placed in corresponding holes on the bonding template. 4. Epoxy was applied
to the glass inside the teflon spacers. 5. The feet were placed on the spacers and
near their nominal positions. 6. A tooling bar and dummy loadspreader were used to
position the feet to their exact locations. 7. The dummy loadspreader was removed
and replaced with the actual loadspreader arm. The loadspreader arm was screwed
into the tooling bar to ensure it was located in the correct position. 8. The tooling bar
was removed. 9. The final five loadspreaders were attached. 10. The bonding template
was removed. The glass was now ready for deblocking.
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Figure 6.8. Test coupon and resulting interference fringes. The test loadspreader on
the left is attached to a 6” piece of float glass that is 1 mm thick. The interferogram
on the right shows that the contour lines are not distorted around each foot.

Figure 6.9. The finished half-meter prototype. The 1 mm thick glass facesheet has
an aluminum coating. In this image, the edge actuators are clearly visible. (The
edge actuators do not use loadspreaders.) The actuator screws and inertial masses
(aluminum discs attached to the screws) are also clearly visible. Note how aggressively
the support structure has been lightweighted. (Photo: Lori Stiles, UA News Services)
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was unique in that it actively compensated for piston caused by vibration. [29] I used

Durango to run the interferometer and collect the data.8

The actuators were controlled via a set of control electronics, and the user adjusted

the actuators using a Windows program running on a PC. The program allows for

individual adjustment of the actuators, or an entire “move map” can be imported to

move all of the actuators at once. The features of this program are discussed in more

detail in Section 6.3.2.

6.3.1 Measurement scheme and results

As with the mirror described in Chapter 5, the surface figure does not assume the

correct figure when the mirror is initially assembled. However, unlike the 2 m, this

mirror was considerably easier to actuate. This mirror was small enough that I

was able to implement an intuitive, efficient method for quickly advancing all of the

actuators to their nominal positions.

I started by advancing three actuators such that they were a few millimeters higher

than the remaining 28 actuators. I chose the initial actuators for their symmetry:

each actuator was at the vertex of an equilateral triangle. With the mirror resting on

these three points, I adjusted each of the three actuators until the return spot at the

mirror’s center of curvature possessed three-fold symmetry. Then I added three more

actuators such that the mirror was resting on the vertices of a hexagon. Again, I

adjusted the actuators until the return spot possessed six-fold symmetry. I continued

in this manner until all of the actuators were attached. At this point, the mirror was

good enough to begin using the visible Twyman-Green interferometer to take surface

measurements.

degrees out of phase with each other. The extra phase information allows the user to calculate a
surface map of the mirror’s figure. For more information about phase-shifting interferometry, John
Greivenkamp’s chapter in Optical Shop Testing is an excellent introduction to the subject. [11]

8Durango is a piece of third-party software used to drive phase-shifting interferometers. It com-
mands the interferometer to take several frames of phased interferograms; it collects the resulting
images; and it generates a surface map from the data.
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Figure 6.10. Final interferogram and surface map for the half-meter prototype
mirror. The surface map represents a figure of 0.248 waves RMS (HeNe). (This is
equivalent to 157 nm RMS.) The white areas are high and the dark areas are low.
The bumps are due to self-weight deflection, discussed in Section 6.3.3. Incidentally,
these bumps were an effective qualitative tool useful for improving the surface figure.
Bumps that are too bright mean the actuator underneath is pushing harder than
its neighbors. Non-existent (or subdued) bumps represent actuators that are not
providing enough support.

Once all of the actuators were attached, it took about 8 hours to achieve the final

surface shown in Figure 6.10. For the most part, I used a least-squares algorithm

(described in Section 5.3) to improve the figure. However, once the figure was nearly

complete, I spent several hours fine-tuning the positions of individual actuators.9

6.3.2 Mirror control software

During a subsequent experiment on the 0.5 m mirror, I wrote my own actuator

control software. The previous software was written by a programmer at Steward

Observatory, and, while this resulted in a technically-sound program, it lacked several

9Adjusting a high-authority mirror is similar in feeling to being in Las Vegas. Every time an
actuator is moved, you risk losing everything in return for very little gain.
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helpful features for successful mirror actuation.

