Introduction to FEA

Won Hyun Park

FEA Pitfalls

Tony Rizzo (Bell Labs) quotes:

- "Some engineers and managers look upon commercially available FEA programs as automated tools for design. In fact, nothing could be further from reality than that simplistic view of today's powerful programs. The engineer who plunges ahead, thinking that a few clicks of the left mouse button will solve all his problems, is certain to encounter some very nasty surprises."
- "With the exception of a very few trivial cases, all finite element solutions are wrong, and they are likely to be more wrong than you think. One experienced analysis estimates that 80% of all finite element solutions are gravely wrong, because the engineers doing the analyses make serious modeling mistakes."
- "Finite element analysis is a very powerful tool with which to design products of superior quality. Like all tools, it can be used properly, or it can be misused. The keys to using this tool successfully are to understand the nature of the calculations that the computer is doing and to pay attention to the physics."

FEA Theory

- Finite element method numerical procedure for solving a continuum mechanics problem with acceptable accuracy.
- Subdivide a large problem into small elements connected by nodes.

• FEM by minimizing the total potential energy of the system to obtain primary unknowns - the temperatures, stresses, flows, or other desired

FEA example for spring

Equilibrium : Minimum of Potential energy

(Assume 1D problem : x axis)

$$\Pi = strain\ energy\ -work = \frac{1}{2}\sigma\varepsilon\ -Fx$$
$$\frac{\partial\Pi}{\partial x} = 0$$

For a spring,

$$\Pi = \frac{1}{2}kx^2 - Fx, \quad \frac{\partial\Pi}{\partial x} = kx - F = 0$$

$$\Rightarrow F = kx$$

General FEA formula

The total potential energy can be expressed as: $\Pi = \frac{1}{2} \int_{\Omega} \sigma^{T} \varepsilon dV - \int_{\Omega} d^{T} b dV - \int_{\Gamma} d^{T} q dS$

The total potential energy of the discretized individual element: $\Pi_{e} = \frac{1}{2} \int_{\Omega_{e}} u^{T} (B^{T} EB)^{T} u dV - \int_{\Omega_{e}} u^{T} N^{T} p dV - \int_{\Gamma} u^{T} N^{T} q dS = 0.$

 $\frac{\partial \Pi_e}{\partial u} = \text{O gives: } \mathbf{F} = \mathbf{K} \mathbf{u}, \text{ where K is stiffness Matrix, [K].}$

FEA Solution

Simple Hook's law

$[F] = [K] \cdot [u]$

 $[u] = [K]^{-1} \cdot [F]$

System stiffness matrix : 1D example

How to build the stiffness matrix

B.C and solve

Boundary condition

A node is simply a coordinate location in space where a DOF (degree of freedom) is defined.

Nodes – Properties and Characteristics

- Infinitesimally small
- Defined with reference to a global coordinate system
- Typically nodes are defined on the surface and in the interior of the component you are modeling
- Form a grid work within component as a result of the mesh
- Typically define the corners of elements
- Where we define loads and boundary conditions
- Location of our results (deformation, stress, etc.)
- Nodes are the byproduct of defining elements

An element is a mathematical relation that defines how a DOF of a node relates to the next.

Elements – Properties and Characteristics

- Point, 2D and 3D elements
- Define a line (1D), area (2D) or volume (3D) on or within our model
- Dimensions define an "Aspect Ratio"
- A set of elements is know as the "mesh"
- Mesh shape and density is critical to the analysis
- Typically have many options that may be preset for the user
- Elements are typically what we define

SolidWorks Simulation

Solid Mesh

• TETRA4 and TETRA10 (4 &10 node tetrahedron solid elements)

Shell Mesh

SHELL3 and SHELL6 (3 & 6 node thin
 s)

Problems, Pitfalls and Tips

Requires planning and element / DOF knowledge

 The element defines the number of active DOFs.

