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(om  The University of Arizona FEA Pitfalls

Tony Rizzo (Bell Labs) quotes:

— “Some engineers and managers look upon commercially available
FEA programs as automated tools for design. In fact, nothing
could be further from reality than that simplistic view of today's
powerful programs. The engineer who plunges ahead, thinking
that a few clicks of the left mouse button will solve all his
problems, is certain to encounter some very nasty
surprises.”

— “With the exception of a very few ftrivial cases, all finite
element solutions are wrong, and they are likely to be more
wrong than you think. One experienced analysis estimates
that 80% of all finite element solutions are gravely wrong,
because the engineers doing the analyses make serious
modeling mistakes.”

— “Finite element analysis is a very powerful tool with which to
design products of superior quality. Like all tools, it can be used
properly, or it can be misused. The keys to using this tool
successfully are to understand the nature of the calculations
that the computer is doing and to pay attention to the
physics.’



FEA Theory

® Finite element method — numerical procedure for solving a continuum mechanics
problem with acceptable accuracy.

® Subdivide a large problem into small elements connected by nodes.

Flexure Solid Model Flexure FEA Model

* 123399 DOF

* 25795 TRETA4 Elements
41303 Nodes

* FEM by minimizing the total potential energy of the system to obtain primary
unknowns - the temperatures, stresses, flows, or other desired



FEA example for spring

**Equilibrium : Minimum of Potential energy

(Assume 1D problem : x axis)

1
[l = strain energy — work = Eae — Fx
I 0
Ox
For a spring,
M= ~kx? —Fx M kx—F =0
2 0x

> F =kx



General FEA formula

The total potential energy can be expressed as:
_ l T ' 7 r
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The total potential energy of the discretized individual element:
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= O gives: F= K U, where K is stiffness Matrix, [K].

FEA Presentation



FEA Solution

[F] = {K]-[u]
[u] = [K]*[F]



System stiffness matrix : 1D example

1 2

X1 x2

Global stiffness matrix =3 x 3

M

k —k)

Element stiffness matrix =2 x 2 =(—k I
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How to build the stiffness matrix

Global stiffness
matrix=3x 3

Shared node!!

k., —k; |\ O
—k, ky+k, —k,
0 | —k, k,




B.C and solve

**Boundary condition

Shared node!!
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Dr. Burge ‘s class note

Nodes
“What are they”

A node is simply a coordinate location in space where a DOF (degree of
freedom) is defined.

Nodes — Properties and Characteristics
® Infinitesimally small
* Defined with reference to a global coordinate system

* Typically nodes are defined on the surface and in the interior of the
component you are modeling

®* Form a grid work within component as a result of the mesh
* Typically define the corners of elements

®* Where we define loads and boundary conditions

® Location of our results (deformation, stress, etc.)

®* Nodes are the byproduct of defining elements
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Dr. Burge ‘s class note
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Elements
“What are they”

An element is a mathematical relation that defines how a DOF of a node
relates to the next.

Elements — Properties and Characteristics

Point, 2D and 3D elements

Define a line (1D), area (2D) or volume (3D) on or within our model
Dimensions define an “Aspect Ratio”

A set of elements is know as the “mesh”

Mesh shape and density is critical to the analysis

Typically have many options that may be preset for the user
Elements are typically what we define

FEA Presentation



Dr. Burge ‘s class note

SolidWorks Simulation Problems, Pitfalls and Tips
Solid Mesh Requires planning and element /
- TETRA4 and TETRA10 (4 &10 node DOF knowledge

 The element defines the number of
active DOFs.