Figure 6.11 shows a screenshot of the control program that I wrote. While this

specific program might not be helpful to future researchers, the list of features should

be considered essential elements for any future mirror control software:

• The program works like this: the user enters actuator commands and then clicks

on the “Send to Mirror” button to send the commands to the actuators.10

• There are several ways to enter the commands. There is a spreadsheet at the

left which is used to enter full arrays of actuator commands. Alternatively,

the user can click the top number next to each actuator location and enter

the command manually. As described in Section 6.2.1, the actuators move in

discrete steps. As a result, each actuator command is an integer (positive for

advance and negative for retreat) which represents an integer number of steps

up or down. The actuators can also be incremented by clicking on the up/down

arrows next to each actuator. Finally, the program can read in an ASCII file

containing a full list of actuator commands. This is helpful when an external

program (such as MatLAB or IDL) is used to calculate which way the actuators

must move next. (The algorithm that I used is described in Section 5.3.)

• The program keeps track of the previous actuator activity. The cumulative total

of each actuator’s steps is represented next to each actuator as the lower number.

By clicking on the curly arrow next to each actuator, the actuator’s negative

cumulative history is loaded in as the next command. (This is effectively an

“undo” button.)

• The entire set of actuator commands can be scaled or summed by a separate

factor. This is accomplished by using the two entry boxes labeled “X” and “+”

10For this particular program, the graphical user interface (shown in Figure 6.11) sends the com-
mands to a small C program, which then communicates with the actuator hardware via the serial
port.
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Figure 6.11. Control program for the 8732 New Focus Picomotor driver. I designed
this program after having worked on four different active mirrors. As such, I was able
to include several features that will certainly prove useful for any future application
involving actively-controlled mirrors.
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in the upper right hand corner. For example, pushing the “+” sign in its current

state will subtract 25 from all of the current actuator commands.

• When an actuator contains an active command (meaning that it will move when

“Send to Mirror” is clicked) the white dot symbolizing the actuator’s position

turns yellow. This allows the user to quickly visualize which portions of the

mirror will move next.

• Clicking on the “Load Last Move” button loads the last move in as the next

command to be executed. This allows the user to repeat the last move. Alter-

natively, the user can click on “Load Last Move” and then multiply the entire

set by -1 to undo the last move.

• The “Reset” drop-down contains several useful features for resetting global pa-

rameters. “Reset All” resets the entire program: actuator commands, histories,

and scaling factors. “Reset Commands to Zero” resets all of the current com-

mands to zero, but it leaves the actuator histories intact. “Reset Commands to

One” resets all of the current commands to one, and it also leaves the actuator

histories intact. “Reset History” resets the histories to zero.

• The “Command” drop-down box contains several useful features for working

with different parts of the mirror. “Load History” moves all of the actuator

histories to the active command. “Load -(History)” loads the opposite of the

history to the active command such that all the cumulative commands may be

undone. Finally, the last four commands load a “1” as the active command for

the appropriate group: “Load Edge”, “Load Center 19”, “Load Inner Ring”, or

“Load Outer Ring”. This is helpful for correcting circularly symmetric aber-

rations, like spherical aberration or defocus. It’s also useful for adjusting the

mirror’s radius of curvature.
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• The “Increment” drop-down box is helpful when the actuators must move in

large increments. It contains the following options: 1, 5, 25, 50, 250, 500,

and 1000. When one of these integers is selected, it does two things. First, it

enters that number into the sum box (next to the “+” sign). Also, it changes

what happens when the user clicks on the up/down arrows. For example, if

an increment of 250 is selected, clicking on the arrows advances the commands

in increments of 250. Again, this is a helpful feature if the actuators must be

moved long distances. (Which is typical during initial actuation.)