TETRA4 & TETRA10 Elements

- 3 translational DOF per node
- 1 DOF per node for thermal
- TETRA4 (linear) TETRA10 (parabolic)
- Supports adaptive "P" method

SHELL3 & SHELL6 Elements

- 6 DOF per node (3 translational + 3 rotational)
- 1 DOF per node for thermal
- Membrane and bending capabilities
- Uniform thickness element
- SHELL3 (linear) SHELL6 (parabolic)
- Supports adaptive "P" method

4-node tetrahedral mesh

The *unit reference tetrahedron has corners* at {0,0,0}, {1,0,0}, {0,1,0}, {0,0,1}

	$\int 4-6\nu$	1	1	$-2\hat{\nu}$	$-\tilde{\nu}$	$-\tilde{\nu}$	$-\tilde{\nu}$	-2ν	0	$-\tilde{\nu}$	0	-2ν \neg
	1	4 - 6v	1	-2ν	$-\tilde{\nu}$	0	$-\tilde{\nu}$	$-2\hat{\nu}$	$-\tilde{\nu}$	0	$-\tilde{\nu}$	-2ν
	1	1	4 - 6v	-2ν	0	$-\tilde{\nu}$	0	-2ν	$-\tilde{\nu}$	$-\tilde{\nu}$	$-\tilde{\nu}$	$-2\hat{\nu}$
	$-2\hat{\nu}$	-2ν	-2ν	$2\hat{\nu}$	0	0	0	2ν	0	0	0	2ν
	$-\tilde{\nu}$	$-\tilde{\nu}$	0	0	$\tilde{\nu}$	0	$\tilde{\nu}$	0	0	0	0	0
$\mathbf{K}^e = \hat{E}$	$-\tilde{\nu}$	0	$-\tilde{\nu}$	0	0	$\tilde{\nu}$	0	0	0	$\tilde{\nu}$	0	0
	$-\tilde{\nu}$	$-\tilde{\nu}$	0	0	$\tilde{\nu}$	0	$\tilde{\nu}$	0	0	0	0	0
	-2ν	$-2\hat{\nu}$	-2ν	2ν	0	0	0	$2\hat{\nu}$	0	0	0	2ν
	0	$-\tilde{\nu}$	$-\tilde{\nu}$	0	0	0	0	0	$\tilde{\nu}$	0	$\tilde{\nu}$	0
	$-\tilde{\nu}$	0	$-\tilde{\nu}$	0	0	$\tilde{\nu}$	0	0	0	$\tilde{\nu}$	0	0
	0	$-\tilde{\nu}$	$-\tilde{\nu}$	0	0	0	0	0	$\tilde{\nu}$	0	$\tilde{\nu}$	0
	$\lfloor -2\nu$	-2ν	$-2\hat{\nu}$	2ν	0	0	0	2ν	0	0	0	2î

 $\hat{E} = E/(12(1-2\nu)(1+\nu)), \, \tilde{\nu} = 1-2\nu \text{ and } \hat{\nu} = 1-\nu$

