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1. INTRODUCTION 

 Thermally induced stress is a primary concern in the bonded mounting of optical 

elements. Systems that are designed to endure particularly harsh thermal conditions must employ 

athermal bonding to protect against the risks of bond or optical element failures. There are 

several closed-form solutions for athermal bond thickness about an axisymmetric optical 

element. In this tutorial I will present the Bayar equation, van Bezooijen equation, modified van 

Bezooijen equation, and aspect ratio approximation solutions for athermal bond thickness. The 

assumptions and results associated with each formulation will be discussed and applied to an 

example system.  

2. EXAMPLE SYSTEM 

 Consider a 25.4 mm diameter, 4 mm thick window made from NBK-7. As an example of 

athermal bonding consider the constraint of this optical element within a cylindrical mounting 

cell made of alloy 6061-T6. The simple window and cell are shown schematically in Figure 1. 

The window has flat edges, so the bond will have a cylindrical shape at the nominal bond curing 

temperature. The system is assumed to be free of stress at the nominal temperature. The bond 

thickness will be evaluated for two types of adhesive: 2216 B/A epoxy and RTV 566 silicone. 

Approximate values for material constants of the optical element, mounting cell, and two 

adhesives are given in Table 1. 

Figure 1: Drawing of example system. Window in blue, bond in red, cell in gray. 
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Table 1: Material constants used in example system
 

MATERIAL α(ppm/°C) Poisson ratio, ν  E (Gpa) 

N-BK7 7.1 .21 82 

6061-T6 24 .33 69 

2216 B/A (gray)
1 

102 ~.43 69 

RTV 566 200 ~.499 ~.003 

 

3. ATHERMAL BOND THICKNESS SOLUTIONS  

3.1 Principles of athermal bonded axisymmetric elements 

 Athermal bonding requires that the differential expansions of the optical element, bond, 

and mounting cell are properly balanced to achieve zero radial stress in the optical system. In the 

case of the cylindrical geometry presented in this tutorial, we require that the bond thickness is 

chosen such that bond expansion compensates the temperature-dependent change in the gap 

between the optical element and cell. Note that we require αo < αc < αb to create an athermal 

bond, where the subscripts o, c, b refer to the optical element, cell and bond, respectively. If αo > 

αc , then αb would have to be negative, which is not practical. Matching all three CTE’s is 

another possible solution to athermal bonding, but this is difficult to achieve with readily 

available materials. Luckily, common structural materials, like aluminum and steel, have a 

greater CTE than most glasses, while adhesives tend to have quite large CTE’s. Note that the 

example system presented in this tutorial meets the criteria αo < αc < αb with readily available 

materials. 

There are several ways to treat the bond constraints which provide different limiting 

cases for bond thickness. In all cases considered in this tutorial the radial strain of the bond is 

given by
4
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where δh is the change in thickness of the bond, h is the nominal bond thickness, and ro is the 

radius of the optical element.  

The axial and tangential strains in the bond are directly influenced by the assumed 

constraints. Hooke’s Law for stress yields the following formulation for radial stress σr in the 

bond in terms of axial strain εz and tangential strain ε𝜃:4 
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Several treatments of bond constraints between the optical element and cell will be discussed in 

the following sections. In each case the constraints define εz and ε𝜃 and we solve for bond 

thickness h after setting radial stress equal to zero.  



3.2 Bayar Equation 

 The Bayar equation
2
 is the simplest formulation of athermal bond thickness. Axial and 

tangential constraints on the bond are entirely neglected so that εz = ε𝜃 = 0. This assumption 

neglects all bulk effects in the bond and ignores any constraint of the bond in shear. These 

assumptions are clearly inaccurate, but the resultant bond thickness may be useful if small 

cubical bond areas are used rather than a continuous bond-line. According to the Bayar equation 

bond thickness is given by 

  
         

     
   

Results for example system: 2216 B/A, h= 2.75 mm. RTV 566, h=1.22 mm. 

 

3.3 Van Bezooijen Equation 

 Van Bezooijen
3
 offers a much more accurate formulation of bond thickness. In this 

formulation it is assumed that the bond is perfectly constrained to the surfaces of the optical 

element and cell. To determine the axial and tangential strains, the bond’s length in the heated 

condition is taken as the average of the bond lengths at the expanded optical element and cell 

interfaces. This is a good approximation for the tangential and axial directions provided the bond 

is thin. The strain in both directions is, in fact, equal and given by 
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Using the strain equations and solving for zero radial stress, we get the van Bezooijen equation 

for bond thickness:
3 

  
         

      
  

   (   
     

 )
  

Note that the assumption of perfect bond constraint at each interface is not entirely accurate due 

to the possibility of bulging or contraction of the bond in the axial direction, especially near the 

center of the bond’s thickness. Since this effect is neglected here, the bond thickness predicted 

by the van Bezooijen equation serves as a lower limit for athermal bond thickness.    