6.3.3 Limiting circumstances: self-weight deflection

The final surface figure shown in Figure 6.10 contains several localized bumps. These

features are a side effect of using such a thin facesheet on Earth: gravity causes the

glass to sag about each of the support points. In space, of course, this problem doesn’t

exist because the mirror won’t be subjected to the Earth’s gravitational effects. In

the meantime, we say that the surface quality is limited by its self-weight deflection.

6.3.4 A space-hardened design

The next major step for this mirror—indeed, the entire family of Arizona MARS

mirrors—is to launch a space-hardened version of the 0.5 m prototype. This involves

packaging a mirror along with a system that can monitor and correct the surface

figure as the mission progresses. The package would then be flown on a future flight

mission. The purpose of this test will be to investigate the following issues:

• Transition from stowed to active mode. The MARS mirrors are rather fragile,

especially when compared to the thick glass mirror used in the Hubble Space

Telescope. As such, it would be wise to protect the mirrors during launch

by placing the mirror in a “stowed mode”. This scheme uses a set of launch
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restraints to pull the glass back against the actuators. Once on orbit, these

mechanical restraints are released, and the actuators are free to push and pull

according to the MARS design. A flight mission would show that the launch

restraints are effective in preserving the mirror’s integrity during the launch

sequence.

• Survivability. During the early part of the Arizona MARS research, the design

team conducted a survivability study to determine the design’s ability to survive

launch. A dummy mirror was tested in an acoustic chamber and it survived.

However, this dummy mirror was constructed using float glass, machine-screw

actuators and an aluminum support structure. A mission test would prove that

the MARS design is robust enough to survive the space environment.

• System performance in a zero gravity environment. As discussed in Section 6.3.3,

the surface figure of the mirror is limited by its self-weight deflection. There

are calculations that can predict what the figure will look like in a zero gravity

environment, but these predictions are only as good as the finite-element model

used to create them. Placing a mirror on orbit will be an important experiment

to demonstrate the surface figure characteristics of the MARS mirrors.

6.4 Chapter summary

In this chapter, I described the fabrication and control of the Arizona ultralightweight

half-meter prototype mirror. This mirror, weighing in at only 2 pounds, represents

the lightest glass mirror in the world for its size. Throughout the chapter, I covered

the following important topics on the practical aspects of building and controlling

such a mirror:

• Geosynchronous orbit is a desirable location for an Earth-imaging satellite be-

cause it remains over a fixed ground location as the Earth rotates. This allows
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for constant monitoring of the subject of interest. The disadvantage to geo

orbit is that it is 22,200 miles above Earth: ultralightweight optics are needed

for imaging systems at this distance.

• The design of the half-meter was based on the NMSD mirror (Chapter 5). Using

the NMSD as a starting point for the design, everything was lightweighted in

an effort to minimize the mass. Table 6.1 shows the differences between the

NMSD and the half-meter’s components.

• I developed a procedure for attaching the loadspreaders to the glass to ensure a

stress-free contact, Figure 6.7. I showed that very little local distortion results

when using this procedure, Figure 6.8. The bonding procedure is described in

Section 6.2.2.

• I described a simple technique for starting the actuation process right after the

mirror is assembled. By setting the glass on three actuators, I was able to

use symmetry to improve the mirror’s figure. This technique is discussed in

Section 6.3.1.

• I developed a software package to control the mirror’s actuators. While this

specific piece of software may not be useful for future projects, the features

that I included should be an essential part of any future effort. A list of these

features is described in Section 6.3.2.
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Appendix A

Glossary of terms, acronyms, and abbreviations

AMSD Advanced Mirror System Demonstration. A precursor to the NGST mirror,

the AMSD mirrors were built as technology demonstrations as part of an early

phase of the NGST prime contractor selection. Two competing AMSD mirrors

were built: Ball Aerospace’s is a 1.2 m beryllium mirror and Kodak’s is a 1.4

m (point-to-point) ULE passive mirror with active support.

