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1. Introduction 
Aspheric surfaces offer numerous advantages in designing optical systems.  To ascertain that a 
fabricated asphere meets the design specifications, it has to be tested.  The testing method discussed in 
this tutorial is known as the Computer Generated Hologram (CGH) null test.  The general idea is shown 
in Figure 1; spherical wavefront originating from an interferometer transmits through the CGH and 
illuminates the aspheric mirror.  If the phase of the reflected aspheric wavefront is canceled completely 
by the CGH then the reflected light will focus back into the interferometer.  In fact the CGH acts as a 
certifier if the reflected light is focused back to its origin the aspheric surface passes the test; otherwise 
the mirror has to be polished to match the design specifications and tested again.   

                                                              

Figure 1. General CGH null test configuration 

2. CGH Design Process 
Designing the CGH involves a number of steps that are illustrated in Figure 2.  The end result of this 
process is a CGH with wavy line pattern etched onto a chrome substrate using lithographic techniques.  
The process starts with optimization of the CGH in Zemax; the output of this step is a set of Zernike 
coefficients that define the phase function of the CGH.  These coefficients would have to be converted 
into a 2D bit map or vector image before fabrication.  This tutorial only covers the first block in the 
design process which is the optimization of the main CGH in Zemax.   

Aspheric mirror 

CGH 
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Figure 2. CGH design steps 

3. Design Example 
In this example we use CGH to test an off axis parabolic mirror, the diagram is shown in Figure 3.  

                             

Figure 3. Diagram of the design example 

Light reflected off of the CGH substrate can cause ghost fringes, therefore the CGH is tilted slightly about 
x axis to minimize this effect.  According to this geometry light from the interferometer passes through 
CGH and is incident on the mirror.  The mirror reflects the light back along the same path; this is known 
as the double pass geometry in system modeling.  The residual calculation error in the simulation may 
result in retro reflections that do not exactly travel along the incident rays.  To avoid that problem the 
concept of virtual glass with zero index is adopted in simulation; this concept is explained in Appendix I.  
The use of virtual glass allows us to model the system in three steps: single pass, phase design, and 
double pass.  In the single pass the testing geometry is set up and the size and position of the CGH is 
determined.  During the phase design the phase function of the CGH is calculated and optimized by 
setting the CGH surface type as Zernike fringe phase.  In the double pass, the optical system is mirrored 
about the vertex of the parabolic mirror.  The wavefront incident on the CGH can be compared to the 
wavefront emerging from it in order to validate the design. 

3.1. Single Pass Testing Geometry 
The off axis mirror is part of a parabolic mirror with radius of curvature of 1288.1 mm, conic constant of 
-1 and a diameter of 562 mm.  To illuminate the off axis mirror portion the coordinate system at the 
vertex of parabolic mirror has to be transformed to the center of the off axis mirror.  The diameter of 
the off axis mirror D = 150 mm; hence the origin of the coordinate system has to move down y axis by: 
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It needs to shift along z axis by: 

𝑠 =  
𝑑2

2𝑅
=

2062

2 ∗ 1288.1
= 16.47 𝑚𝑚 

The coordinate system is also rotated by angle α about x axis; this results in the hologram being parallel 
with the vertex of the off axis mirror. 

𝛼 = arctan �
𝑑
𝑅
� = arctan �

206
1288.1

� =  9.07° 

The index of refraction of the mirror is set to zero.  According to the virtual glass model the refracted 
rays will be perpendicular to the surface of the mirror and will focus at the center of curvature. 
The position of the CGH determines its size.  As the size of the CGH increases the spacing between the 
lines on the CGH pattern becomes larger which makes it more accurate but also more expensive.  In this 
design the CGH is placed at 136 mm from best focus to minimize distortion and keep the size 
manufacturable.  We are only concerned with the correct geometry at this point, therefore a standard 
surface is used for the CGH; in the next section this surface is changed to Zernike fringe phase.  
Operands CENX and CENY are used in merit function to insure that the x and y centeroid of the ray 
bundle incident on the CGH surface coincide with the optical axis.   
In the actual testing setup the wavefront emerging from the CGH will be spherical and converging to a 
point.  In this setup because the CGH is placed after best focus the wavefront emerging from it will be 
diverging.  To simulate the physical model, the CGH and best focus are mirrored along the optical axis 
about surface 16.  The coordinate break pair on surfaces 11 and 14 tilts the CGH by about 3° to reduce 
ghost fringe effect.  The surface data for the single pass geometry is listed in Table 1.   