Results for example system: 2216 B/A, h= 1.03 mm. RTV 566, h= 0.40 mm. 

3.4 Modified van Bezooijen Equation 

 To address the bulk effect of bulging and contraction of the bond in the axial direction, 

Monti
4
 gives another limiting case where axial strain is neglected. The formulation of tangential 



strain is exactly the same as it is in the derivation of the van Bezooijen equation. After solving 

for bond thickness as before, we have the modified van Bezooijen equation:
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The only difference between this equation and the van Bezooijen equation is a factor of 2 

discrepancy in the third term of the denominators. The predicted bond thickness is 

correspondingly larger, so this axially unconstrained formulation gives us an upper limit on 

athermal bond thickness.  

Results for example system: 2216 B/A, h= 1.50 mm. RTV 566, h=0.60 mm. 

3.5 Aspect Ratio Approximation 

  To develop a closed-form solution that offers the best approximation of athermal bond 

thickness, Monti
4
 considers the aspect ratio of the bond cross-section. For a bond length L in the 

axial direction, the aspect ratio of the bond is defined as         
 

 
. Monti assumes that the 

modified van Bezooijen equation corresponds to an aspect ratio of 1, meaning that a bond with 

equal thickness and height acts as if it is axially unconstrained. As shown in Figure 2, the bond is 

decomposed into constrained and unconstrained portions. The ratio of axially constrained bond is 

then defined as follows: 

             
   

 
   

 

 
          

    

Figure 2: Dimensions of unconstrained and constrained portions of bond in aspect ratio approximation 

 

This coefficient is multiplied by the formula for axial strain εz in the van Bezooijen equation to 

produce a new set of strain relations 
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The bond thickness may be written, in direct analogy to the van Bezooijen equation, as 
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The coefficient (  
 

 
) in the denominator ranges from 1 to 2 for aspect ratios in the range of 1 

to infinity. This formula reduces to the van Bezooijen equation in the limit where Raspect equals 

infinity and becomes the modified van Bezooijen equation for Raspect =1. However, h appears in 

the right-hand-side of the equation, so the quadratic formula must be used to arrive at a closed-

form solution. The aspect ratio approximation solution is most elegantly shown in its expanded 

form:
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The aspect ratio approximation offers a closed-form approach to calculating bond 

thickness as an alternative to the application of empirically determined correction factors.  

The empirical correction factors presented by Michels, Gregory and Doyle
5
 depend on 

aspect ratio as well as poisson ratio of the bond material, and are applied in place of the 

coefficient (  
 

 
) in the van Bezooijen equation. Monti

4
 compares the results of the aspect ratio 

approximation and van Bezooijen equation with correction factors. The aspect ratio is a very 

good approximation for            and Raspect > 4. Since these are relatively typical values for 

elastomeric bonding, the aspect ratio is a very useful formula for athermal bond design. If the 

aspect ratio is small it is best to use the empirical correction factors mentioned previously, or to 

model the design and optimize performance using FEA as feedback.   

Results for example system: 2216 B/A, h= 1.13 mm. RTV 566, h=0.41 mm. 

4. CONCLUSION 

 The results for athermal bond thickness in the example system are consolidated in Table 

2. Note the stark difference between results from the Bayar equation and the other formulas. This 

should be a clear indication that axial and tangential strains are very important factors in 

athermal bond design. However, according to Monti
4
 inaccuracies in cured adhesive mechanical 

constants may be the primary source of error in calculations of athermal bond thickness. The 

aspect ratio approximation is a great approach  and offers an improvement in accuracy over the 



van Bezooijen equation. If thorough testing is performed to accurately determine the cured 

properties of an adhesive under controlled conditions, then FEA correction factors can offer a 

useful improvement over the aspect ratio approximation. 

Table 2: Calculated athermal bond thicknesses results for example system 

THICKNESS 

EQUATION 

2216 B/A RTV 566 

Bayar 2.75 mm 1.22 mm 

van Bezooijen  1.03 mm 0.40 mm 

Modified van Bezooijen 1.50 mm 0.60 mm 

Aspect ratio approximation  1.13 mm 0.41 mm 
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