AO Adaptive Optics. AO systems use deformable mirrors to correct for aberrations

in real time. Astronomers use AO to remove the effects of atmospheric turbu-

lence while the telescope is in use. (This is done by placing a deformable mirror

somewhere in the telescope. The atmosphere is measured using a wavefront

sensor, and the (negative) wavefront shape is fed into deformable mirror. In

this way, the atmosphere’s turbulence is effectively subtracted from the beam

path before the star light ever reaches the CCD.) Good AO systems are compli-

cated and expensive. However, the University of Arizona’s recently-upgraded

Multiple Mirror Telescope is a prime example that AO systems are going to

change the state of telescope instrumentation.

areal density A metric used by the mirror community to describe the total mass as

related to the mirror’s clear aperture. The areal density is calculated by taking

the mirror’s mass and dividing by the surface area. The Hubble’s primary has

an areal density of 180 kg/m2. Arizona’s mirrors have an areal density in the

range of 5 - 25 kg/m2.

aspect ratio The aspect ratio (as it pertains to mirrors) refers to the ratio of the

diameter to the width. Conventional passive mirrors have an aspect ratio of 5
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or 10. The UA glass facesheets have aspect ratios near 500 or 1000.

Be beryllium. A metal used for mirror substrates. It has an unusually high specific

stiffness.

blank, mirror The blank is a solid piece of glass that gets generated, ground, and

polished to form a mirror (or a lens). Put another way, the blank is the piece

of raw material that will eventually become the mirror.

blocking body A rigid body used during the glass fabrication process. The sub-

strate is attached to the blocking body before it is ground and polished such

that it remains rigid throughout the fabrication process. The substrate is re-

moved from the blocking body when the optical finishing is complete. The

process of attaching the two pieces is called “blocking”, and the parts are sep-

arated by “deblocking” them.

CCD Charged Coupled Device. Basically, a CCD is a video camera. Each pixel

converts incident photons to a proportional charge. In most circumstances, all

of the charges are converted to a digital signal by a computer, and the resulting

image is displayed on a monitor for the user to view.

centroidal axes The centroidal axes intersect at the center of mass.

COI Composite Optics, Inc. Located in San Diego CA, COI fabricated all of the

composite support structures used in the Univ. of Arizona MARS-type demon-

strations.

CTE Coefficient of Thermal Expansion, α. Most materials expand when heated and

contract when cooled. The CTE is a way of quantifying this effect. It typically

has units of parts-per-million per degree Celsius. For example, optical glass has

a CTE of ∼ 7 ppm/oC. A meter-long bar of glass would therefore expand by 7

millionths of a meter if heated by 1o C. See Section 2.2.



177

deblocking The process of removing the polished glass facesheet from the blocking

body. For small (< 0.5 m) mirrors, the faceheet and blocking body are placed

in an oven, and the glass is carefully slid off the blocking body. See Figure 6.4.

E6 E6 is an optical glass made by OHara in Japan. It’s a favorite glass at the

University of Arizona for a few reasons. It has a very low coefficient of thermal

expansion (1.61 × 10−6 parts/oF). OHara makes large quantities of this glass,

and their process is maintained such that the chemical properties of each batch

are nearly identical. (This is important if several batches of glass are all melted

down into one solid piece, as they do at the Steward Mirror Lab.)

generation The first step in the polishing process. The optician can use a grinding

tool to remove excess glass, but this can be very time consuming if several mil-

limeters must be removed. Instead, the optician can use a generating machine:

this uses a diamond cutting tool to quickly remove excess glass from the blank.

Often times, the diamond tool leaves a series of small grooves (like a record

player), and these are ground out in subsequent operations.

geo orbit See geosynchronous orbit.

geosynchronous orbit Geo orbit is located 35,793 km (22,241 miles) above the

Earth’s surface. (Compare this to 320 - 800 kilometers for low Earth orbit.) This

orbit is ideal for Earth-imaging systems because the satellite remains perma-

nently fixed over the same location on the ground. The long distances involved

present advantages and disadvantages. An advantage is that fewer satellites are

necessary to image the entire globe. A big disadvantage is that significantly

larger apertures are required to achieve the same resolution as a satellite in low

Earth orbit.

