Key Objectives K = Knowledge S = Skills

Class	Key objectives
#	
1	Introduction to Optomechanical Engineering
	K: Definition of Optomechanical engineering
	First order properties of lenses and mirrors
	K: First order optics
	object, image, cardinal point relationship
	magnification, image orientation
2	First order properties of lenses and mirrors
2	S: Decompose rotation about one point to rotation about another point plus
	translation
	S: Calculate image shift for rotation of optical system about an arbitrary point for
	object at infinity.
3	Image motion
	K: Use of optical invariant
	S: calculate image shift for a general case of any element motion
	System LOS, RSS combinations
	K: understand issues for RSS combination
	S: estimate rss combination for large number of parameters
	Testado Denseta
	<u>Lechnical Reports</u>
	- writing with a sense of audience and purpose
	- organization
	 writing reports that emphasize results, rather than process
	- use of graphics, data
	- use of appendices S: Write quality, concise technical reports
4	Prisms
	K names, properties, and applications of common prisms
	S: determine elliptical beam footprint onto a tilted plane (like a mirror)
	<u>Mirror Matrices</u>
	K definition of mirror matrices
	S determine mirror matrix from inspection
	S apply mirror matrices to determine effects of prism rotations
5	Technical drawings: concents
	K: Create 3-view orthographic projections of parts, assemblies
	K: define datum surfaces, dimensions
	K: use of control frames to specify tolerances and alignment of surfaces
6	Engineering design using to Solid Works
0	S creating a solid model of a simple assembly
	S create solid models of optical components
	S mate mechanical mount and optical surfaces to optomechanical assemblies
	Drowing in Salidworks
	S: Create 3-view orthographic projections of parts assemblies
	S: Create cutaway views of parts, assemblies
	S: Appropriately tolerance dimensions
	S: Define datum surfaces

	S: Use control frames to specify tolerances and alignment of surfaces S: Design and specify threaded interfaces
7	<u>Tolerancing Optical Systems</u> K Systems engineering approach to tolerancing S build tolerance table, adjust for performance S define compensator for tolerancing S use rules of thumb for initial mechanical tolerancing
8	Specification of Optical components K lens centration, wedge what it means and how it relates to manufacturing S Specify lens wedge S Relate tolerance on radius of curvature to surface sag S Apply rules of thumb for setting requirements Modeling in Solidworks S Create assemblies S Methods of mating parts S Definition of threaded interfaces
9	Machining and measurements K common machining methods – limitations K common measuring methods – limitations S calculate effects of Abbe offset
10	Statics K Definition of force, moment, static equilibrium S create free body diagram S Apply static equilibrium to determine reaction forces S determine constraint conditions for simple cases K Familiarity with methods of joints and sections for frames and machines
11	$\label{eq:stress} \begin{array}{l} \underline{Stress \ and \ strain} \\ \hline K \ Understand \ normal \ and \ shear \ stress \ and \ strain, \ Poisson \ effect \\ \hline K \ Definition \ of \ material \ properties \ E, \ G, \ E_B, \ v, \ \sigma_y \ , \ \sigma_{PEL} \ \ \sigma_{ULT} \\ \hline S \ Calculate \ elongation \ due \ to \ normal \ loads \\ \hline S \ Determine \ effective \ stiffness \ for \ combination \ of \ series \ - \ parallel \ load \ paths \\ \hline S \ Use \ bulk \ modulus \ to \ determine \ stiffness \ of \ constrained \ layer \end{array}$
12,13	Deflections under loading K Understand solid mechanics of deformations for beams with simple loading – axial, shear, torsion, bending S calculate I, J for simple geometry, look it up for more general cases S use tables to determine angular and lateral deflections of beams for simple loading S use superposition to determine beam deflections for more general cases S use superposition to solve problems that have overconstraint S apply Maxwell's reciprocity to simple cases S Calculate stiffness for simple geometry, determine resonant frequency S assess stability for Euler buckling
14	Finite Element Modeling: theory and applications K: Understand the calculations performed by FE code K: names and application of different types of elements K: Use of FE analysis to guide the engineering design process
15	Thermal DistortionsK: Understand thermal expansionK: Know about materials with very low CTES: Calculate thermal distortion for simple casesS: Apply material conductivity to determine thermal gradient, heat fluxS: Apply thermal diffusivity to determine conductive time constantS: Athermalize using different materials, geometry
16	Kinematic constraints K Understand principles of kinematic constraint K Understand usefulness and limitations of semi-kinematics S Define kinematic and semi-kinematic interfaces S Calculate stiffness and stress for point contacts