Table 1. Single pass surface data 
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Figure 4. Layout of the single pass design 

The footprint diagram at the image plane, shown in Figure 5, reveals the width of the spot size.  This 
parameter is important since it is used to calculate the number of waves of tilt needed to separate 
various diffraction orders.   

𝑤 =  0.3872 ∗ 2 ≅  0.8 𝑚𝑚 

 

Figure 5.  Footprint diagram at image plane 

3.2. Phase Design 
The phase function of CGH is modeled using the Zernike Fringe Phase surface in Zemax.  The wavefront 
at the CGH can be expressed as a summation of the various Zernike polynomial terms with the 
appropriate coefficients (Appendix II).  In the Extra Data Editor the maximum number of Zernike terms 
was specified as 36; the coefficients are normalized to the radius of the CGH surface which is 8.1mm.  In 
order to separate the various diffraction orders some tilt must be added to the CGH.  The tilt has to be 
carefully balanced since a large tilt drives the fabrication cost up and a small one results in overlap 
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among various orders.  The Zernike Fringe Phase coefficient for tilt is Z2 and its value is calculated using 
the equation below as Z2 = N/2 ≈ 110: 

𝑁 =  
3
2

 𝑤
𝐷
𝜆 ∗ 𝑙

=
3
2

 0.8
150

. 000632 ∗ 1307.1
= 217 

This equation is derived in reference [4]; 𝑁 is the number of waves of tilt needed to separate the 
diffraction orders; 𝑤 is the width of the spot size which was determined in the previous section as 
0.8mm.  𝐷 = 150mm is the diameter of test wave at the off axis parabolic mirror; 𝑙 is the distance from 
the off axis parabolic mirror to the best focus position:  

𝑙 = 1288.1 + 19 = 1307.1 𝑚𝑚 

The rest of the Zernike coefficients are set as variables.  In the Lens Data Editor the diffraction order for 
the Zernike fringe phase surface is entered as +1; this results in optimization of the CGH for the +1 order.  
To optimize, default merit function is used which minimizes RMS spot size.   

Table 2. Surface data for phase design 

 

The optimized Zernike coefficients are tabulated below.  These coefficients are tested in the double pass 
design to determine whether the actual geometry can produce a null result. 

Zernike 
Coefficient Value  Zernike 

Coefficient Value  Zernike 
Coefficient Value 

A 1 0.00E+00 A 13 3.85E-04 A 25 -9.49E-03 
A 2 1.10E+02 A 14 6.89E-05 A 26 0.00E+00 
A 3 0.00E+00 A 15 -2.50E+00 A 27 -7.18E-01 
A 4 -3.27E+01 A 16 -3.94E-01 A 28 -2.89E-01 
A 5 7.00E+01 A 17 -3.07E+00 A 29 -4.89E-05 
A 6 -1.74E-01 A 18 -8.31E-05 A 30 -1.80E-05 
A 7 -6.57E-02 A 19 -3.30E-05 A 31 7.30E-02 
A 8 -2.89E+01  A 20 1.60E+00  A 32 6.16E-03 
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A 9 -4.41E+00  A 21 6.22E-01  A 33 2.35E-05 
A 10 -4.13E-04  A 22 1.06E-04  A 34 2.06E-06 
A 11 1.24E+01  A 23 -3.56E-06  A 35 -4.81E-03 
A 12 6.26E+00  A 24 -1.76E-01  A 36 5.94E-04 

The default merit function minimized the RMS spot size by reducing aberrations.  To insure accuracy 
enough sampling points must be selected in the definition of default function; in this example we used 
13 rings and 12 arms.  Despite the adequate amount of sampling the residual amount of aberration 
results in a Peak to Valley optical path difference of 0.1λ.  This number is not significant but it should not 
be overlooked since it indicates on the limitations of this kind of optimization.  It is important to note 
that fitting the phase function of the CGH to Zernike polynomials is not suitable for modeling high spatial 
frequencies.  Increasing the size of the CGH improves the Zernike fitting however if increasing the size is 
not an options a fitting method other than Zernike polynomial must be used.  