HeNe Helium-Neon. In optics, this abbreviation refers to a helium neon laser.

While HeNe lasers can operate at many wavelengths, the most common is 632.8
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nanometers. The abbreviation HeNe is usually used to clarify a metrological

quantity. For example, a surface might be reported to be good to 0.75 waves

RMS (HeNe). Since ‘waves’ is a unit that is dependent on wavelength, it is ap-

propriate to list the wavelength at which the part was measured. In this case, it

was measured with a helium neon laser (632.8 nm). To complete the conversion,

0.75 of one wavelength is as follows: 0.75× 632.8 nm = 474.6 nm. Thus, saying

that something is 0.75 waves at HeNe is equivalent to 474.4 nanometers.

HST Hubble Space Telescope.

inflection point The point where a curve changes concavity. For example, the curve

would be concave up on one side of the curve and concave down on the other.

Inflection points occur where the second derivative of the curve is equal to zero.

interference fringes/interferogram Simply put, an interferogram can be thought

of as a contour map that shows the shape change between a test surface and

a reference surface. Interference fringes are a result of the wave-like nature of

light: just as waves in a swimming pool can destructively and constructively

interfere, so can light.

Invar Invar is a composite metal that has nearly zero CTE. It is expensive, dense,

and difficult to machine.

IR Infrared. Infrared radiation generally refers to electromagnetic waves that have a

wavelength from 1 - 30 microns. These wavelengths are not part of the visible

spectrum.

JPL Jet Propulsion Lab. Run for NASA by CalTech and located in Pasadena CA.

JWST James Webb Space Telescope. The new name of the NGST.

LEO See low Earth orbit.
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low Earth orbit (LEO) LEO satellites are located anywhere from 320 - 800 kilo-

meters (200 - 500 miles) above the Earth’s surface. Because they are located so

close, they must travel very quickly to remain in orbit. This results in a very

short period of revolution: the average LEO satellite takes about 90 minutes to

complete one revolution around the Earth.

LS Least squares. An algorithm used to simultaneously solve for several variables at

once. See Section 5.3.

LW’d lightweighted.

MSFC Marshall Space Flight Center. One of NASA’s administrative offices, located

in Huntsville AL. Marshall is the home of the space optics directorate.

neutral axis The line (or plane) of fibers that do not experience strain during bend-

ing. For pure bending, the neutral axis contains the section’s centroid. [24]

NGST Next Generation Space Telescope. The original name of the telescope sched-

uled to replace the Hubble. The current launch date is August 2011.

NMSD NGST Mirror System Demonstration. A precursor to the NGST mirror, the

NMSD mirrors were built as full-scale technology demonstrations. Two NMSD

mirrors exist: the Univ. of Arizona’s glass/composite mirror and Composite

Optics’s full composite mirror. Neither system was ever finished to NASA’s

initial specifications. See Chapter 5 for more information about the University

of Arizona NMSD.

OSC Optical Sciences Center.

passive mirror A passive mirror depends on its thickness to maintain its stiffness.

Oftentimes, passive mirrors are supported on an array of actuators to correct

for errors with a large spatial period. These mirrors are referred to as “passive
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mirrors with active supports.” Modern primary mirrors are passive mirrors

with active supports. For example, the Multiple Mirror Telescope’s primary on

Mt. Graham is 6.5 m in diameter, and it’s supported by 160 actuators. These

actuators can’t correct for errors on the order of a few inches: they’re spaced

too far apart to do this. Instead, they are used to correct for gross astigmatism

or trefoil caused by self-weight or wind loading.

pitch A derivative of pine tar that is used in the optics shop. Pitch’s most useful

property is that it is a very viscous liquid. (It is a liquid, yet it shatters if

a cylinder of it is dropped on the floor.) This allows it to take the shape of

whatever it’s placed upon, without any internal stresses. This makes it an ideal

candidate for use on polishing tools and for blocking two objects together.