10-node tetrahedral mesh

	447	324	72	1	-6	-12	54	48	0	94	66	36	-152	-90	12
	324	1032	162	24	-104	-42	24	216	12	60	232	84	-180	-32	72
	72	162	339	0	-30	-35	0	24	54	24	60	94	-24	36	-8
	1	24	0	87	-54	-36	18	-24	0	10	-18	-12	-32	-54	12
	-0	-104	-30	- 34	54	24	-12	24	12	0	70	30	30	208	76
	54	24	-35	-30	-12	ő	108	0	0	-36	-12	40	72	12	0
	48	216	24	-24	72	24	0	432	õ	-24	-144	-48	24	288	48
	0	12	54	0	12	18	0	0	108	0	-24	-36	0	24	72
	94	60	24	10	0	0	-36	-24	0	204	108	72	104	60	24
	66	232	60	-18	76	36	-12	-144	-24	108	492	216	48	308	96
	36	84	94	-12	36	46	0	-48	-36	72	216	312	24	120	140
	-152	-180	-24	-32	36	48	72	24	0	104	48	24	1416	648	144
Ke=	-90	-32	36	-54	268	108	12	288	24	60	308	120	648	3936	864
	55	12	-8	- 83	54	12	0	48	12	-26	-30	140	144	864	1416
	42	112	-6	90	-260	-90	36	-360	-36	-24	-68	-12	-336	-1424	-96
	-12	-30	19	12	-54	-83	0	-72	-90	0	12	10	0	96	-248
	-311	-180	-24	19	-18	-12	-198	-144	0	58	54	36	232	456	144
	-252	-992	-126	0	-32	-18	-72	-792	-36	36	88	36	336	352	96
	-24	-90	-275	0	-18	-17	0	-72	-198	24	36	58	96	192	232
	-431	-288	-96	11	-6	-12	18	24	0	-350	-234	-132	136	216	48
	-306	-1040	-234	6	-28	-6	12	72	-12	-216	-860	-324	216	256	-144
	-132	-306	- 395	-12	6	11	0	-24	18	-96	-252	-386	48	-288	-152
	95	84 128	24	- 39	-272	-126	-18	-48	-12	-98	-302	-180	-680	-048	-240
	24	42	50	48	-126	-167	0	-24	-18	-24	-180	-242	-240	-576	-680
	148	84	24	28	-12	0	72	72	0	40	0	-24	-704	-288	-96
	114	448	84	-42	148	60	36	288	72	36	268	72	-288	-2384	-576
	36	96	148	-12	48	64	0	144	72	-24	0	4	-96	-576	-848
	55	42	-12	-311	-252	-24	-431	-306	-132	95	60	2	4 1	48 114	3
	48	112	-30	-180	-992	-90	-288	-1040	-306	84	12	8 4	2 8	4 448	9
	0	-6	19	-24	-126	-275	-96	-234	- 395	24 50	30		9 2	4 84	14
	54	-260	-54	-18	-32	-18	-6	-28	-12	- 39	-22	1	26 -	10 -4.	2 – 1 1 – 1
	12	-90	-83	-12	-18	-17	-12	-6	11	12	-12	6 -1	67	0 60	6
	-90	36	0	-198	-72	0	18	12	0	-18	-2	4	0 7	2 36	(
	72	-360	-72	-144	-792	-72	24	72	-24	-48	-7	2 -	24 7	2 288	3 14
	0	-36	-90	0	-36	-198	0	-12	18	0	-1	2 -	18	0 72	7
	-26	-24	0	58	36	24	-350	-216	-96	-98	-3	6 -	24 4	0 36	-3
	-30	-68	12	54	88	36	-234	-860	-252	18	-39	2 -1	80	0 268	8 (
	-12	-12	10	36	36	58	-132	-324	- 386	12	-18	80 -2	42 -	24 72	
	-392	-336	96	456	352	102	216	216	- 289	-649	-30	P4 −2 68 −4	40 -1 76 -1	04 -28 88 -23	a _s
	-48	-96	-248	144	96	232	48	-144	-152	-240) -43	2 -6	80 -	96 -57	6 -8
	376	0	-96	-152	-192	0	-116	-72	48	292	14	4	0 1	36 288	9
	0	928	0	-96	256	96	-72	-176	72	216	73	6 2	16 14	44 256	5 -1
	-96	0	376	96	192	136	48	72	-116	-48	72	1	48	0 -28	8 -1
	-152	-96	96	1048	576	192	292	168	-48	-308	-14	14 -	96 -6	80 -67	2 -2
	-192	256	192	576	2176	288	192	736	168	-144	-22	- 44	72 -4	80 -150	68 -5
	0	96	136	192	288	760	0	120	148	-96	-7	2 -1	64 -1	92 -48	0 -6
	-116	-72	48	292	192	0	984	648	144	-152	-7	4	18 -3	92 -40	8 -4
	-12	-1/6	-116	168	168	149	648	432	432	-216	25	0 14 4 15	44 -2 36	0 - 142 0 - 49	- 4
	202	216	-49	-308	-144	-06	-152	-216	964	46	214	6 1	44 2	32 50	-2
	144	736	72	-144	-224	-72	-72	256	144	216	105	6 4	32 2	88 351	14
	0	216	148	-96	-72	-164	48	144	136	144	43	2 6	96 0	6 14	23
	136	144	0	-680	-480	-192	-392	-240	0	232	28	8 9	6 11	20 432	19
	288	256	-288	-672	-1568	-480	-408	-1424	48	504	35	2 1	44 4	32 361	6 86
					200	100	10								

