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Abstract

A quasi-kinematic coupling (QKC) can be used as a fixing device with low-cost and sub-
micron precision, instead of kinematic couplings. QKC consist of arc contacts formed by
mating three balls with three axisymmetric grooves. Since a QKC is not an exact
constraint, a proper design is required for producing a weakly over constrained coupling
which emulates an exact constraint coupling. In this paper, practical design of QKC,
derivation for predicting QKC stiffness, and experimental results showing repeatability is
equal to 1/4 um are covered.

This study is sponsored by Ford Motor Company, but anybody, such as photonics, optical
and other general company or institution can use this technique. Applications of this
technique can be spread over a wide field, such as an automotive engine, optical mount,
and other field requiring high precision.

1. Introduction

The quasi-kinematic coupling (QKC) is expected as a low-cost and sub-micron coupling.
The traditional couplings, such as pinned joint, tapers, dove-tails and rail-slots, are not
compatible with this condition. A kinematic coupling can provide better than 1 um
precision alignment repeatedly. But it does not satisfy the low-cost requirement, because
grooves with fine surface finish are expensive, high-hardness balls and grooves are
desired to withstand Hertzian contact stresses, and kinematic couplings need additional
flexures for sealing interfaces.

2. Quasi-kinematic coupling concept

In the case of kinematic coupling, the balls and grooves form small-area contacts. On the
other hand, in the case of QKC, the balls and grooves form arc contact. This is the
fundamental difference between kinematic coupling and QKC. Since QKC uses
symmetric geometries, it is easier to manufacture.

Figure 4 (left) shows that, for the case of kinematic coupling, there are constraints
between the balls and grooves in directions normal to the bisectors of the coupling
triangle. There is freedom of motion in directions parallel to the bisectors. On the other
hand, Figure 4 (right) shows that, for the case of QKC, there are constraint perpendicular
to the bisector and some constraint along the bisectors. Then, QKC has some degree of
over constraint.
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Figure 5 shows that the relationship between the contact angle and constraint
contributions that are parallel to the y direction. The constraint contributions can be
reduced by making the contact angle smaller, but this also reduces coupling stiffness.
QKC has stiffness-constraint trade-off. This trade-off is discussed in section 3.
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The difference between analyzing
kinematic coupling and QKC is shown in Figure 8. For analyzing QKC model, each step
is shown briefly in the following.



Step 1: material and geometry characteristics

Figure 13 and Figure 14 show geometry characteristics.
ERmation vector & =¢i+s, j+e&k

Rotatign vector —— JCS r. vector points to S
E=£1i+5‘j+£h3 1 & ke :

N )9” i
- - rics vector points to JCS,

N p "R 1l Ry —Sh

Contact Cone

Coupling Plane

Rotation point /

(X, Yoo Z5) .
g "-a,‘ Rotation point relative to CCS RG\
JCS0n" oo X (%o Yo Z2) Y
3L i 3
Coupling Centroid and CCS i Joint Coordinate System (JCS))
Jcs, .
Fig 13. of QK. Fig. 14. Geometry characteristics of quasi-kinematic coupling joints.
Step 2: imposed error motions ——

Figure 15 shows displacement Ielogs 8 Eektion N o

b o PointSI; NS @
characteristics. Final 31 position — B1(% i \W/_ Contact cone
8,0 NPsu. |/

Step 3: distance of approach Jfe—No load contact point
The axial and radial displacements, 3 :
and displacement perpendicular to
contact cone are defined by the
following equations (A.2) and (A.3).
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Step 4: modeling interface forces
The force per unit length of contact f;,(6;;) can be calculated with contact
deformation in combination with integral compliance. The relationship between
£u(0ri) and 8,(0y) is defined by

fu @) = K[82(6) it (A4)
where K is a stiffness constant and b is a rate of change in contact stiffness with
changing 0,(0).

Step 5: reaction force on an arc contact
By Figure 17., the reaction force at a contact arc j is defined by
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When a rotation matrix is considered for each vector i, j, k, the total reaction force
is defined by
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Step 6: stiffness calculation
The coupling stiffness in the direction of the error displacement is calculated by
d(Reaction)

d{Imposed error displacement)

(A11)
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Next, over constraint in QKC is considered. An over constraint is evaluated by the
constraint metric (QM) defined by

Stiffness parallel to bisector Ki | misector
Stiffness perpendicular tobisector ki .
When the relieved groove joint design described by Figure 9A and Table 1 is considered,
the joint’s radial stiffness plot in Figure 9B can be obtained by the above theory. The
relationship between O.ontact and CM or the maximum radial stiffness K,y is described in
Figure 10. By this figure, the better condition of CM and K.« can be chosen for a
specification.
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4. Testing the MathCAD model

When the MathCAD tests a model that L
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5. Experimental result

The experimental setup and repeatability
results are shown in Figure 11. Ocoptact 1S
set to 60 deg., then CM is 0.10 in this
case. The result shows the coupling
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Fig 11. QBIC (A) vest seteg amd (B) repeatability revalts for 0 = 32°, foanes = 60°) K (N/pum™™ ) = 15 1072 b 10T, Re = 0,66 cm; 25N preload.

The ball-groove sets would cost about $1
for greater than 100,000 couplings per year, or about $60 for less than several hundred
per year.

7. Conclusion

This paper provides the theory and metric that can minimize the degree of over constraint
in QKC. Experimental result shows that QKC can provide precision alignment (1/4 um)
that is comparable to kinematic couplings. Subsequent research will study an alignment
errors caused by mismatch between ball and groove patterns.
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