Poisson’s ratio, ν A measure of how much a material expands in one axis when

a force is exerted along another axis. For example, imagine a 1” rubber cube

sitting on a table. If you exert a force on the cube down towards the table,

the rubber will squish out in a direction tangent to the table top. The Poisson

Ratio quantifies this effect. Steel has a small value of ε; rubber has a large

value. See Section 2.1.3.

PV Peak-to-valley. This is usually referred to when quoting a linear distance mea-

surement. For example, if one wanted to measure the peak-to-valley height of

Mt.McKinley, the result would be 20, 320 feet. This is the distance from the

base of the mountain to its peak. This number is useful because it provides

a scale of the overall size, but it does not mention anything about any of the

many canyons or meadows contained with the measurement. For this purpose,

an RMS measurement would be more telling.

PZT Piezo electric transducer. A PZT is a ceramic which changes dimension when

a voltage is applied across it.
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reaction structure The reaction structure, or support structure, is what provides

the MARS mirrors with their stiffness. The role of the support structure is

illustrated in Figure 1.3.

rms Root-Mean-Square. For a set of N data points xi the rms is√∑N
i x

2
i

N
.

rss Root-Sum-Square. For a set of N data points xi the rss is√√√√ N∑
i

x2
i .

RTV Room Temperature Vulcanizing. RTV commonly refers to RTV epoxy, which

is a rubbery adhesive.

SAFIR Single Aperture Far Infrared Telescope.

seeing Seeing refers to the optical quality of the atmosphere above a telescope. A

site with good seeing means that the atmospheric turbulence above the site is

comparably small to other locations on Earth. There is a mathematical quantity

that quantifies seeing.

self-weight deflection Self-weight is something that all objects experience when

they are subjected to gravity. Self-weight deflection refers to the shape change

that occurs due to an object’s own weight. For example, Figure 4.2 shows the

(exaggerated) self-weight deflection for an I-beam.

shear stiffness The shear stiffness is a quantity that tells how likely a material will

be to shear when an outside shear force is exerted upon it. See Equation 3.21.

shell A curved plate.
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SIRTF Space Infrared Telescope Facility. The last of NASA’s Great Observatories

to be launched, the SIRTF telescope was placed in orbit on 24 August 2003. It

has since been renamed the Spitzer Space Telescope.

specific stiffness Specific stiffness is E/ρ, where E is Young’s modulus and ρ is the

mass density (m/V). Ideally, lightweight mirrors should be constructed from

something that has a large E (takes lots of stress with little strain) and a low

mass density. Large values of specific stiffness are ideal for building lightweight,

stiff mirrors.

Spitzer Space Telescope See SIRTF.

Steward Observatory/Mirror Lab Steward Observatory is the professional re-

search organization of the University of Arizona’s astronomy department.

strain, ε A strain is a measure of how something reacts to an outside stress (or

pressure). See Equation 2.3.

stress, σ A stress is simply a pressure: it’s a force per unit area. See Equation 2.2.

substrate In the context of this work, a substrate refers to the glass (or metal, etc)

facesheet that supports the reflective coating. For the Arizona MARS mirrors,

the substrate is the glass facesheet shown in Figure 1.3.

TPF Terrestrial Planet Finder.

tpi Threads per inch. A standard machine screw has roughly twenty threads per

inch; a higher precision screw typically has 80 threads per inch.

UA The University of Arizona.