FEA procedure

***1.** Identify the problem, sketch the structure and loads.

***2.** Create the geometry with the FE package solid modeler or a CAD system.

***3.** Apply material properties.

*****4. Mesh the model.

*****5. Apply boundary conditions (constraints and loads) on the model.

*****6. Solve numerical equations.

***7.** Evaluate the results.

Solidworks Simulation example

Solidworks Simulation example

pin.SLDPRT

 $[M]\{\ddot{u}\} + [K][u] = 0$

Solving the equation

 $\{u\} = \{\phi\}\sin\omega t$

$$-\omega^{2}[M]\{\phi\}\sin\omega t + [K]\{\phi\}\sin\omega t = 0$$

$$([K] - \omega^{2}[M])\{\phi\} = 0 \iff [A - \lambda I]x = 0$$

Eigen value problem

$$det([K] - \lambda[M]) = 0$$

Simple analytic model Two mass block connected with a spring

det([K]-
$$\lambda$$
 [M]) = $\lambda^2 m_1 m_2 - \lambda k m_2 - \lambda k m_1$ where $\lambda = \sigma^2$

Simple analytic model Two mass block connected with a spring

Target model – Modal frequency analysis

Target model – Modal frequency analysis

lis	ist Modes									
:	Study name:	Frequency 1								
	Mode No.	Frequency(Rad/sec)	Frequency(Hertz)	Period(Seconds)						
	1	2080.9	331.19	0.0030194						
	2	2081	331.2	0.0030194						
	3	12469	1984.5	0.00050391						
	4	12472	1985	0.00050378						
	5	17866	2843.5	0.00035168						
4 III										
	<u>Close</u> <u>H</u> elp									

4th order mode shape for example

Modeling Tips

- Tip #1 Understand the physics of the problem and always start with a sketch. Before you model have a plan and know:
 - What you are going to model and what results do you need?
 - How you are going to develop your model?
 - How you are going to support the model and apply loads?
- Tip #2 Start simple and increase complexity as required.
 - When modeling systems start with a single optical element.
- Tip #3 Build simple test models for understanding.
 - Check for load and boundary condition accuracy
 - Above depends on the type of analysis you are running
 - Check for mesh accuracy do convergence studies
- Tip #4 Always request reaction forces in the output.
 - For models with both structural and gravity loads, turn off gravity and check your reaction forces. Do they match the applied load?
 - Turn on gravity. Is the increase in reaction force consistent with the gravity load? Is the direction correct?

Modeling Tips

- Tip #5 Understand your constraints and use care not to over constrain the model.
 - Are all six (6) rigid body translations and rotations accounted for?
 - A model with too few constraints causes a singular stiffness matrix.
 - An over constrained model creates alternate load paths.
 - When in doubt, release constraints and add soft springs.
- Tip #6 Study the deformed shape. Does it look correct?
 - Properly modeled, symmetric loads and constraints will produce symmetric results.
 - Always generate a symmetric mesh for optical surfaces. Automatic mesh generators rarely produce a symmetric mesh.
- Tip #7 As a starting point, there must be enough elements to accurately predict the deformed shape.
 - Use a minimum of 4 elements through the height or thickness or sections subjected to bending.
 - Do simple convergence studies to determine an acceptable mesh density.
- Tip #8 An accurate stress analysis requires more elements than an accurate displacement analysis.
 - Increase the mesh density for accurate stress analysis.
 - Check nodal stress in surrounding elements sharing a common node.

Modeling Tips

- Tip #9 Check, check and recheck your model and results.
 - Do hand calculations and back of the envelope calculations to verify results.
 - Assume the results are wrong until proven correct.
- Tip #10 When in trouble get help.
 - Consult a senior analyst for help and tips