17	Introduction to Finite Element Modeling in SolidWorks K: Importance of mesh control, use of stress concentration factors. S: Create finite element model, including boundary conditions S: Apply load to FEM, determine deflections, stresses S: Use different types of elements in SolidWorks S: Use Solid Works finite element to predict lowest modes of vibration S: Use SolidWorks FEM to establish buckling stability S: Apply thermal variations and gradients, determine stress and deflection S: Set mesh density to provide accurate deflections, stresses
18,19	Mechanical materials K: know approximate values of all common material constants for aluminum K: familiarity with special issues with common metals, knowledge of important constants
	Optical materials K: know approximate values of all common material constants for BK7 K: familiarity with special issues for common classes of materials K: know approximate values for material properties for common optical materials S: calculate change in focus due to temperature for simple optical systems S: athermalize mechanical distances, optical systems
	Adhesives K: Familiarity with classes of adhesives, issues, methods S: Calculate stiffness for elastomeric adhesives S: Calculate thermally induced stress for simple bonded joints
20	FastenersK: Definitions of metric and English fastenersK: Familiarity with types and sources of specialty hardwareS: Correctly call out holes for fasteners on a drawingS: Include fasteners in Solid Works models, assemblies, Bill of materialsS: Use tables to find dimensions and torque settings for common fastenersS: Find and procure fasteners and specialty hardware
	Shock and Vibration K: Dynamic response for Mass-spring-damper system K: Definition of PSD, acceleration spectrum S: Estimate performance of vibration isolation system S: Estimate shock loading for simple case
21	Flexures and adjustments K: Understand 6 DoF constraints, adjustments K: understand use of flexures to constrain some and allow other degrees of freedoms K: use of flex pivots, blade flexures K: use of geometry, differential flexure for small motions. S: specify use of shims, preloaded screws push-pull screws for adjustments S: use liquid pinning for stable connection S: choose materials for flexures S: calculate stiffness for simple flexures
22	Stages and motion control K: Understand elements of any translation or rotation stage S: Calculate effect of angle coupled through Abbe offset S: trade off different issues and be able to choose stages - linear stage - rotary stage - till stage K: understand geometry of hexapod for motion control
24	Concepts for mounting optical elements
	K: understand how to define 6 DoF constraints
	S: choose between mounting concepts: clamping and bonding

	 S: estimate thermal survival for bonded joints K: understand issues for choosing glass-metal interface control of position and geometry, coupled with manufacturing tolerance limit stress due to thermal and shock loading <u>Mounting of windows</u> K: mounting techniques for windows S: Calculate stresses for pressure windows <u>Mounting of prisms</u> K: issues with bonding or clamping prisms S: Calculate survivability for prisms
25	Mounting of lenses K: separate the functions of the mount: safe constraint and dimensional precision. S: design simple lens barrel for multiple lenses K: understand difference between mechanical and optical surfaces of a lens and how the mounting details accuracy K: understand the techniques used to achieve tolerances that are tighter than the machining precision <u>Data analysis in SAGUARO</u> S: operate SAGUARO, reading data and using canned modules
26	Mirror mounts K: understand basics for controlling mirror errors - fully constrain the rigid body degrees of freedom - don't over constrain and distort the mirror - allow thermal expansions - avoid applying moments K: sources of error for mirror mounts K: use of whiffle tree, flexures for axial support K: use of tangent, radial, and distributed lateral supports S: define simple bonded or clamped mount for small mirror S: estimate performance of simple bonded or clamped mirror mount S: estimate self-weight deflection for solid mirrors on simple supports Modeling mirror distortion S: create solid model, finite element model of simple mirror S: provide constraints, evaluate self-weight deflection S: export data from SolidWorks, perform Zernike fit