ULE Ultra-low Expansion glass. Made by Corning, ULE is a special glass that has

a very small (0.4 ppb/o C) coefficient of thermal expansion.
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Young’s modulus A constant that relates stress exerted to how much something

will yield (the strain). Rubber has a small Young’s modulus compared to that

of steel. See Section 2.1.2.
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solution for optimum performance,
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structured facesheets and, 85–116
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active mirrors, scaling, 141

actuators

computer control of half-meter, 164

computer control of NMSD mirror,
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control software, 165–169

correction using least squares, 132,

142–150

ideal layout geometry for, 58

initial actuation scheme for small

mirrors, 164

NMSD, 124

operation of Arizona’s, 125

picture of NMSD, 126

piezo-electric, 29

pressure required to remove errors,

see Nelson’s equation

spatial frequency and, 28

use of magnets with, 30, 158

adaptive optics, 23, 175

AMSD, 175

Ball Aerospace, 38

AO, see adaptive optics

areal density, 31, 92

definition of, 175

for geosynchronous orbit, 63

of Ball AMSD, 38

of Hubble Space Telescope, 150

of James Webb, 33

of NMSD mirror, 31, 65, 150

of recent telescopes, 35

of ultralightweight half-meter, 32

aspect ratio, 55, 175
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balloons inflation, science of, 69

Be, see beryllium

bending deflection, 86–88

of an I-beam, 87

beryllium, 176

beryllium (Be) mirrors, 36–38

blocking body, 120

for ultralightweight half-meter, 156

definition of, 176

NMSD, 119

Bob Crawford, 4

Burge, Jim, 4

Burkhart, Charles, 4

CCD

definition of, 176

center of mass, 49–51

for a T (openback) cell, 101

transfer of axes, 51

centroidal axes, 51, 176

coeff. of thermal expansion, see CTE

COI, 176

NMSD, 179

NMSD structure, 123

original MARS structure, 29

ultralightweight half-meter, 154

CTE

discrete patches of, 56–74

equation for, 48

explanation of, 176

for ULE glass, 64

gradient patches of, 74–82

Cuerden, Brian, 4

NMSD deblocking scheme, 120

stressless loadspreader attachment

scheme, 159

D, see flexural rigidity

Ds, see shear stiffness

deblocking, 177

NMSD, 120–121

pictures of, 121

ultralightweight half-meter, 156

E, see Young’s modulus

E6 glass, 107, 119–120

description of, 177

NMSD, 118

examples

bending for a LW’d vs. solid plate,

91–92

calculating I for a ruler, 51

designing an 2 m active mirror, 63

designing an aluminum openback,

108

designing an E6 sandwich, 107
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least squares solution for correcting

an active mirror, 143–149

flexural rigidity, 47, 58, 68

definition of, 47

forces, 42

generation, 177

ultralightweight half-meter, 155

geosynchronous orbit, 32, 63, 152–153,

177

definition of, 153

Gohman, Paul, 126, 155

Hartmann mask, 129

Helmholtz equation, 79

HeNe, 177

Hinz, Phil, 29

Hodge, Randall, 155

Hooke’s law, 78

Hubble Space Telescope, 22

inflection point

definition of, 178

interferogram

definition of, 178

for ultralightweight half-meter, 165

NMSD infrared, 135

NMSD visible, 136

test coupon, 163

interferometry, 127

Invar, 158

definition of, 178

James Webb Space Telescope, see ac-

tive mirrors, JWST

JWST, see active mirrors, JWST

launch vehicles, 24

least-squares solution for actuator cor-

rection, see actuators, correc-

tion using least squares

loadspreaders, 66

NMSD, 121–123

optimizing a design with, 65–67

low Earth orbit, 152

definition of, 179

MARS mirrors, see active mirrors

Mehta, Pravin, 78–80, 93

membrane

supporting with discrete points, 57

metrology

IR interferometry, 134–136

NMSD, 126–136

visible interferometry, 136

Miller, Steve, 156, 157

mirror blank

concerns for handing a 2-m, 141
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definition of, 176