 

Figure 6. OPD plot at the CGH plane 

3.3. Double Pass Testing Geometry 
The double pass geometry models the physical setup.  The objective here is to check the separation of 
various diffraction orders and determine whether they are sufficiently apart.  The general approach to 
constructing this model is to mirror the single pass design about the y axis of the parabolic mirror.  To 
get the correct representation, the details outlined below must be observed. 

1. Start with the single pass design for which the phase function of the CGH has been optimized 
2. Copy the off axis parabolic mirror (OAP) to image surface from the single pass design and paste 

them in reverse order  
3. Follow that by pasting OAP to image surface in the same order as the single pass 
4. The direction of rays in double pass is opposite of the single pass.  Therefore the sign of the x 

axis has to flip.  The signs of all rotations about the y axis need to be flipped and the sign of the 
diffraction order of the CGH flips from +1 to -1 

5. The sign of the radius of curvature of the second OAP become negative 
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6. If the OAP is set as the origin of the global coordinate system the coordinates of each surface 
can be compared with the corresponding mirrored surface; this can be helpful in debugging the 
layout of the system.   

Table 3. Surface data for double pass 

 

 

 
Figure 7. Layout of the double pass design 
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Figure 8. (a) Light traveling from CGH to AOP at best focus, (b) Light after reflection from AOP at best focus 

Figure 8 shows the footprint diagram at the image surface for multiple diffraction orders.  To generate 
such diagram the Multi-Configuration Editor in Zemax is set to display results for -3 to +3 diffraction 
orders.  In diagram (a) light travels from CGH to OAP and in diagram (b) light is reflected from OAP onto 
the CGH and propagates through the rest of the system.  The +1 diffraction order, which the phase 
function of the CGH was optimized for, appears in red.  It separates nicely from all the other orders, has 
a width of 0.8 mm, and looks identical in both the forward and return diagrams.  To block orders other 
than +1 an aperture can be placed at the best focus. 
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4. Sources of Error 
The CGH design has to account for a few sources of error that arise in the fabrication and testing phase.  
Pattern distortion, which is the error in the positioning of the fringe lines, is an error caused by the 
plotter device.  The wavefront error due to pattern distortion for the +1 order is: 

∆𝑊 =  
𝜀
𝑠
𝜆 

Where ε is pattern distortion error and s is the fringe spacing.  Typical values of 0.1 µm of pattern 
distortion and 10 µm of fringe spacing result in wavefront error of 0.01λ, which is feasible.  
Misalignment of CGH during testing is another source of error.  To tackle this problem, alignment marks 
and cross hairs are placed around the main CGH.  These marks allow for accurate positioning of the CGH 
with respect to the interferometer beam and the rest of the setup.  The alignment hologram is designed 
simultaneously with the main hologram and it is an essential component of the CGH for practical testing 
purposes.  The procedure for designing the alignment CGH was not covered in this tutorial, for more 
information on this topic review reference [6].   

  

Figure 9. Testing and Alignment CGH on a single substrate [6] 

5. Conclusion 
In this tutorial the phase function of CGH was optimized for a particular geometry in which an off axis 
parabolic mirror was being tested.  The process was carried out in three steps; a few lens design tricks 
such the virtual glass concept and the mirroring of best focus were employed to ease the difficulties in 
modeling a physical setup.  The CGH was optimized for the +1 order which separates well from the other 
diffraction orders and maintains its profile.  An important practical consideration that was not discussed 
was the diffraction efficiency which for a typical amplitude hologram is about 10%.  The output of this 
tutorial is an optimized phase function for the CGH.  The next step in realizing the CGH is to convert the 
phase function to a 2D line pattern that can be plotted and etched on a chrome substrate.  However 
prior to converting the phase function, alignment CGH must be added to the testing CGH to assist with 
the accurate placement of the fabricated CGH in the testing setup.    
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Appendix I – Virtual Glass 
Figure 10 shows the schematic for a virtual glass; light from infinity is incident on the glass with zero 
index.  To satisfy Snell’s law 

𝑛1𝑠𝑖𝑛𝜃1 = 𝑛2𝑠𝑖𝑛𝜃2 

 for n1 = 0, sin θ2 has to equal zero which means θ2 = 0, hence the refracted ray is perpendicular to the 
aspheric surface.   This trick allows us to analyze the system in single pass, optimize the design, 
determine the parameters and apply those to the double pass system for a complete treatment of the 
problem.  