TETRA4 & TETRA10 Elements
3 translational DOF per node
1 DOF per node for thermal
TETRAA4 (linear) TETRA10 (parabolic)

* Supports adaptive “P” method

tetrahedron solid elements)

SHELL3 & SHELL6 Elements
Shell Mesh 6 DOF per node (3 translational + 3

e SHELL3 and SHELL6 (2 & 6 node thin rotational )
5) * 1 DOF per node for thermal
Membrane and bending capabilities
Uniform thickness element
SHELL3 (linear) SHELLG6 (parabolic)
» Supports adaptive “P” method

10/15/2012 FEA Presentation



4-node tetrahedral mesh

The unit reference tetrahedron has corners at {0,0,0},{1,0,0},{0,1,0},{0,0,1}

~4—6v 1 1 -2y —bv —v —v =2v 0 —v 0 =2v7
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10-node tetrahedral mesh
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FEA procedure

1. Identify the problem, sketch the structure and loads.

2. Create the geometry with the FE package solid modeler or a CAD system.

3. Apply material properties.

“+4. Mesh the model.

5. Apply boundary conditions (constraints and loads) on the model.
6. Solve numerical equations.

+*7. Evaluate the results.



Solidworks Simulation example
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Solidworks Simulation example
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Theoretical background for modal analysis

***Equation of motion (assume zero damping)
[M1{i} + [K][u] = O

*»Solving the equation
tuy = {0}sinwt

—wz[M]{tI)}sinwr+[K]{q)}sinw:‘ =0

(K] - o [M]){6} = 0 <> [A—Allx = O

Eigen value problem

det ([K] = A[M]) = 0



Simple analytic model

“*Two mass block connected with a spring

= . “2 [k -k _ (im0
_ m= () m= ()
iy AN -,
k . k—Am, —k
[K]- & [M] =
—k  k—Am,

det([K]- A [MD) =A% m, m,— Ak m,— hkm, where =g’

Eigen values Eigen functions
. B m 7
Pt i 20 my 20 ()] e [( -5
my m, m
N\ ; I AN RV
Resonant frequency Rigid body motion 'f

Mode shape



Simple analytic model

**Two mass block connected with a spring

- “] — “2

ni 1 1 ni 2

. 7.343e+0M




Target model — Modal frequency analysis




Target model — Modal frequency analysis
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4t order mode shape for example
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(sn The University of Arizona MOde"ng Tlps

« Tip #1 Understand the physics of the problem and always
start with a sketch. Before you model have a plan and
Know:

— What you are going to model and what results do you need?
— How you are going to develop your model?
— How you are going to support the model and apply loads?

« Tip #2 Start simple and increase complexity as required.
— When modeling systems — start with a single optical element.

 Tip #3 Build simple test models for understanding.

— Check for load and boundary condition accuracy
+ Above depends on the type of analysis you are running

— Check for mesh accuracy — do convergence studies

« Tip # Always request reaction forces in the output.

— For models with both structural and gravity loads, turn off gravity
and check your reaction forces. Do they match the applied load?

— Turn on gravity. Is the increase in reaction force consistent with
the gravity load? Is the direction correct?



Optical Sciences Center

(nm The University of Arizona MOde“ng Tips

« Tip #5 Understand your constraints and use care not to over
constrain the model.

— Are all six (6) rigid body translations and rotations accounted for?
— A model with too few constraints causes a singular stiffness matrix.
— An over constrained model creates alternate load paths.

— When in doubt, release constraints and add soft springs.

+ Tip #6 Study the deformed shape. Does it look correct?

— Properly modeled, symmetric loads and constraints will produce symmetric
results.

— Always generate a symmetric mesh for optical surfaces. Automatic mesh
generators rarely produce a symmetric mesh.

« Tip#7 As a startin%point, there must be enough elements to
accurately predict the deformed shape.

— Use a minimum of 4 elements through the height or thickness or sections
subjected to bending.

— Do simple convergence studies to determine an acceptable mesh density.

+ Tip #8 An accurate stress analysis requires more elements than an
accurate displacement analysis.

— Increase the mesh density for accurate stress analysis.
— Check nodal stress in surrounding elements sharing a common node.
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. (b The University of Arizona MOdeIing Tips

« Tip #9 Check, check and recheck your model and results.
— Do hand calculations and back of the envelope calculations to verify results.
— Assume the results are wrong until proven correct.

« Tip#10 When in trouble — get help.
— Consult a senior analyst for help and tips