NMSD, 118

Palomar, 92

photo of NMSD, 119

ultralightweight half-meter, 155

mirrors

conventional, see mirrors, passive

passive, 26

moment of inertia, 48–52

for a ruler, 51

for a sandwich, 94

for an openback, 101–102

transfer of axes, 51, 102

moments, 42

motor oil, hot, 120

Nelson’s equation, 58

revised for thermal gradients, 81

revised for thermal patches, 59, 72

neutral axis, 102

definition of, 179

NGST, 31, 179

NMSD

acronym definition, 179

actuators, 124

final surface measurement, 137

glass

casting photos, 119

deblocking, 120–121

deblocking photos, 122

fabrication, 118–119

fabrication cartoon, 120

specifications, 117

IR interferometry, 134–136

loadspreaders, 121–123

metrology, 126–136

Hartmann test, 128–134

least-squares solution, 142–150

successful techniques, 140–141

photo of completed, 127

suggested hardware improvements,

138–140

support structure, 123–124

system integration, 124–126

technical achievements, 137–138

visible interferometry, 136

openback geometry, see structured mir-

rors, openback

optimum active mirror design criteria,

61

opto-mechanics, 42–53

Palusinski, Iwonka, 4

passive mirrors, 55, 179

Picomotors, New Focus, 28, 145

pitch, 119–122, 156, 157
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compliance, 79

definition of, 180

Poisson’s ratio, 47, 180

PZT

definition of, 180

in Picomotors, 29

radius of curvature

due to thermal bending, 77

reaction structure, 27

definition of, 181

for MARS prototypes, 29

for NMSD, 31, 123

for ultralightweight half-meter, 33,

154

rib ratio, 104

rms, definition of, 181

rss, definition of, 181

RTV adhesive

definition of, 181

for NMSD deblocking, 120

for ultralightweight 0.5 m loadspread-

ers, 158

shear and tensile forces on, 159

sandwich geometry, see structured mir-

rors, sandwich

scaling laws, 100

Schenk, Norm, 4

seeing, 24

definition of, 181

self weight deflection

definition of, 181

of original MARS mirrors, 29

of ultralightweight half-meter pro-

totype, 169

shear deflection, 89–91

for pizza dough, 90

for scissors, 89

shear modulus, 90, 111

shear stiffness, 90, 181

definition of, 181

equation for, 79

shell, definition of, 181

SiC mirrors, 38

Silicon carbide mirrors, see SiC mirrors

SIRTF, 182

Smith, Dan G., 4

space optics

challenges of, 24–25

space telescopes

benefits of, 23–24

origin of, 22

Spitzer, Lyman, 22

Stamper, Brian, 4

stiffness

for a thin plate, 78–80, 93
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Stiles, Lori, 163

strain, 182

definition of, 44

stress, 182

definition of, 43

stress-strain curve, 45

structural efficiency

comparison of openback and sand-

wich, 113

definition of, 93–94

equation for a sandwich, 95

equation for an openback, 103

optimized for a sandwich, 94–100

optimized for an openback, 100–107

scaling laws for a sandwich, 100

scaling laws for an openback, 107

structured mirrors, 85–116

cartoon of, 85

openback, 100–107

sandwich, 94–100

substrate, definition of, 182

Terrestrial Planet Finder, see TPF

thermal bending, 76–78

thickness ratio TR, 97

TPF, 34, 182

TR, see thickness ratio

transfer of axes, see moment of inertia,

transfer of axes

Tuell, Michael, 78–80, 93

ULE glass, 64, 175, 182

ultralightweight half meter

actuators, 154–155

comparison to NMSD, 154

final surface measurement, 165

glass

deblocking, 156

deblocking photo, 157

fabrication, 155–156

loadspreaders

attachment scheme, 158–161

attachment scheme photos, 162

design, 158

metrology test plan, 161–165

photo of completed, 163

specifications, 153

ultralightweighted half meter

support structure, 154

unit cell

for a sandwich, 95

for an openback, 101

vacuum lifting fixture, 121

Valente, Marty, 4

whiffle tree, 66, 121, 122, 153, 158



190

Young’s modulus, 183

definition of, 44

Zerodur facesheet, 28

ziggurat function, 145