 

Figure 10.  Schematic of a virtual glass 
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Appendix II – Zernike Fringe Phase Surface 
The generalized form of the wavefront function expanded in terms of the Zernike polynomial is: 

Φ = 𝑀�2𝜋𝐴𝑖𝑍𝑖(𝜌,𝜑)
𝑁

𝑖=1

 

M is the diffraction order of the CGH which is specified as +1 in this simulation.  N is the number of 
Zernike terms, which Zemax supports up to 37, all of which are used in this optimization.  Zi (ρ,φ) is the 
ith term in the Zernike polynomial series and Ai is the coefficient of that term in units of waves.  Zi is the 
function of ρ which is the normalized radial ray coordinate and φ which is the angular ray coordinate 

Ai Zi (ρ,φ)  Ai Zi (ρ,φ) 

A1 1  A19 (5ρ2 - 4) ρ3 cos(3φ) 
A2 ρ cos(φ)  A20 (5ρ2 - 4) ρ3 sin(3φ) 
A3 ρ sin(φ)  A21 (15ρ4 – 20ρ2 + 6) p2 cos(2φ) 
A4 2 ρ2 - 1  A22 (15ρ4 – 20ρ2 + 6) p2 sin(2φ) 
A5 ρ2cos (2 φ)  A23 (35ρ6 - 60 ρ4+ 30 ρ2- 4) ρ cos(φ) 
A6 ρ2 sin(2 φ)  A24 (35ρ6 - 60 ρ4+ 30 ρ2- 4) ρ sin(φ) 
A7 (3 ρ2- 2) ρ cos(φ)  A25 (70p ρ8- 140 ρ6+ 90 ρ4- 20 ρ2+ 1) 
A8 (3 ρ2- 2) ρ sin(φ)  A26 ρ5 cos(5φ) 
A9 (6 ρ4- 6 ρ2+ 1)  A27 ρ5 sin(5φ) 
A10 ρ3 cos(3 φ)  A28 (6 ρ2- 5) ρ4 cos(4φ) 
A11 ρ3 sin(3 φ)  A29 (6 ρ2- 5) ρ4 sin(4φ) 
A12 (4ρ2-3) ρ2 cos(2φ)  A30 (21 ρ4- 30 ρ2+ 10) ρ3 cos(3φ) 
A13 (4ρ2-3) ρ2 sin(2φ)  A31 (21 ρ4- 30 ρ2+ 10) ρ3 sin(3φ) 
A14 (10ρ4 – 12ρ2 + 3) ρ cos(φ)  A32 (56 ρ6- 105 ρ4 + 60 ρ2 - 10) ρ2 cos(2φ) 
A15 (10ρ4 – 12ρ2 + 3) ρ sin(φ)  A33 (56 ρ6- 105 ρ4 + 60 ρ2 - 10) ρ2 sin(2φ) 
A16 (20ρ6 – 30ρ4 + 12ρ2 - 1)  A34 (126 ρ8- 280 ρ6 + 210 ρ4 - 60 ρ2 + 5) ρ cos(φ) 
A17 ρ4 cos(4φ)  A35 (126 ρ8- 280 ρ6 + 210 ρ4 - 60 ρ2 + 5) ρ sin(φ) 
A18 ρ4 sin(4φ)  A36 (252 ρ10- 630 ρ8 + 560 ρ6 - 210 ρ4 + 30 ρ2 - 1) 
   A37 (924 ρ12 - 2772 ρ10 + 3150 ρ8 - 1680 ρ6 + 420 ρ4 - 42 ρ2 + 1) 
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